1
|
Baker CNS, Pajela PGC, Martin DE, Dzyuba SV, Stewart MD. Proline variants in the BRCA1 coiled-coil domain disrupt folding and binding to PALB2. Protein Sci 2025; 34:e5240. [PMID: 39673470 PMCID: PMC11645666 DOI: 10.1002/pro.5240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/16/2024]
Abstract
Inherited mutations in the genes coding for the tumor suppressor proteins BRCA1 and PALB2 can lead to increased risk of breast and ovarian cancer. Upon DNA damage, these two proteins form a complex to promote double-stranded break repair via homologous recombination. Missense mutations in either BRCA1 or PALB2 that disrupt this important interaction result in loss of effective DNA damage repair and are associated with breast tumorigenesis. However, the overwhelming majority of missense mutations found in the binding domains of these two genes remain classified as variants of unknown significance. Here we report an in vitro assay for assessing the effect of variants of unknown significance on the heterodimerization of PALB2 and BRCA1 that recapitulates the effect of the known deleterious mutations. We apply the assay to several variants of unknown significance in BRCA1 which reveals other mutations in this region that also disrupt binding, including a mutation of a residue not predicted to directly interact with PALB2. Structural analysis indicates that all BRCA1 mutations to proline tested disrupt α-helix formation and therefore are not well tolerated even when located at positions outside of the PALB2-binding interface. This assay and the structural hypothesis described will be helpful for assessing risk for variants identified in the future in the BRCA1/PALB2 interaction domains.
Collapse
Affiliation(s)
| | | | - Davis E. Martin
- Department of BiologyTexas Christian UniversityFort WorthTexasUSA
| | - Sergei V. Dzyuba
- Department of Chemistry and BiochemistryTexas Christian UniversityFort WorthTexasUSA
| | | |
Collapse
|
2
|
Davidson AL, Michailidou K, Parsons MT, Fortuno C, Bolla MK, Wang Q, Dennis J, Naven M, Abubakar M, Ahearn TU, Alonso MR, Andrulis IL, Antoniou AC, Auvinen P, Behrens S, Bermisheva MA, Bogdanova NV, Bojesen SE, Brüning T, Byers HJ, Camp NJ, Campbell A, Castelao JE, Cessna MH, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Collée JM, Czene K, Dörk T, Eriksson M, Evans DG, Fasching PA, Figueroa JD, Flyger H, Gago-Dominguez M, García-Closas M, Glendon G, González-Neira A, Grassmann F, Gronwald J, Guénel P, Hadjisavvas A, Haeberle L, Hall P, Hamann U, Hartman M, Ho PJ, Hooning MJ, Hoppe R, Howell A, Jakubowska A, Khusnutdinova EK, Kristensen VN, Li J, Lim J, Lindblom A, Liu J, Lophatananon A, Mannermaa A, Mavroudis DA, Mensenkamp AR, Milne RL, Muir KR, Newman WG, Obi N, Panayiotidis MI, Park SK, Park-Simon TW, Peterlongo P, Radice P, Rashid MU, Rhenius V, Saloustros E, Sawyer EJ, Schmidt MK, Seibold P, Shah M, Southey MC, Teo SH, Tomlinson I, Torres D, Truong T, van de Beek I, van der Hout AH, Wendt CC, Dunning AM, Pharoah PDP, Devilee P, Easton DF, James PA, Spurdle AB. Co-observation of germline pathogenic variants in breast cancer predisposition genes: Results from analysis of the BRIDGES sequencing dataset. Am J Hum Genet 2024; 111:2059-2069. [PMID: 39096911 PMCID: PMC11393698 DOI: 10.1016/j.ajhg.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/05/2024] Open
Abstract
Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation has been designated as evidence against pathogenicity for commonly used variant classification guidelines. Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to formally assess the utility of co-observation data for germline variant classification. Our analysis included expected loss-of-function variants in 11 breast cancer predisposition genes and pathogenic missense variants in BRCA1, BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion strength assignment based on the likelihood ratio and showed utility in reclassification of missense BRCA1 and BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by ClinGen Variant Curation Expert Panels.
Collapse
Affiliation(s)
- Aimee L Davidson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Michael T Parsons
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Marc Naven
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - M Rosario Alonso
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210 Kuopio, Finland; Department of Oncology, Cancer Center, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina A Bermisheva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany; Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany; N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk 223040, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, 44789 Bochum, Germany
| | - Helen J Byers
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Foundation, Complejo Hospitalario Universitario de Santiago, SERGAS, 36312 Vigo, Spain
| | - Melissa H Cessna
- Department of Pathology, Intermountain Health, Murray, UT, USA; Intermountain Biorepository, Intermountain Health, Murray, UT, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Georgia Chenevix-Trench
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA; Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH16 4UX, UK; Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Manuela Gago-Dominguez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Fundación Pública Gallega de IDIS, Cancer Genetics and Epidemiology Group, Genomic Medicine Group, 15706 Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA; The Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; Health and Medical University, Potsdam, Germany
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 70-115 Szczecin, Poland
| | - Pascal Guénel
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussay, CESP, 94805 Villejuif, France
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Lothar Haeberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; Department of Oncology, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Department of Surgery, National University Hospital and National University Health System, Singapore City 119228, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore City 119228, Singapore
| | - Peh Joo Ho
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore City 138672, Singapore
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; University of Tübingen, 72074 Tübingen, Germany
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 70-115 Szczecin, Poland; Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 171-252 Szczecin, Poland
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; Federal State Budgetary Educational Institution of Higher Education, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
| | - Jingmei Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore City 138672, Singapore
| | - Joanna Lim
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jenny Liu
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Department of General Surgery, Ng Teng Fong General Hospital, Singapore City 609606, Singapore
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Dimitrios A Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10 Heraklion, Greece
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, 6525 Nijmegen GA, the Netherlands
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Kenneth R Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Nadia Obi
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul 03080, Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | | | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS - the AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Paolo Radice
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), 20133 Milan, Italy
| | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore 54000, Pakistan
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Emmanouil Saloustros
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, UM Cancer Research Institute, Kuala Lumpur 50603, Malaysia
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford OX3 7LF, UK
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota 110231, Colombia
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussay, CESP, 94805 Villejuif, France
| | - Irma van de Beek
- Department of Clinical Genetics, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands
| | - Annemieke H van der Hout
- Department of Genetics, University Medical Center Groningen, University Groningen, 9713 GZ Groningen, the Netherlands
| | - Camilla C Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83 Stockholm, Sweden
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul A James
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Yadegari F, Farahmand L, Esmaeili R, Zarinfam S, Majidzadeh-A K. Inter-BRCT linker is probably the most intolerant region of the BRCA1 BRCT domain. J Biomol Struct Dyn 2024; 42:5734-5746. [PMID: 37948190 DOI: 10.1080/07391102.2023.2274517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/15/2023] [Indexed: 11/12/2023]
Abstract
Pathogenic mutations in BRCA1 are associated with an increased risk of hereditary breast, ovarian, and some other cancers; however, the clinical significance of many mutations in this gene remains unknown (Variants of Unknown Significance/VUS). Since mutations in intolerant regions of a protein lead to dysfunction and pathogenicity, identifying these regions helps to predict the clinical importance of VUSs. This study aimed to identify intolerant regions of BRCA1 and understand the possible root of this susceptibility. Intolerant regions appear to carry more pathogenic mutations than expected due to their lower tolerance to missense variations. Therefore, we hypothesized that among the BRCA1 regions, the higher the mutation density, the greater the intolerance. Thus, pathogenic mutation density and regional intolerance scores were calculated to identify BRCA1-intolerant regions. To investigate the pathogenic mechanisms of missense-intolerant regions in BRCA1, transcription activation (TA) experiments and molecular dynamics (MD) simulations were also performed. The results showed that the RING domain, followed by the BRCT domain, has the highest density of pathogenic mutations. In the BRCT domain, a higher density of pathogenic mutations was observed in the inter-BRCT linker. Additionally, scores generated by Missense Tolerance Ratio-3D (MTR3D) and the Missense Tolerance Ratio consensus (MTRX) showed that the inter-BRCT linker is more intolerant than other regions of the BRCT domain. The MD results showed that mutations in the inter-BRCT linker led to cancer susceptibility, likely due to disruption of the interaction between BRCA1 and phosphopeptides. TA laboratory assays further supported the importance of the inter-BRCT linker.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Yadegari
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Zarinfam
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Nepomuceno TC, Lyra P, Zhu J, Yi F, Martin RH, Lupu D, Peterson L, Peres LC, Berry A, Iversen ES, Couch FJ, Mo Q, Monteiro AN. Assessment of BRCA1 and BRCA2 Germline Variant Data From Patients With Breast Cancer in a Real-World Data Registry. JCO Clin Cancer Inform 2024; 8:e2300251. [PMID: 38709234 PMCID: PMC11161245 DOI: 10.1200/cci.23.00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024] Open
Abstract
PURPOSE The emergence of large real-world clinical databases and tools to mine electronic medical records has allowed for an unprecedented look at large data sets with clinical and epidemiologic correlates. In clinical cancer genetics, real-world databases allow for the investigation of prevalence and effectiveness of prevention strategies and targeted treatments and for the identification of barriers to better outcomes. However, real-world data sets have inherent biases and problems (eg, selection bias, incomplete data, measurement error) that may hamper adequate analysis and affect statistical power. METHODS Here, we leverage a real-world clinical data set from a large health network for patients with breast cancer tested for variants in BRCA1 and BRCA2 (N = 12,423). We conducted data cleaning and harmonization, cross-referenced with publicly available databases, performed variant reassessment and functional assays, and used functional data to inform a variant's clinical significance applying American College of Medical Geneticists and the Association of Molecular Pathology guidelines. RESULTS In the cohort, White and Black patients were over-represented, whereas non-White Hispanic and Asian patients were under-represented. Incorrect or missing variant designations were the most significant contributor to data loss. While manual curation corrected many incorrect designations, a sizable fraction of patient carriers remained with incorrect or missing variant designations. Despite the large number of patients with clinical significance not reported, original reported clinical significance assessments were accurate. Reassessment of variants in which clinical significance was not reported led to a marked improvement in data quality. CONCLUSION We identify the most common issues with BRCA1 and BRCA2 testing data entry and suggest approaches to minimize data loss and keep interpretation of clinical significance of variants up to date.
Collapse
Affiliation(s)
- Thales C. Nepomuceno
- Department of Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Paulo Lyra
- Department of Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jianbin Zhu
- AdventHealth Research Institute, Orlando, FL
| | - Fanchao Yi
- AdventHealth Research Institute, Orlando, FL
| | - Rachael H. Martin
- Department of Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | - Lauren C. Peres
- Department of Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Anna Berry
- AdventHealth Cancer Institute, Orlando, FL
| | | | | | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Alvaro N. Monteiro
- Department of Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
5
|
Fortuno C, Michailidou K, Parsons M, Dolinsky JS, Pesaran T, Yussuf A, Mester JL, Hruska KS, Hiraki S, O’Connor R, Chan RC, Kim S, Tavtigian SV, Goldgar D, James PA, Spurdle AB. Challenges and approaches to calibrating patient phenotype as evidence for cancer gene variant classification under ACMG/AMP guidelines. Hum Mol Genet 2024; 33:724-732. [PMID: 38271184 PMCID: PMC11000651 DOI: 10.1093/hmg/ddae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Since first publication of the American College of Medical Genetics and Genomics/Association for Medical Pathology (ACMG/AMP) variant classification guidelines, additional recommendations for application of certain criteria have been released (https://clinicalgenome.org/docs/), to improve their application in the diagnostic setting. However, none have addressed use of the PS4 and PP4 criteria, capturing patient presentation as evidence towards pathogenicity. Application of PS4 can be done through traditional case-control studies, or "proband counting" within or across clinical testing cohorts. Review of the existing PS4 and PP4 specifications for Hereditary Cancer Gene Variant Curation Expert Panels revealed substantial differences in the approach to defining specifications. Using BRCA1, BRCA2 and TP53 as exemplar genes, we calibrated different methods proposed for applying the "PS4 proband counting" criterion. For each approach, we considered limitations, non-independence with other ACMG/AMP criteria, broader applicability, and variability in results for different datasets. Our findings highlight inherent overlap of proband-counting methods with ACMG/AMP frequency codes, and the importance of calibration to derive dataset-specific code weights that can account for potential between-dataset differences in ascertainment and other factors. Our work emphasizes the advantages and generalizability of logistic regression analysis over simple proband-counting approaches to empirically determine the relative predictive capacity and weight of various personal clinical features in the context of multigene panel testing, for improved variant interpretation. We also provide a general protocol, including instructions for data formatting and a web-server for analysis of personal history parameters, to facilitate dataset-specific calibration analyses required to use such data for germline variant classification.
Collapse
Affiliation(s)
- Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Michael Parsons
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | | | - Tina Pesaran
- Ambry Genetics, Aliso Viejo, CA 92656, United States
| | - Amal Yussuf
- Ambry Genetics, Aliso Viejo, CA 92656, United States
| | | | | | | | | | - Raymond C Chan
- Color Genomics, Inc., Burlingame, CA 94010, United States
| | - Serra Kim
- Color Genomics, Inc., Burlingame, CA 94010, United States
| | - Sean V Tavtigian
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - David Goldgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
6
|
Richau CS, Scherer NDM, Matta BP, de Armas EM, de Barros Moreira FC, Bergmann A, Pereira Chaves CB, Boroni M, dos Santos ACE, Moreira MAM. BRCA1, BRCA2, and TP53 germline and somatic variants and clinicopathological characteristics of Brazilian patients with epithelial ovarian cancer. Cancer Med 2024; 13:e6729. [PMID: 38308422 PMCID: PMC10905552 DOI: 10.1002/cam4.6729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Approximately 3/4 of ovarian cancers are diagnosed in advanced stages, with the high-grade epithelial ovarian carcinoma (EOC) accounting for 90% of the cases. EOC present high genomic instability and somatic loss-of-function variants in genes associated with homologous recombination mutational repair pathway (HR), such as BRCA1 and BRCA2, and in TP53. The identification of germline variants in HR genes in EOC is relevant for treatment of platinum resistant tumors and relapsed tumors with therapies based in synthetic lethality such as PARP inhibitors. Patients with somatic variants in HR genes may also benefit from these therapies. In this work was analyzed the frequency of somatic variants in BRCA1, BRCA2, and TP53 in an EOC cohort of Brazilian patients, estimating the proportion of variants in tumoral tissue and their association with progression-free survival and overall survival. METHODS The study was conducted with paired blood/tumor samples from 56 patients. Germline and tumoral sequences of BRCA1, BRCA2, and TP53 were obtained by massive parallel sequencing. The HaplotypeCaller method was used for calling germline variants, and somatic variants were called with Mutect2. RESULTS A total of 26 germline variants were found, and seven patients presented germline pathogenic or likely pathogenic variants in BRCA1 or BRCA2. The analysis of tumoral tissue identified 52 somatic variants in 41 patients, being 43 somatic variants affecting or likely affecting protein functionality. Survival analyses showed that tumor staging was associated with overall survival (OS), while the presence of somatic mutation in TP53 was not associated with OS or progression-free survival. CONCLUSION Frequency of pathogenic or likely pathogenic germline variants in BRCA1 and BRCA2 (12.5%) was lower in comparison with other studies. TP53 was the most altered gene in tumors, with 62.5% presenting likely non-functional or non-functional somatic variants, while eight 14.2% presented likely non-functional or non-functional somatic variants in BRCA1 or BRCA2.
Collapse
Affiliation(s)
| | | | - Bruna Palma Matta
- Tumoral Genetics and Virology ProgramInstituto Nacional de CâncerRio de JaneiroBrazil
- Present address:
Hospital BP ‐ A Beneficência Portuguesa de São PauloSão PauloBrazil
| | | | | | - Anke Bergmann
- Clinical EpidemiologyInstituto Nacional de CâncerRio de JaneiroBrazil
| | | | - Mariana Boroni
- Bioinformatics and Computational Biology LaboratoryInstituto Nacional de CâncerRio de JaneiroBrazil
| | | | | |
Collapse
|
7
|
Stein RA, Mchaourab HS. Rosetta Energy Analysis of AlphaFold2 models: Point Mutations and Conformational Ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556364. [PMID: 37732281 PMCID: PMC10508732 DOI: 10.1101/2023.09.05.556364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
There has been an explosive growth in the applications of AlphaFold2, and other structure prediction platforms, to accurately predict protein structures from a multiple sequence alignment (MSA) for downstream structural analysis. However, two outstanding questions persist in the field regarding the robustness of AlphaFold2 predictions of the consequences of point mutations and the completeness of its prediction of protein conformational ensembles. We combined our previously developed method SPEACH_AF with model relaxation and energetic analysis with Rosetta to address these questions. SPEACH_AF introduces residue substitutions across the MSA and not just within the input sequence. With respect to conformational ensembles, we combined SPEACH_AF and a new MSA subsampling method, AF_cluster, and for a benchmarked set of proteins, we found that the energetics of the conformational ensembles generated by AlphaFold2 correspond to those of experimental structures and explored by standard molecular dynamic methods. With respect to point mutations, we compared the structural and energetic consequences of having the mutation(s) in the input sequence versus in the whole MSA (SPEACH_AF). Both methods yielded models different from the wild-type sequence, with more robust changes when the mutation(s) were in the whole MSA. While our findings demonstrate the robustness of AlphaFold2 in analyzing point mutations and exploring conformational ensembles, they highlight the need for multi parameter structural and energetic analyses of these models to generate experimentally testable hypotheses.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Molecular Physiology and Biophysics and Center for Applied AI in Protein Dynamics Vanderbilt University
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics and Center for Applied AI in Protein Dynamics Vanderbilt University
| |
Collapse
|
8
|
Militello AM, Orsi G, Cavaliere A, Niger M, Avallone A, Salvatore L, Tortora G, Rapposelli IG, Giordano G, Noventa S, Giommoni E, Bozzarelli S, Macchini M, Peretti U, Procaccio L, Puccini A, Cascinu S, Montagna C, Milella M, Reni M. Clinical outcomes and response to chemotherapy in a cohort of pancreatic cancer patients with germline variants of unknown significance (VUS) in BRCA1 and BRCA2 genes. Cancer Chemother Pharmacol 2023; 92:501-510. [PMID: 37725113 DOI: 10.1007/s00280-023-04585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE The clinical outcome and the efficacy of chemotherapy in pancreatic cancer patients with BRCA1/2 Variants of Unknown Significance (VUS) is unknown. We explored the effects of chemotherapy with or without Platinum in non metastatic and metastatic pancreatic cancer patients with BRCA1/2 VUS. METHODS A retrospective analysis of non-metastatic or metastatic pancreatic cancer patients with gBRCA1/2 VUS treated in 13 Italian centers between November 2015 and December 2020 was performed. All patients were assessed for toxicity and RECIST 1.1 response. Metastatic patients were evaluated for survival outcome. RESULTS 30 pancreatic cancer patients with gBRCA1/2 VUS were considered: 20 were M+ and 10 were non-M+. Pl-CT was recommended to 16 patients: 10 M+ (6 FOLFIRINOX and 4 PAXG) and 6 non-M+ (3 FOLFIRINOX and 3 PAXG); 11 patients received Nabpaclitaxel-Gemcitabine (AG; 8 M+) and 3 patients (2 M+) were treated with Gemcitabine (G). The RECIST 1.1 response rate was 27% for AG and 44% for Pl-CT (22% for (m) FOLFIRINOX and 71% PAXG). 1 year Progression-Free Survival was 37.5% for patients treated with AG and 33% in the Pl-CT subgroup. Median Overall Survival (OS) was 23.5 months for patients treated with AG and 14 months for the Pl-CT subgroup. 1 Year and 2 Year OS were numerically better for AG (1 Year OS: 75% vs 60% and 2 Year OS: 50% and 20% in AG and Pl-CT subgroups, respectively) as well. CONCLUSIONS Pl-CT does not seem to be associated with a better outcome compared to AG chemotherapy in PDAC patients with BRCA 1/2 VUS.
Collapse
Affiliation(s)
- Anna Maria Militello
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Cavaliere
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS Candiolo, Candiolo, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Antonio Avallone
- Biologia Cellulare e Bioterapie, Istituto Nazionale per lo Studio e la Cura dei Tumori ''Fondazione Giovanni Pascale'' - IRCCS, Naples, Italy
| | - Lisa Salvatore
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ''Dino Amadori'', Meldola, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Riuniti, Foggia, Italy
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Silvia Noventa
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elisa Giommoni
- Medical Oncology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Silvia Bozzarelli
- Department of Medical Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Procaccio
- Medical Oncology 1 Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Alberto Puccini
- University of Genoa, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Montagna
- Department of Radiation Oncology and Genomic Instability and Cancer Genetics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy.
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
9
|
Biswas K, Mitrophanov AY, Sahu S, Sullivan T, Southon E, Nousome D, Reid S, Narula S, Smolen J, Sengupta T, Riedel-Topper M, Kapoor M, Babbar A, Stauffer S, Cleveland L, Tandon M, Malys T, Sharan SK. Sequencing-based functional assays for classification of BRCA2 variants in mouse ESCs. CELL REPORTS METHODS 2023; 3:100628. [PMID: 37922907 PMCID: PMC10694496 DOI: 10.1016/j.crmeth.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Sequencing of genes, such as BRCA1 and BRCA2, is recommended for individuals with a personal or family history of early onset and/or bilateral breast and/or ovarian cancer or a history of male breast cancer. Such sequencing efforts have resulted in the identification of more than 17,000 BRCA2 variants. The functional significance of most variants remains unknown; consequently, they are called variants of uncertain clinical significance (VUSs). We have previously developed mouse embryonic stem cell (mESC)-based assays for functional classification of BRCA2 variants. We now developed a next-generation sequencing (NGS)-based approach for functional evaluation of BRCA2 variants using pools of mESCs expressing 10-25 BRCA2 variants from a given exon. We use this approach for functional evaluation of 223 variants listed in ClinVar. Our functional classification of BRCA2 variants is concordant with the classification reported in ClinVar or those reported by other orthogonal assays.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Alexander Y Mitrophanov
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; Leidos Biomed Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Darryl Nousome
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Sakshi Narula
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Julia Smolen
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Trisha Sengupta
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Maximilian Riedel-Topper
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Medha Kapoor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Anav Babbar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Mayank Tandon
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tyler Malys
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
10
|
Zanti M, O'Mahony DG, Parsons MT, Li H, Dennis J, Aittomäkkiki K, Andrulis IL, Anton-Culver H, Aronson KJ, Augustinsson A, Becher H, Bojesen SE, Bolla MK, Brenner H, Brown MA, Buys SS, Canzian F, Caputo SM, Castelao JE, Chang-Claude J, Czene K, Daly MB, De Nicolo A, Devilee P, Dörk T, Dunning AM, Dwek M, Eccles DM, Engel C, Evans DG, Fasching PA, Gago-Dominguez M, García-Closas M, García-Sáenz JA, Gentry-Maharaj A, Geurts - Giele WR, Giles GG, Glendon G, Goldberg MS, Garcia EBG, Güendert M, Guénel P, Hahnen E, Haiman CA, Hall P, Hamann U, Harkness EF, Hogervorst FB, Hollestelle A, Hoppe R, Hopper JL, Houdayer C, Houlston RS, Howell A, Jakimovska M, Jakubowska A, Jernström H, John EM, Kaaks R, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Lacey JV, Lambrechts D, Léoné M, Lindblom A, Lubiński J, Lush M, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Menon U, Milne RL, Monteiro AN, Murphy RA, Neuhausen SL, Nevanlinna H, Newman WG, Offit K, Park SK, James P, Peterlongo P, Peto J, Plaseska-Karanfilska D, Punie K, Radice P, Rashid MU, Rennert G, Romero A, Rosenberg EH, Saloustros E, Sandler DP, Schmidt MK, Schmutzler RK, Shu XO, Simard J, Southey MC, Stone J, Stoppa-Lyonnet D, Tamimi RM, Tapper WJ, Taylor JA, Teo SH, Teras LR, Terry MB, Thomassen M, Troester MA, Vachon CM, Vega A, Vreeswijk MP, Wang Q, Wappenschmidt B, Weinberg CR, Wolk A, Zheng W, Feng B, Couch FJ, Spurdle AB, Easton DF, Goldgar DE, Michailidou K. A likelihood ratio approach for utilizing case-control data in the clinical classification of rare sequence variants: application to BRCA1 and BRCA2. Hum Mutat 2023; 2023:9961341. [PMID: 38725546 PMCID: PMC11080979 DOI: 10.1155/2023/9961341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
A large number of variants identified through clinical genetic testing in disease susceptibility genes, are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion), can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analyses of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC), and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity - findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared to classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and pre-formatted excel calculators for implementation of the method for rare variants in BRCA1, BRCA2 and other high-risk genes with known penetrance.
Collapse
Affiliation(s)
- Maria Zanti
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denise G. O'Mahony
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Michael T. Parsons
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hongyan Li
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kristiina Aittomäkkiki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Irene L. Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Kristan J. Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen’s University, Kingston, ON, Canada
| | - Annelie Augustinsson
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Heiko Becher
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stig E. Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melissa A. Brown
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Saundra S. Buys
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandrine M. Caputo
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Jose E. Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - GC-HBOC study Collaborators
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B. Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Arcangela De Nicolo
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Diana M. Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - D. Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - José A. García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | | | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, QC, Canada
| | - Encarna B. Gómez Garcia
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Melanie Güendert
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Pascal Guénel
- Team 'Exposome and Heredity', CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elaine F. Harkness
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Nightingale & Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- NIHR Manchester Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Frans B.L. Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands
| | | | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Claude Houdayer
- Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - ABCTB Investigators
- Australian Breast Cancer Tissue Bank, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Milena Jakimovska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', MASA, Skopje, Republic of North Macedonia
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Esther M. John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cari M. Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vessela N. Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - James V. Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Melanie Léoné
- Genetic and Cancer Medical Laboratory HCL-CLB, Hospices Civils de Lyon, Bron, France
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Maria Elena Martinez
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Roger L. Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Alvaro N. Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Rachel A. Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - William G. Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - ETS the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', MASA, Skopje, Republic of North Macedonia
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute and University Hospitals Leuven, Leuven, Belgium
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Muhammad U. Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Efraim H. Rosenberg
- Department of Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands
| | | | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C. Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France
- Department of Tumour Biology, INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Rulla M. Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | | | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, UM Cancer Research Institute, Kuala Lumpur, Malaysia
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odence C, Denmark
| | - Melissa A. Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celine M. Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Ana Vega
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Maaike P.G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clarice R. Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bingjian Feng
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amanda B. Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - David E. Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Sahu S, Sullivan TL, Mitrophanov AY, Galloux M, Nousome D, Southon E, Caylor D, Mishra AP, Evans CN, Clapp ME, Burkett S, Malys T, Chari R, Biswas K, Sharan SK. Saturation genome editing of 11 codons and exon 13 of BRCA2 coupled with chemotherapeutic drug response accurately determines pathogenicity of variants. PLoS Genet 2023; 19:e1010940. [PMID: 37713444 PMCID: PMC10529611 DOI: 10.1371/journal.pgen.1010940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/27/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
The unknown pathogenicity of a significant number of variants found in cancer-related genes is attributed to limited epidemiological data, resulting in their classification as variant of uncertain significance (VUS). To date, Breast Cancer gene-2 (BRCA2) has the highest number of VUSs, which has necessitated the development of several robust functional assays to determine their functional significance. Here we report the use of a humanized-mouse embryonic stem cell (mESC) line expressing a single copy of the human BRCA2 for a CRISPR-Cas9-based high-throughput functional assay. As a proof-of-principle, we have saturated 11 codons encoded by BRCA2 exons 3, 18, 19 and all possible single-nucleotide variants in exon 13 and multiplexed these variants for their functional categorization. Specifically, we used a pool of 180-mer single-stranded donor DNA to generate all possible combination of variants. Using a high throughput sequencing-based approach, we show a significant drop in the frequency of non-functional variants, whereas functional variants are enriched in the pool of the cells. We further demonstrate the response of these variants to the DNA-damaging agents, cisplatin and olaparib, allowing us to use cellular survival and drug response as parameters for variant classification. Using this approach, we have categorized 599 BRCA2 variants including 93-single nucleotide variants (SNVs) across the 11 codons, of which 28 are reported in ClinVar. We also functionally categorized 252 SNVs from exon 13 into 188 functional and 60 non-functional variants, demonstrating that saturation genome editing (SGE) coupled with drug sensitivity assays can enhance functional annotation of BRCA2 VUS.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Teresa L. Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Alexander Y. Mitrophanov
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, United States of America
| | | | - Darryl Nousome
- CCR Bioinformatics Resource, Leidos Biomedical Sciences, Inc. Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Dylan Caylor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Christine N. Evans
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michelle E. Clapp
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Tyler Malys
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, United States of America
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
12
|
Ueki A, Yoshida R, Kosaka T, Matsubayashi H. Clinical risk management of breast, ovarian, pancreatic, and prostatic cancers for BRCA1/2 variant carriers in Japan. J Hum Genet 2023; 68:517-526. [PMID: 37088789 DOI: 10.1038/s10038-023-01153-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Opportunities for genetic counseling and germline BRCA1/2 (BRCA) testing are increasing in Japan owing to cancer genomic profiling testing and companion diagnostics being covered by national health insurance for patients with BRCA-related cancers. These tests are useful not only to judge whether platinum agents and PARP inhibitors are indicated but also to reveal an autosomal-dominant inherited cancer syndrome: hereditary breast and ovarian cancer. In individuals with germline BRCA variants, risk of cancers of the breast, ovary, pancreas, and prostate is significantly increased at various ages of onset, but the stomach, uterus, biliary tract, and skin might also be at risk. For women with pathogenic BRCA variants, breast awareness and image analyses should be initiated in their 20s, and risk-reducing procedures such as mastectomy are recommended starting in their 30s, with salpingo-oophorectomy in their late 30s. For male BRCA pathogenic variant carriers, prostatic surveillance should be applied using serum prostate-specific antigen starting in their 40s. For both sexes, image examinations ideally using endoscopic ultrasound and magnetic resonance cholangiopancreatography and blood testing should begin in their 50s for pancreatic surveillance. Homologous recombination pathway-associated genes are also causative candidates. Variant pathogenicity needs to be evaluated every 6-12 months when results are uncertain for clinical significance. Genetic counseling needs to be offered to the blood relatives of the pathogenic variant carriers with suitable timing. We review the recommended cross-organ BRCA risk management in Japan.
Collapse
Affiliation(s)
- Arisa Ueki
- Department of Clinical Genetics, The Cancer Institute Hospital of JFCR, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Reiko Yoshida
- Institute for Clinical Genetics and Genomics, Showa University, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Matsubayashi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan.
| |
Collapse
|
13
|
Functional Analyses of Rare Germline Missense BRCA1 Variants Located within and outside Protein Domains with Known Functions. Genes (Basel) 2023; 14:genes14020262. [PMID: 36833189 PMCID: PMC9957003 DOI: 10.3390/genes14020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The BRCA1 protein is implicated in numerous important cellular processes to prevent genomic instability and tumorigenesis, and pathogenic germline variants predispose carriers to hereditary breast and ovarian cancer (HBOC). Most functional studies of missense variants in BRCA1 focus on variants located within the Really Interesting New Gene (RING), coiled-coil and BRCA1 C-terminal (BRCT) domains, and several missense variants in these regions have been shown to be pathogenic. However, the majority of these studies focus on domain specific assays, and have been performed using isolated protein domains and not the full-length BRCA1 protein. Furthermore, it has been suggested that BRCA1 missense variants located outside domains with known function are of no functional importance, and could be classified as (likely) benign. However, very little is known about the role of the regions outside the well-established domains of BRCA1, and only a few functional studies of missense variants located within these regions have been published. In this study, we have, therefore, functionally evaluated the effect of 14 rare BRCA1 missense variants considered to be of uncertain clinical significance, of which 13 are located outside the well-established domains and one within the RING domain. In order to investigate the hypothesis stating that most BRCA1 variants located outside the known protein domains are benign and of no functional importance, multiple protein assays including protein expression and stability, subcellular localisation and protein interactions have been performed, utilising the full-length protein to better mimic the native state of the protein. Two variants located outside the known domains (p.Met297Val and p.Asp1152Asn) and one variant within the RING domain (p.Leu52Phe) were found to make the BRCA1 protein more prone to proteasome-mediated degradation. In addition, two variants (p.Leu1439Phe and p.Gly890Arg) also located outside known domains were found to have reduced protein stability compared to the wild type protein. These findings indicate that variants located outside the RING, BRCT and coiled-coiled domains could also affect the BRCA1 protein function. For the nine remaining variants, no significant effects on BRCA1 protein functions were observed. Based on this, a reclassification of seven variants from VUS to likely benign could be suggested.
Collapse
|
14
|
Adam F, Fluri M, Scherz A, Rabaglio M. Occurrence of variants of unknown clinical significance in genetic testing for hereditary breast and ovarian cancer syndrome and Lynch syndrome: a literature review and analytical observational retrospective cohort study. BMC Med Genomics 2023; 16:7. [PMID: 36647026 PMCID: PMC9843935 DOI: 10.1186/s12920-023-01437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Over the last decade, the implementation of multigene panels for hereditary tumor syndrome has increased at our institution (Inselspital, University Hospital Berne, Switzerland). The aim of this study was to determine the prevalence of variants of unknown significance (VUS) in patients with suspected Lynch syndrome and suspected hereditary breast and ovarian cancer syndrome, the latter in connection with the trend toward ordering larger gene panels. RESULTS Retrospectively collected data from 1057 patients at our institution showed at least one VUS in 126 different cases (11.9%). In patients undergoing genetic testing for BRCA1/2, the prevalence of VUS was 6%. When < 10 additional genes were tested in addition to BRCA1/2, the prevalence increased to 13.8%, and 31.8% for > 10 additional genes, respectively. The gene most frequently affected with a VUS was ATM. 6% of our patients who were tested for Lynch syndrome had a VUS result in either MLH1, MSH2 or MSH6. CONCLUSIONS Our data demonstrate that panel testing statistically significantly increases VUS rates due to variants in non-BRCA genes. Good genetic counseling before and after obtaining results is therefore particularly important when conducting multigene panels to minimize patient uncertainty due to VUS results.
Collapse
Affiliation(s)
- Felicia Adam
- Medical Faculty of the University of Bern, Bern, Switzerland
| | - Muriel Fluri
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amina Scherz
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Rabaglio
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Barua S, Goswami N, Mishra N, Sawant UU, Varma AK. In Silico and Structure-Based Assessment of Similar Variants Discovered in Tandem Repeats of BRCT Domains of BRCA1 and BARD1 To Characterize the Folding Pattern. ACS OMEGA 2022; 7:44772-44785. [PMID: 36530327 PMCID: PMC9753114 DOI: 10.1021/acsomega.2c04782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BRCA1 and BARD1 are important proteins in the homologous DNA damage repair pathways. Different genetic variants identified in these proteins have been clinically correlated with the occurrence of hereditary breast and ovarian cancer (HBOC). Variants of unknown significance (VUS) reported in the BRCT domains of BRCA1 and BARD1 substantiate the importance of BRCT domain-containing proteins for genomic integrity. To classify the pathogenicity of variants, in silico, structural and molecular dynamics (MD)-based approaches were explored. Different variants reported in the BRCT region were retrieved from cBioPortal, LOVD3, BRCA Exchange, and COSMIC databases to evaluate the pathogenicity. Multiple sequence alignment and superimposition of the structures of BRCA1 BRCT and BARD1 BRCT domains were performed to compare alterations in folding patterns. From 11 in silico predictions servers, variants reported to be pathogenic by 70% of the servers were considered for structural analysis. To our observations, four residue pairs of both the proteins were reported, harboring 11 variants, H1686Y, W1718L, P1749L, P1749S, and W1837L variants for BRCA1 BRCT and H606D, H606N, W635L, P657L, P657S, and W762F for BARD1 BRCT. MD simulations of the BRCT repeat regions of these variants and wild-type proteins were performed to evaluate the differences of folding patterns. Root mean square deviation (RMSD), R g, solvent-accessible surface area (SASA), and root mean square fluctuation (RMSF) of variants showed slight differences in the folding patterns from the wild-type proteins. Furthermore, principal components analysis of H1686Y, P1749S, and W1718L variants of BRCA1 showed less flexibility than the wild type, whereas that of H606D, W635L, and W762F of BARD1 showed more flexibility than the wild type. Normal mode analysis of the energy minima from the simulation trajectories revealed that most of the variants do not show much differences in the flexibility compared to the wild-type proteins, except for the discrete regions in the BRCT repeats, most prominently in the 1798-1801 amino acid region of BRCA1 and at the residue 744 in BARD1.
Collapse
Affiliation(s)
- Siddhartha
A. Barua
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Nabajyoti Goswami
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Neha Mishra
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Ulka U. Sawant
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Ashok K. Varma
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| |
Collapse
|
16
|
Thomassen M, Mesman RLS, Hansen TVO, Menendez M, Rossing M, Esteban‐Sánchez A, Tudini E, Törngren T, Parsons MT, Pedersen IS, Teo SH, Kruse TA, Møller P, Borg Å, Jensen UB, Christensen LL, Singer CF, Muhr D, Santamarina M, Brandao R, Andresen BS, Feng B, Canson D, Richardson ME, Karam R, Pesaran T, LaDuca H, Conner BR, Abualkheir N, Hoang L, Calléja FMGR, Andrews L, James PA, Bunyan D, Hamblett A, Radice P, Goldgar DE, Walker LC, Engel C, Claes KBM, Macháčková E, Baralle D, Viel A, Wappenschmidt B, Lazaro C, Vega A, Vreeswijk MPG, de la Hoya M, Spurdle AB. Clinical, splicing, and functional analysis to classify BRCA2 exon 3 variants: Application of a points-based ACMG/AMP approach. Hum Mutat 2022; 43:1921-1944. [PMID: 35979650 PMCID: PMC10946542 DOI: 10.1002/humu.24449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023]
Abstract
Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
Collapse
Affiliation(s)
- Mads Thomassen
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Romy L. S. Mesman
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Thomas V. O. Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mireia Menendez
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Maria Rossing
- Center for Genomic Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Therese Törngren
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Inge S. Pedersen
- Molecular Diagnostics, Aalborg University HospitalAalborgDenmark
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Soo H. Teo
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
- Department of Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Torben A. Kruse
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Pål Møller
- Department of Tumour BiologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Uffe B. Jensen
- Department of Clinical GeneticsAarhus University HospitalAarhus NDenmark
| | | | - Christian F. Singer
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Daniela Muhr
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Santamarina
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - Rita Brandao
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Bing‐Jian Feng
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Daffodil Canson
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | | | | | | | | | | | | | | | - Lesley Andrews
- Hereditary Cancer Clinic, Nelune Comprehensive Cancer Care CentreSydneyNew South WalesAustralia
| | - Paul A. James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Dave Bunyan
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Amanda Hamblett
- Middlesex Health Shoreline Cancer CenterWestbrookConnecticutUSA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of ResearchFondazione IRCCS Istituto Nazionale dei Tumori (INT)MilanItaly
| | - David E. Goldgar
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | | | - Eva Macháčková
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Diana Baralle
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Alessandra Viel
- Division of Functional Onco‐genomics and GeneticsCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Conxi Lazaro
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Ana Vega
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - ENIGMA Consortium
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
17
|
Nepomuceno TC, Dos Santos APP, Fernandes VC, Elias ABR, Gomes TT, Suarez-Kurtz G, Iversen ES, Couch FJ, Monteiro ANA, Carvalho MA. Assessment of small in-frame indels and C-terminal nonsense variants of BRCA1 using a validated functional assay. Sci Rep 2022; 12:16203. [PMID: 36171434 PMCID: PMC9519549 DOI: 10.1038/s41598-022-20500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
BRCA1 (Breast Cancer 1, early onset) is linked to breast and ovarian cancer predisposition. Still, the risks conferred by a significant portion of BRCA1 variants identified in the population remains unknown. Most of these variants of uncertain significance are missense alterations. However, the functional implications of small in-frame deletions and/or insertions (indels) are also difficult to predict. Our group has previously evaluated the functional impact of 347 missense variants using an extensively validated transcriptional activity assay. Here we show a systematic assessment of 30 naturally occurring in-frame indels located at the C-terminal region of BRCA1. We identified positions sensitive and tolerant to alterations, expanding the knowledge of structural determinants of BRCA1 function. We further designed and assessed the impact of four single codon deletions in the tBRCT linker region and six nonsense variants at the C-terminus end of BRCA1. Amino acid substitutions, deletions or insertions in the disordered region do not significantly impact activity and are not likely to constitute pathogenic alleles. On the other hand, a sizeable fraction of in-frame indels at the BRCT domain significantly impact function. We then use a Bayesian integrative statistical model to derive the probability of pathogenicity for each variant. Our data highlights the importance of assessing the impact of small in-frame indels in BRCA1 to improve risk assessment and clinical decisions for carriers.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil.,Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Ana P P Dos Santos
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Vanessa C Fernandes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Anna B R Elias
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Thiago T Gomes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | | | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil. .,Laboratório de Genética Molecular, Instituto Federal Do Rio de Janeiro, Rua Senador Furtado, Campus Rio de Janeiro121, Rio de Janeiro, RJ, 20270-021, Brazil.
| |
Collapse
|
18
|
Shinde S, Satpute DP, Behera SK, Kumar D. Computational Biology of BRCA2 in Male Breast Cancer, through Prediction of Probable nsSNPs, and Hit Identification. ACS OMEGA 2022; 7:30447-30461. [PMID: 36061650 PMCID: PMC9434626 DOI: 10.1021/acsomega.2c03851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Male breast cancer (MBC) is a relatively rare disease, but emerging data recommend the development of novel therapeutics considering its alarming threats. Compared to female breast cancer (FBC), MBC is reportedly associated with inferior outcomes (poor survival) owing to their late diagnosis and lack of adequate treatment. Treatment typically correlates with FBC, involving surgical removal of the breast tissue along with chemo/hormonal/radiation therapy, the tamoxifen being a standard adjuvant. Considering the distinct immunophenotypic (implying different pathogenesis and progression) differences from FBC, the identification of diagnostics, prognostics, and therapeutics for MBC is highly desirable. In this context, we have analyzed the most deleterious nsSNPs of BRCA2, a human tumor suppressor gene constituting the potential biomarker for tumors including MBC, to predict the structural changes associated with the mutants hampering the normal protein-protein and protein-ligand interactions, resulting in MBC progression. Among 27 nsSNPs confined to 21 rsIDs pertaining to MBC, the 19 nsSNPs constituting 14 rsIDs have been predicted as highly deleterious. We believe that these nsSNPs could serve as potential biomarkers for diagnostic and prognostic purposes and could be the pivotal target for MBC drug discovery. Subsequently, the study highlights the exploration of the key nsSNPs (of BRCA2 associated with the MBC) and its applications toward the identification of therapeutic hit TIP006136 following the homology modeling, virtual screening of 5284 phytochemicals retrieved from the TIPdb (a database of phytochemicals from indigenous plants in Taiwan) database, molecular docking (against native and mutant BRCA2), dynamic simulations (against native and mutant BRCA2), density functional theory (DFT), and molecular electrostatic potential. To the best of our knowledge, this is the first report to use diverse computational modules to investigate the important nsSNPs of BRCA2 related to MBC, implying that TIP006136 could be a potential hit and must be studied further (in vitro and in vivo) to establish its anticancer property and efficacy against MBC.
Collapse
Affiliation(s)
- Sangita
Dattatray Shinde
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmadabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dinesh Parshuram Satpute
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmadabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Santosh Kumar Behera
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research (NIPER) − Ahmadabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dinesh Kumar
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmadabad, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
19
|
Aljarf R, Shen M, Pires DEV, Ascher DB. Understanding and predicting the functional consequences of missense mutations in BRCA1 and BRCA2. Sci Rep 2022; 12:10458. [PMID: 35729312 PMCID: PMC9213547 DOI: 10.1038/s41598-022-13508-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
BRCA1 and BRCA2 are tumour suppressor genes that play a critical role in maintaining genomic stability via the DNA repair mechanism. DNA repair defects caused by BRCA1 and BRCA2 missense variants increase the risk of developing breast and ovarian cancers. Accurate identification of these variants becomes clinically relevant, as means to guide personalized patient management and early detection. Next-generation sequencing efforts have significantly increased data availability but also the discovery of variants of uncertain significance that need interpretation. Experimental approaches used to measure the molecular consequences of these variants, however, are usually costly and time-consuming. Therefore, computational tools have emerged as faster alternatives for assisting in the interpretation of the clinical significance of newly discovered variants. To better understand and predict variant pathogenicity in BRCA1 and BRCA2, various machine learning algorithms have been proposed, however presented limited performance. Here we present BRCA1 and BRCA2 gene-specific models and a generic model for quantifying the functional impacts of single-point missense variants in these genes. Across tenfold cross-validation, our final models achieved a Matthew's Correlation Coefficient (MCC) of up to 0.98 and comparable performance of up to 0.89 across independent, non-redundant blind tests, outperforming alternative approaches. We believe our predictive tool will be a valuable resource for providing insights into understanding and interpreting the functional consequences of missense variants in these genes and as a tool for guiding the interpretation of newly discovered variants and prioritizing mutations for experimental validation.
Collapse
Affiliation(s)
- Raghad Aljarf
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Mengyuan Shen
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia. .,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, 3053, Australia.
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia. .,Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge, CB2 1GA, UK.
| |
Collapse
|
20
|
Iversen ES, Lipton G, Hart SN, Lee KY, Hu C, Polley EC, Pesaran T, Yussuf A, LaDuca H, Chao E, Karam R, Goldgar DE, Couch FJ, Monteiro ANA. An integrative model for the comprehensive classification of BRCA1 and BRCA2 variants of uncertain clinical significance. NPJ Genom Med 2022; 7:35. [PMID: 35665744 PMCID: PMC9166814 DOI: 10.1038/s41525-022-00302-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Loss-of-function variants in the BRCA1 and BRCA2 susceptibility genes predispose carriers to breast and/or ovarian cancer. The use of germline testing panels containing these genes has grown dramatically, but the interpretation of the results has been complicated by the identification of many sequence variants of undefined cancer relevance, termed "Variants of Uncertain Significance (VUS)." We have developed functional assays and a statistical model called VarCall for classifying BRCA1 and BRCA2 VUS. Here we describe a multifactorial extension of VarCall, called VarCall XT, that allows for co-analysis of multiple forms of genetic evidence. We evaluated the accuracy of models defined by the combinations of functional, in silico protein predictors, and family data for VUS classification. VarCall XT classified variants of known pathogenicity status with high sensitivity and specificity, with the functional assays contributing the greatest predictive power. This approach could be used to identify more patients that would benefit from personalized cancer risk assessment and management.
Collapse
Affiliation(s)
- Edwin S. Iversen
- grid.26009.3d0000 0004 1936 7961Department of Statistical Science, Duke University, Durham, NC 27708 USA
| | - Gary Lipton
- grid.26009.3d0000 0004 1936 7961Department of Statistical Science, Duke University, Durham, NC 27708 USA
| | - Steven N. Hart
- grid.66875.3a0000 0004 0459 167XDepartment of Health Sciences Research, Mayo Clinic, Rochester, MN 55901 USA
| | - Kun Y. Lee
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Chunling Hu
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Eric C. Polley
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Tina Pesaran
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Amal Yussuf
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Holly LaDuca
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Elizabeth Chao
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Rachid Karam
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - David E. Goldgar
- grid.223827.e0000 0001 2193 0096Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Fergus J. Couch
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Alvaro N. A. Monteiro
- grid.468198.a0000 0000 9891 5233Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612 USA
| |
Collapse
|
21
|
Clark KA, Paquette A, Tao K, Bell R, Boyle JL, Rosenthal J, Snow AK, Stark AW, Thompson BA, Unger J, Gertz J, Varley KE, Boucher KM, Goldgar DE, Foulkes WD, Thomas A, Tavtigian SV. Comprehensive evaluation and efficient classification of BRCA1 RING domain missense substitutions. Am J Hum Genet 2022; 109:1153-1174. [PMID: 35659930 PMCID: PMC9247830 DOI: 10.1016/j.ajhg.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
BRCA1 is a high-risk susceptibility gene for breast and ovarian cancer. Pathogenic protein-truncating variants are scattered across the open reading frame, but all known missense substitutions that are pathogenic because of missense dysfunction are located in either the amino-terminal RING domain or the carboxy-terminal BRCT domain. Heterodimerization of the BRCA1 and BARD1 RING domains is a molecularly defined obligate activity. Hence, we tested every BRCA1 RING domain missense substitution that can be created by a single nucleotide change for heterodimerization with BARD1 in a mammalian two-hybrid assay. Downstream of the laboratory assay, we addressed three additional challenges: assay calibration, validation thereof, and integration of the calibrated results with other available data, such as computational evidence and patient/population observational data to achieve clinically applicable classification. Overall, we found that 15%-20% of BRCA1 RING domain missense substitutions are pathogenic. Using a Bayesian point system for data integration and variant classification, we achieved clinical classification of 89% of observed missense substitutions. Moreover, among missense substitutions not present in the human observational data used here, we find an additional 45 with concordant computational and functional assay evidence in favor of pathogenicity plus 223 with concordant evidence in favor of benignity; these are particularly likely to be classified as likely pathogenic and likely benign, respectively, once human observational data become available.
Collapse
Affiliation(s)
- Kathleen A Clark
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew Paquette
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kayoko Tao
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Russell Bell
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Julie L Boyle
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Judith Rosenthal
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Angela K Snow
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Alex W Stark
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bryony A Thompson
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua Unger
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Katherine E Varley
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kenneth M Boucher
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - David E Goldgar
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - William D Foulkes
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Research Institute McGill University Health Center, Montreal, QC H3T 1E2, Canada; Departments of Medicine, Human Genetics, and Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Alun Thomas
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Sean V Tavtigian
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
22
|
Kwong A, Ho CYS, Shin VY, Au CH, Chan TL, Ma ESK. How does re-classification of variants of unknown significance (VUS) impact the management of patients at risk for hereditary breast cancer? BMC Med Genomics 2022; 15:122. [PMID: 35641994 PMCID: PMC9158111 DOI: 10.1186/s12920-022-01270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background The popularity of multigene testing increases the probability of identifying variants of uncertain significance (VUS). While accurate variant interpretation enables clinicians to be better informed of the genetic risk of their patients, currently, there is a lack of consensus management guidelines for clinicians on VUS. Methods Among the BRCA1 and BRCA2 mutations screening in 3,544 subjects, 236 unique variants (BRCA1: 86; BRCA2: 150) identified in 459 patients were being reviewed. These variants consist of 231 VUS and 5 likely benign variants at the initial classification. Results The variants in 31.8% (146/459) patients were reclassified during the review, which involved 26 unique variants (11.0%). Also, 31 probands (6.8%) and their family members were offered high-risk surveillance and related management after these variants were reclassified to pathogenic or likely pathogenic. At the same time, 69 probands (15%) had their VUS downgraded to cancer risk equivalent to the general population level. Conclusion A review of archival variants from BRCA1 and BRCA2 genetic testing changed the management for 31.8% of the families due to increased or reduced risk. We encourage regular updates of variant databases, reference to normal population and collaboration between research laboratories on functional studies to define the clinical significances of VUS better. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01270-4.
Collapse
Affiliation(s)
- Ava Kwong
- Chief of Breast Surgery Division, Department of Surgery, The University of Hong Kong and University of Hong Kong-Shenzhen Hospital, Pokfulam, Hong Kong SAR. .,Department of Surgery, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR. .,Hong Kong Hereditary Breast Cancer Family Registry, Shau Kei Wan, Hong Kong SAR.
| | - Cecilia Yuen Sze Ho
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| | - Vivian Yvonne Shin
- Chief of Breast Surgery Division, Department of Surgery, The University of Hong Kong and University of Hong Kong-Shenzhen Hospital, Pokfulam, Hong Kong SAR
| | - Chun Hang Au
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| | - Tsun-Leung Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Shau Kei Wan, Hong Kong SAR.,Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| | - Edmond Shiu Kwan Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Shau Kei Wan, Hong Kong SAR.,Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| |
Collapse
|
23
|
Dorling L, Carvalho S, Allen J, Parsons MT, Fortuno C, González-Neira A, Heijl SM, Adank MA, Ahearn TU, Andrulis IL, Auvinen P, Becher H, Beckmann MW, Behrens S, Bermisheva M, Bogdanova NV, Bojesen SE, Bolla MK, Bremer M, Briceno I, Camp NJ, Campbell A, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Collée JM, Czene K, Dennis J, Dörk T, Eriksson M, Evans DG, Fasching PA, Figueroa J, Flyger H, Gabrielson M, Gago-Dominguez M, García-Closas M, Giles GG, Glendon G, Guénel P, Gündert M, Hadjisavvas A, Hahnen E, Hall P, Hamann U, Harkness EF, Hartman M, Hogervorst FBL, Hollestelle A, Hoppe R, Howell A, Jakubowska A, Jung A, Khusnutdinova E, Kim SW, Ko YD, Kristensen VN, Lakeman IMM, Li J, Lindblom A, Loizidou MA, Lophatananon A, Lubiński J, Luccarini C, Madsen MJ, Mannermaa A, Manoochehri M, Margolin S, Mavroudis D, Milne RL, Mohd Taib NA, Muir K, Nevanlinna H, Newman WG, Oosterwijk JC, Park SK, Peterlongo P, Radice P, Saloustros E, Sawyer EJ, Schmutzler RK, Shah M, Sim X, Southey MC, Surowy H, Suvanto M, Tomlinson I, Torres D, Truong T, van Asperen CJ, Waltes R, Wang Q, Yang XR, Pharoah PDP, Schmidt MK, Benitez J, Vroling B, Dunning AM, Teo SH, Kvist A, de la Hoya M, Devilee P, Spurdle AB, Vreeswijk MPG, Easton DF. Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Med 2022; 14:51. [PMID: 35585550 PMCID: PMC9116026 DOI: 10.1186/s13073-022-01052-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/04/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks associated with missense variants in these genes are uncertain. METHODS We analyzed data on 59,639 breast cancer cases and 53,165 controls from studies participating in the Breast Cancer Association Consortium BRIDGES project. We sampled training (80%) and validation (20%) sets to analyze rare missense variants in ATM (1146 training variants), BRCA1 (644), BRCA2 (1425), CHEK2 (325), and PALB2 (472). We evaluated breast cancer risks according to five in silico prediction-of-deleteriousness algorithms, functional protein domain, and frequency, using logistic regression models and also mixture models in which a subset of variants was assumed to be risk-associated. RESULTS The most predictive in silico algorithms were Helix (BRCA1, BRCA2 and CHEK2) and CADD (ATM). Increased risks appeared restricted to functional protein domains for ATM (FAT and PIK domains) and BRCA1 (RING and BRCT domains). For ATM, BRCA1, and BRCA2, data were compatible with small subsets (approximately 7%, 2%, and 0.6%, respectively) of rare missense variants giving similar risk to those of protein truncating variants in the same gene. For CHEK2, data were more consistent with a large fraction (approximately 60%) of rare missense variants giving a lower risk (OR 1.75, 95% CI (1.47-2.08)) than CHEK2 protein truncating variants. There was little evidence for an association with risk for missense variants in PALB2. The best fitting models were well calibrated in the validation set. CONCLUSIONS These results will inform risk prediction models and the selection of candidate variants for functional assays and could contribute to the clinical reporting of gene panel testing for breast cancer susceptibility.
Collapse
Affiliation(s)
- Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Cristina Fortuno
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | | | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Oncology, Cancer Center, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael Bremer
- Department of Radiation Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Ignacio Briceno
- Medical Faculty, Universidad de La Sabana, 140013, Bogota, Colombia
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, 36312, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Nightingale & Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, EH16 4UX, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, , 15706, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Pascal Guénel
- Team "Exposome and Heredity", CESP, Inserm, Gustave Roussy, University Paris-Saclay, UVSQ, Villejuif, France
| | - Melanie Gündert
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Andreas Hadjisavvas
- Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Department of Oncology, 118 83, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elaine F Harkness
- Nightingale & Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
- Department of Surgery, National University Health System, Singapore, 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, 119228, Singapore
| | - Frans B L Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, 3015 GD, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tübingen, 72074, Tübingen, Germany
| | - Anthony Howell
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Division of Cancer Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, 450000, Russia
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, 07442, Korea
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, 53113, Bonn, Germany
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379, Oslo, Norway
| | - Inge M M Lakeman
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Jingmei Li
- Department of Surgery, National University Health System, Singapore, 119228, Singapore
- Human Genetics Division, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Maria A Loizidou
- Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael J Madsen
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, 118 83, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10, Heraklion, Greece
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Jan C Oosterwijk
- Department of Genetics, University Medical Center Groningen, University Groningen, Groningen, 9713 GZ, The Netherlands
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Convergence Graduate Program in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), 20133, Milan, Italy
| | | | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Harald Surowy
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, 110231, Bogota, Colombia
| | - Thérèse Truong
- Team "Exposome and Heredity", CESP, Inserm, Gustave Roussy, University Paris-Saclay, UVSQ, Villejuif, France
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Regina Waltes
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Biomedical Network On Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Bas Vroling
- Bio-Prodict, Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Soo Hwang Teo
- Breast Cancer Research Unit, Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, 47500, Selangor, Malaysia
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 22381, Lund, Sweden
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040, Madrid, Spain
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK.
| |
Collapse
|
24
|
Navarro AM, Orti F, Martínez-Pérez E, Alonso M, Simonetti FL, Iserte JA, Marino-Buslje C. DisPhaseDB: an integrative database of diseases related variations in liquid-liquid phase separation proteins. Comput Struct Biotechnol J 2022; 20:2551-2557. [PMID: 35685370 PMCID: PMC9156858 DOI: 10.1016/j.csbj.2022.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Phase separation proteins involved in membraneless organelles are increasingly implicated in several complex human diseases. DisPhaseDB integrates ten repositories for analyzing clinically relevant mutations in phase separation proteins. Contains over a million disease-related mutations mapped onto the protein sequences along with extensive metadata. It is a comprehensive meta-database, implemented in an user-friendly web with visualization tools and downloadable datasets. DisPhaseDB will contribute deciphering still not fully understood human disease mechanisms under the lens of phase separation.
Motivation Proteins involved in liquid–liquid phase separation (LLPS) and membraneless organelles (MLOs) are recognized to be decisive for many biological processes and also responsible for several diseases. The recent explosion of research in the area still lacks tools for the analysis and data integration among different repositories. Currently, there is not a comprehensive and dedicated database that collects all disease-related variations in combination with the protein location, biological role in the MLO, and all the metadata available for each protein and disease. Disease-related protein variants and additional features are dispersed and the user has to navigate many databases, with a different focus, formats, and often not user friendly. Results We present DisPhaseDB, a database dedicated to disease-related variants of liquid–liquid phase separation proteins. It integrates 10 databases, contains 5,741 proteins, 1,660,059 variants, and 4,051 disease terms. It also offers intuitive navigation and an informative display. It constitutes a pivotal starting point for further analysis, encouraging the development of new computational tools. The database is freely available at http://disphasedb.leloir.org.ar.
Collapse
|
25
|
Khan MA, Siddiqui MQ, Kuligina E, Varma AK. Evaluation of conformational transitions of h-BRCA2 functional domain and unclassified variant Arg2502Cys using multimodal approach. Int J Biol Macromol 2022; 209:716-724. [PMID: 35413318 DOI: 10.1016/j.ijbiomac.2022.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Breast cancer type 2 susceptibility (BRCA2) protein plays an essential role in the repair mechanism of DNA double-strand breaks and interstrand cross-links by Homologous recombination. Germline mutations identified in the BRCA2 gene confer an increased risk of hereditary breast and ovarian cancer. Missense mutations are identified all over the gene, including the DNA binding region of BRCA2 that interacts with FANCD2. However, the majority of these missense mutations are classified as 'Variants of Uncertain Significance' due to a lack of structural, functional and clinical correlations. Therefore, multi-disciplinary in-silico, in-vitro and biophysical approaches have been explored to characterize an unclassified missense mutation, BRCA2 Arg2502Cys, identified from a case-control study. Circular-dichroism and Fluorescence spectroscopy show that the Arg2502Cys mutation in hBRCA2 (residues 2350-2545) decreases the α-helical/β-sheet propensity of the wild-type protein and perturb the tertiary structure conformation. Molecular dynamics simulations revealed alteration in the intramolecular H-bonds, overall compactness and stability of the hydrophobic core were observed in the mutant protein. Principle component analysis indicated that Arg2502Cys mutant exhibited comparatively large conformational transitions and periodic fluctuation. Therefore, to our conclusion, BRCA2 Arg2502Cys mutant perturbed the structural integrity and conformational dynamics of BRCA2.
Collapse
Affiliation(s)
- Mudassar Ali Khan
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - M Quadir Siddiqui
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Present address: Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Ekaterina Kuligina
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology, RU-197758, Pesochny-2, St.-Petersburg, Russia
| | - Ashok K Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
26
|
Lesueur F, Easton DF, Renault AL, Tavtigian SV, Bernstein JL, Kote-Jarai Z, Eeles RA, Plaseska-Karanfia D, Feliubadaló L, Arun B, Herold N, Versmold B, Schmutzler RK, Nguyen-Dumont T, Southey MC, Dorling L, Dunning AM, Ghiorzo P, Dalmasso BS, Cavaciuti E, Le Gal D, Roberts NJ, Dominguez-Valentin M, Rookus M, Taylor AMR, Goldstein AM, Goldgar DE, Stoppa-Lyonnet D, Andrieu N. First international workshop of the ATM and cancer risk group (4-5 December 2019). Fam Cancer 2022; 21:211-227. [PMID: 34125377 PMCID: PMC9969796 DOI: 10.1007/s10689-021-00248-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022]
Abstract
The first International Workshop of the ATM and Cancer Risk group focusing on the role of Ataxia-Telangiectasia Mutated (ATM) gene in cancer was held on December 4 and 5, 2019 at Institut Curie in Paris, France. It was motivated by the fact that germline ATM pathogenic variants have been found to be associated with different cancer types. However, due to the lack of precise age-, sex-, and site-specific risk estimates, no consensus on management guidelines for variant carriers exists, and the clinical utility of ATM variant testing is uncertain. The meeting brought together epidemiologists, geneticists, biologists and clinicians to review current knowledge and on-going challenges related to ATM and cancer risk. This report summarizes the meeting sessions content that covered the latest results in family-based and population-based studies, the importance of accurate variant classification, the effect of radiation exposures for ATM variant carriers, and the characteristics of ATM-deficient tumors. The report concludes that ATM variant carriers outside of the context of Ataxia-Telangiectasia may benefit from effective cancer risk management and therapeutic strategies and that efforts to set up large-scale studies in the international framework to achieve this goal are necessary.
Collapse
Affiliation(s)
- Fabienne Lesueur
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Douglas F Easton
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
- Department of Oncology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Anne-Laure Renault
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | | | | | | | | | - Dijana Plaseska-Karanfia
- Research Centre for Genetic Engineering and Biotechnology « Georgi D. Efremov », MASA, Skopje, UK
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Banu Arun
- University of Texas MD Anderson Cancer Center, Houston, USA
| | - Natalie Herold
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Beatrix Versmold
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Rita Katharina Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tú Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, 3004, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, 3004, Australia
| | - Leila Dorling
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Department of Oncology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Bruna Samia Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Eve Cavaciuti
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Dorothée Le Gal
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University, Baltimore, USA
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Matti Rookus
- Netherlands Cancer Institute NKI, Amsterdam, The Netherlands
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, UK
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, USA
| | | | - Dominique Stoppa-Lyonnet
- Université Paris Descartes, Paris, France
- Service de Génétique, Institut Curie, Paris, France
- INSERM U830, Paris, France
| | - Nadine Andrieu
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France.
- Institut Curie, Paris, France.
- Mines ParisTech, Fontainebleau, France.
- PSL Research University, Paris, France.
| |
Collapse
|
27
|
Fanale D, Pivetti A, Cancelliere D, Spera A, Bono M, Fiorino A, Pedone E, Barraco N, Brando C, Perez A, Guarneri MF, Russo TDB, Vieni S, Guarneri G, Russo A, Bazan V. BRCA1/2 variants of unknown significance in hereditary breast and ovarian cancer (HBOC) syndrome: looking for the hidden meaning. Crit Rev Oncol Hematol 2022; 172:103626. [PMID: 35150867 DOI: 10.1016/j.critrevonc.2022.103626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Hereditary breast and ovarian cancer syndrome is caused by germline mutations in BRCA1/2 genes. These genes are very large and their mutations are heterogeneous and scattered throughout the coding sequence. In addition to the above-mentioned mutations, variants of uncertain/unknown significance (VUSs) have been identified in BRCA genes, which make more difficult the clinical management of the patient and risk assessment. In the last decades, several laboratories have developed different databases that contain more than 2000 variants for the two genes and integrated strategies which include multifactorial prediction models based on direct and indirect genetic evidence, to classify the VUS and attribute them a clinical significance associated with a deleterious, high-low or neutral risk. This review provides a comprehensive overview of literature studies concerning the VUSs, in order to assess their impact on the population and provide new insight for the appropriate patient management in clinical practice.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Pivetti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Daniela Cancelliere
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Spera
- Department of Radiotherapy, San Giovanni di Dio Hospital, ASP of Agrigento, Agrigento, Italy
| | - Marco Bono
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | | | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Salvatore Vieni
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Italy
| | - Girolamo Guarneri
- Gynecology Section, Mother - Child Department, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
28
|
Feasibility of targeted cascade genetic testing in the family members of BRCA1/2 gene pathogenic variant/likely pathogenic variant carriers. Sci Rep 2022; 12:1842. [PMID: 35115620 PMCID: PMC8813990 DOI: 10.1038/s41598-022-05931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The pathogenic variant (PV) or likely pathogenic variant (LPV) BRCA1/2 gene is strongly associated with hereditary breast or ovarian cancer. Therefore, it is important to screen blood relatives to establish preventive modalities and surveillance. This study evaluated the feasibility of targeted cascade genetic testing for family members of BRCA1/2 gene PV or LPV carriers. We screened 18 families for BRCA1/2 gene status via the conventional cascade genetic test (n = 9) and targeted cascade genetic test (n = 9), which targeted the exon region wherein the index patient showed PV or LPV. The pedigree and clinicopathologic characteristics were reviewed and analyzed. All index patients were diagnosed with breast cancer, while the third family members were all healthy. In the conventional cascade test group, 3 index patients and 3 family members had the BRCA1/2 gene PV or LPV. In the targeted cascade test group, 5 family members had same type of BRCA1/2 gene PV or LPV as their index patients. Two families had an identical string of BRCA1/2 gene PV or LPV. Although the targeted cascade genetic test cannot completely characterize the BRCA1/2 gene, it is sufficient for determining its PV or LPV status. This limited genetic test can be used for family members of PV or LPV carriers.
Collapse
|
29
|
Li J, Wang P, Zhang C, Han S, Xiao H, Liu Z, Wang X, Liu W, Wei B, Ma J, Li H, Guo Y. Characterization of Synonymous BRCA1:c.132C>T as a Pathogenic Variant. Front Oncol 2022; 11:812656. [PMID: 35087763 PMCID: PMC8789006 DOI: 10.3389/fonc.2021.812656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Breast cancer gene 1 (BRCA1) and BRCA2 are tumor suppressors involved in DNA damage response and repair. Carriers of germline pathogenic or likely pathogenic variants in BRCA1 or BRCA2 have significantly increased lifetime risks of breast cancer, ovarian cancer, and other cancer types; this phenomenon is known as hereditary breast and ovarian cancer (HBOC) syndrome. Accurate interpretation of BRCA1 and BRCA2 variants is important not only for disease management in patients, but also for determining preventative measures for their families. BRCA1:c.132C>T (p.Cys44=) is a synonymous variant recorded in the ClinVar database with “conflicting interpretations of its pathogenicity”. Here, we report our clinical tests in which we identified this variant in two unrelated patients, both of whom developed breast cancer at an early age with ovarian presentation a few years later and had a family history of relevant cancers. Minigene assay showed that this change caused a four-nucleotide loss at the end of exon 3, resulting in a truncated p.Cys44Tyrfs*5 protein. Reverse transcription-polymerase chain reaction identified two fragments (123 and 119 bp) using RNA isolated from patient blood samples, in consistency with the results of the minigene assay. Collectively, we classified BRCA1:c.132C>T (p.Cys44=) as a pathogenic variant, as evidenced by functional studies, RNA analysis, and the patients’ family histories. By analyzing variants recorded in the BRCA Exchange database, we found synonymous changes at the ends of exons could potentially influence splicing; meanwhile, current in silico tools could not predict splicing changes efficiently if the variants were in the middle of an exon, or in the deep intron region. Future studies should attempt to identify variants that influence gene expression and post-transcription modifications to improve our understanding of BRCA1 and BRCA2, as well as their related cancers.
Collapse
Affiliation(s)
- Jun Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| | - Ping Wang
- Department of Pathophysiology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Cuiyun Zhang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| | - Sile Han
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Han Xiao
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiyuan Liu
- Amoy Diagnostics Co., Ltd. (AmoyDx), Xiamen, China
| | - Xiaoyan Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| | - Weiling Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzou, China
| | - Bing Wei
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| | - Jie Ma
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| |
Collapse
|
30
|
Value of the loss of heterozygosity to BRCA1 variant classification. NPJ Breast Cancer 2022; 8:9. [PMID: 35039532 PMCID: PMC8764043 DOI: 10.1038/s41523-021-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
At least 10% of the BRCA1/2 tests identify variants of uncertain significance (VUS) while the distinction between pathogenic variants (PV) and benign variants (BV) remains particularly challenging. As a typical tumor suppressor gene, the inactivation of the second wild-type (WT) BRCA1 allele is expected to trigger cancer initiation. Loss of heterozygosity (LOH) of the WT allele is the most frequent mechanism for the BRCA1 biallelic inactivation. To evaluate if LOH can be an effective predictor of BRCA1 variant pathogenicity, we carried out LOH analysis on DNA extracted from 90 breast and seven ovary tumors diagnosed in 27 benign and 55 pathogenic variant carriers. Further analyses were conducted in tumors with PVs yet without loss of the WT allele: BRCA1 promoter hypermethylation, next-generation sequencing (NGS) of BRCA1/2, and BRCAness score. Ninety-seven tumor samples were analyzed from 26 different BRCA1 variants. A relatively stable pattern of LOH (65.4%) of WT allele for PV tumors was observed, while the allelic balance (63%) or loss of variant allele (15%) was generally seen for carriers of BV. LOH data is a useful complementary argument for BRCA1 variant classification.
Collapse
|
31
|
Kim DM, Feilotter HE, Davey SK. BRCA1 Variant Assessment Using a Simple Analytic Assay. J Appl Lab Med 2022; 7:674-688. [PMID: 35021209 DOI: 10.1093/jalm/jfab163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND We previously developed a biological assay to accurately predict BRCA1 (BRCA1 DNA repair associated) mutation status, based on gene expression profiles of Epstein-Barr virus-transformed lymphoblastoid cell lines. The original work was done using whole genome expression microarrays, and nearest shrunken centroids analysis. While these approaches are appropriate for model building, they are difficult to implement clinically, where more targeted testing and analysis are required for time and cost savings. METHODS Here, we describe adaptation of the original predictor to use the NanoString nCounter platform for testing, with analysis based on the k-top scoring pairs (k-TSP) method. RESULTS Assessing gene expression using the nCounter platform on a set of lymphoblastoid cell lines yielded 93.8% agreement with the microarray-derived data, and 87.5% overall correct classification of BRCA1 carriers and controls. Using the original gene expression microarray data used to develop our predictor with nearest shrunken centroids, we rebuilt a classifier based on the k-TSP method. This classifier relies on the relative expression of 10 pairs of genes, compared to the original 43 identified by nearest shrunken centroids (NSC), and was 96.2% concordant with the original training set prediction, with a 94.3% overall correct classification of BRCA1 carriers and controls. CONCLUSIONS The k-TSP classifier was shown to accurately predict BRCA1 status using data generated on the nCounter platform and is feasible for initiating a clinical validation.
Collapse
Affiliation(s)
- Daniel M Kim
- Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Harriet E Feilotter
- Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Scott K Davey
- Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Departments of Oncology and Biomedical and Molecular Sciences, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
| |
Collapse
|
32
|
Affiliation(s)
- Gwen R Buel
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Kylie J Walters
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
33
|
Niu Y, Ferreira Azevedo CA, Li X, Kamali E, Haagen Nielsen O, Storgaard Sørensen C, Frödin M. Multiparametric and accurate functional analysis of genetic sequence variants using CRISPR-Select. Nat Genet 2022; 54:1983-1993. [PMID: 36471068 PMCID: PMC9729100 DOI: 10.1038/s41588-022-01224-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/12/2022] [Indexed: 12/12/2022]
Abstract
Determining the functional role of thousands of genetic sequence variants (mutations) associated with genetic diseases is a major challenge. Here we present clustered regularly interspaced short palindromic repeat (CRISPR)-SelectTIME, CRISPR-SelectSPACE and CRISPR-SelectSTATE, a set of flexible knock-in assays that introduce a genetic variant in a cell population and track its absolute frequencies relative to an internal, neutral control mutation as a function of time, space or a cell state measurable by flow cytometry. Phenotypically, CRISPR-Select can thereby determine, for example, pathogenicity, drug responsiveness/resistance or in vivo tumor promotion by a specific variant. Mechanistically, CRISPR-Select can dissect how the variant elicits the phenotype by causally linking the variant to motility/invasiveness or any cell state or biochemical process with a flow cytometry marker. The method is applicable to organoids, nontransformed or cancer cell lines. It is accurate, quantitative, fast and simple and works in single-well or 96-well higher throughput format. CRISPR-Select provides a versatile functional variant assay for research, diagnostics and drug development for genetic disorders.
Collapse
Affiliation(s)
- Yiyuan Niu
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Catarina A. Ferreira Azevedo
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xin Li
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elahe Kamali
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- grid.5254.60000 0001 0674 042XDepartment of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Li H, Engel C, de la Hoya M, Peterlongo P, Yannoukakos D, Livraghi L, Radice P, Thomassen M, Hansen TVO, Gerdes AM, Nielsen HR, Caputo SM, Zambelli A, Borg A, Solano A, Thomas A, Parsons MT, Antoniou AC, Leslie G, Yang X, Chenevix-Trench G, Caldes T, Kwong A, Pedersen IS, Lautrup CK, John EM, Terry MB, Hopper JL, Southey MC, Andrulis IL, Tischkowitz M, Janavicius R, Boonen SE, Kroeldrup L, Varesco L, Hamann U, Vega A, Palmero EI, Garber J, Montagna M, Van Asperen CJ, Foretova L, Greene MH, Selkirk T, Moller P, Toland AE, Domchek SM, James PA, Thorne H, Eccles DM, Nielsen SM, Manoukian S, Pasini B, Caligo MA, Lazaro C, Kirk J, Wappenschmidt B, Spurdle AB, Couch FJ, Schmutzler R, Goldgar DE. Risks of breast and ovarian cancer for women harboring pathogenic missense variants in BRCA1 and BRCA2 compared with those harboring protein truncating variants. Genet Med 2022; 24:119-129. [PMID: 34906479 PMCID: PMC10170303 DOI: 10.1016/j.gim.2021.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Germline genetic testing for BRCA1 and BRCA2 variants has been a part of clinical practice for >2 decades. However, no studies have compared the cancer risks associated with missense pathogenic variants (PVs) with those associated with protein truncating (PTC) variants. METHODS We collected 582 informative pedigrees segregating 1 of 28 missense PVs in BRCA1 and 153 pedigrees segregating 1 of 12 missense PVs in BRCA2. We analyzed 324 pedigrees with PTC variants in BRCA1 and 214 pedigrees with PTC variants in BRCA2. Cancer risks were estimated using modified segregation analysis. RESULTS Estimated breast cancer risks were markedly lower for women aged >50 years carrying BRCA1 missense PVs than for the women carrying BRCA1 PTC variants (hazard ratio [HR] = 3.9 [2.4-6.2] for PVs vs 12.8 [5.7-28.7] for PTC variants; P = .01), particularly for missense PVs in the BRCA1 C-terminal domain (HR = 2.8 [1.4-5.6]; P = .005). In case of BRCA2, for women aged >50 years, the HR was 3.9 (2.0-7.2) for those heterozygous for missense PVs compared with 7.0 (3.3-14.7) for those harboring PTC variants. BRCA1 p.[Cys64Arg] and BRCA2 p.[Trp2626Cys] were associated with particularly low risks of breast cancer compared with other PVs. CONCLUSION These results have important implications for the counseling of at-risk women who harbor missense PVs in the BRCA1/2 genes.
Collapse
Affiliation(s)
- Hongyan Li
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, National Centre for Scientific Research "Demokritos", INRASTES Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, Athens, Greece
| | - Luca Livraghi
- Medical Oncology Unit, AZIENDA SOCIO SANITARIA TERRITORIALE PAPA GIOVANNI XXIII, Bergamo, Italy; University of Siena, Siena, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henriette R Nielsen
- Department of Clinical Genetics Sygehus Lillebaelt, Vejle Hospital, Vejle, Denmark
| | - Sandrine M Caputo
- Service de Génétique, Institut Curie, Paris, France; Paris Sciences and Lettres Research University, Paris, France
| | - Alberto Zambelli
- Medical Oncology Unit, AZIENDA SOCIO SANITARIA TERRITORIALE PAPA GIOVANNI XXIII, Bergamo, Italy
| | - Ake Borg
- Divisions of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Angela Solano
- INBIOMED, Faculty of Medicine, University of Buenos Aires, CONICET and Genotyping Laboratory, Department of Clinical Chemistry, CEMIC, Buenos Aires, Argentina
| | - Abigail Thomas
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Trinidad Caldes
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Ava Kwong
- Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong; Department of Surgery, LKS Faculty of Medicine,University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Inge Søkilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center and Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, The Faculty of Medicine, Aalborg University of Aalborg, Aalborg, Denmark
| | - Charlotte K Lautrup
- Clinical Cancer Research Center and Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, The Faculty of Medicine, Aalborg University of Aalborg, Aalborg, Denmark
| | - Esther M John
- Department of Epidemiology & Population Health and Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc Tischkowitz
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, United Kingdom
| | - Ramunas Janavicius
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Susanne E Boonen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lone Kroeldrup
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Liliana Varesco
- Unit of Hereditary Cancer, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Vega
- Fundación Pública galega Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil; National Cancer Institute, Rio de Janeiro, Brazil
| | - Judy Garber
- Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, IOV - Istituto Oncologico Veneto - IRCCS, Padova, Italy
| | - Christi J Van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tina Selkirk
- NorthShore University HealthSystem, University of Chicago, Evanston, IL
| | - Pal Moller
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Hereditary Tumors, HELIOS-Klinikum Wuppertal, University of Witten-Herdecke, Wuppertal, Germany
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, Penn Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Heather Thorne
- The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sarah M Nielsen
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Barbara Pasini
- Medical Genetics Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Maria A Caligo
- SOD Genetica Molecolare, University Hospital, Pisa, Italy
| | - Conxi Lazaro
- ONCOBELL-IDIBELL-IDIBGI-IGTP, CIBERONC, Hereditary Cancer Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Judy Kirk
- Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney Medical School, University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rita Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - David E Goldgar
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT.
| |
Collapse
|
35
|
Caputo SM, Golmard L, Léone M, Damiola F, Guillaud-Bataille M, Revillion F, Rouleau E, Derive N, Buisson A, Basset N, Schwartz M, Vilquin P, Garrec C, Privat M, Gay-Bellile M, Abadie C, Abidallah K, Airaud F, Allary AS, Barouk-Simonet E, Belotti M, Benigni C, Benusiglio PR, Berthemin C, Berthet P, Bertrand O, Bézieau S, Bidart M, Bignon YJ, Birot AM, Blanluet M, Bloucard A, Bombled J, Bonadona V, Bonnet F, Bonnet-Dupeyron MN, Boulaire M, Boulouard F, Bouras A, Bourdon V, Brahimi A, Brayotel F, Bressac de Paillerets B, Bronnec N, Bubien V, Buecher B, Cabaret O, Carriere J, Chiesa J, Chieze-Valéro S, Cohen C, Cohen-Haguenauer O, Colas C, Collonge-Rame MA, Conoy AL, Coulet F, Coupier I, Crivelli L, Cusin V, De Pauw A, Dehainault C, Delhomelle H, Delnatte C, Demontety S, Denizeau P, Devulder P, Dreyfus H, d’Enghein CD, Dupré A, Durlach A, Dussart S, Fajac A, Fekairi S, Fert-Ferrer S, Fiévet A, Fouillet R, Mouret-Fourme E, Gauthier-Villars M, Gesta P, Giraud S, Gladieff L, Goldbarg V, Goussot V, Guibert V, Guillerm E, Guy C, Hardouin A, Heude C, Houdayer C, Ingster O, Jacquot-Sawka C, Jones N, Krieger S, Lacoste S, Lallaoui H, Larbre H, Laugé A, Le Guyadec G, Le Mentec M, Lecerf C, Le Gall J, Legendre B, Legrand C, Legros A, Lejeune S, Lidereau R, Lignon N, Limacher JM, Doriane Livon, Lizard S, Longy M, Lortholary A, Macquere P, Mailliez A, Malsa S, Margot H, Mari V, Maugard C, Meira C, Menjard J, Molière D, Moncoutier V, Moretta-Serra J, Muller E, Nevière Z, Nguyen Minh Tuan TV, Noguchi T, Noguès C, Oca F, Popovici C, Prieur F, Raad S, Rey JM, Ricou A, Salle L, Saule C, Sevenet N, Simaga F, Sobol H, Suybeng V, Tennevet I, Tenreiro H, Tinat J, Toulas C, Turbiez I, Uhrhammer N, Vande Perre P, Vaur D, Venat L, Viellard N, Villy MC, Warcoin M, Yvard A, Zattara H, Caron O, Lasset C, Remenieras A, Boutry-Kryza N, Castéra L, Stoppa-Lyonnet D. Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach. Am J Hum Genet 2021; 108:1907-1923. [PMID: 34597585 DOI: 10.1016/j.ajhg.2021.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Up to 80% of BRCA1 and BRCA2 genetic variants remain of uncertain clinical significance (VUSs). Only variants classified as pathogenic or likely pathogenic can guide breast and ovarian cancer prevention measures and treatment by PARP inhibitors. We report the first results of the ongoing French national COVAR (cosegregation variant) study, the aim of which is to classify BRCA1/2 VUSs. The classification method was a multifactorial model combining different associations between VUSs and cancer, including cosegregation data. At this time, among the 653 variants selected, 101 (15%) distinct variants shared by 1,624 families were classified as pathogenic/likely pathogenic or benign/likely benign by the COVAR study. Sixty-six of the 101 (65%) variants classified by COVAR would have remained VUSs without cosegregation data. Of note, among the 34 variants classified as pathogenic by COVAR, 16 remained VUSs or likely pathogenic when following the ACMG/AMP variant classification guidelines. Although the initiation and organization of cosegregation analyses require a considerable effort, the growing number of available genetic tests results in an increasing number of families sharing a particular variant, and thereby increases the power of such analyses. Here we demonstrate that variant cosegregation analyses are a powerful tool for the classification of variants in the BRCA1/2 breast-ovarian cancer predisposition genes.
Collapse
|
36
|
Castells-Roca L, Gutiérrez-Enríquez S, Bonache S, Bogliolo M, Carrasco E, Aza-Carmona M, Montalban G, Muñoz-Subirana N, Pujol R, Cruz C, Llop-Guevara A, Ramírez MJ, Saura C, Lasa A, Serra V, Diez O, Balmaña J, Surrallés J. Clinical consequences of BRCA2 hypomorphism. NPJ Breast Cancer 2021; 7:117. [PMID: 34504103 PMCID: PMC8429460 DOI: 10.1038/s41523-021-00322-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor suppressor FANCD1/BRCA2 is crucial for DNA homologous recombination repair (HRR). BRCA2 biallelic pathogenic variants result in a severe form of Fanconi anemia (FA) syndrome, whereas monoallelic pathogenic variants cause mainly hereditary breast and ovarian cancer predisposition. For decades, the co-occurrence in trans with a clearly pathogenic variant led to assume that the other allele was benign. However, here we show a patient with biallelic BRCA2 (c.1813dup and c.7796 A > G) diagnosed at age 33 with FA after a hypertoxic reaction to chemotherapy during breast cancer treatment. After DNA damage, patient cells displayed intermediate chromosome fragility, reduced survival, cell cycle defects, and significantly decreased RAD51 foci formation. With a newly developed cell-based flow cytometric assay, we measured single BRCA2 allele contributions to HRR, and found that expression of the missense allele in a BRCA2 KO cellular background partially recovered HRR activity. Our data suggest that a hypomorphic BRCA2 allele retaining 37–54% of normal HRR function can prevent FA clinical phenotype, but not the early onset of breast cancer and severe hypersensitivity to chemotherapy.
Collapse
Affiliation(s)
- Laia Castells-Roca
- Genome Instability and DNA repair Syndromes Group and Join Unit UAB-IR Sant Pau on Genomic Medicine, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Bonache
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Massimo Bogliolo
- Genome Instability and DNA repair Syndromes Group and Join Unit UAB-IR Sant Pau on Genomic Medicine, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER) U-745, Barcelona, Spain
| | - Estela Carrasco
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Miriam Aza-Carmona
- Genome Instability and DNA repair Syndromes Group and Join Unit UAB-IR Sant Pau on Genomic Medicine, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Gemma Montalban
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,CHU de Québec - Université Laval Research Center, Oncology division, 9 Rue McMahon, Québec city, G1R 3S3, Québec, Canada
| | - Núria Muñoz-Subirana
- Genome Instability and DNA repair Syndromes Group and Join Unit UAB-IR Sant Pau on Genomic Medicine, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Roser Pujol
- Genome Instability and DNA repair Syndromes Group and Join Unit UAB-IR Sant Pau on Genomic Medicine, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER) U-745, Barcelona, Spain
| | - Cristina Cruz
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María J Ramírez
- Genome Instability and DNA repair Syndromes Group and Join Unit UAB-IR Sant Pau on Genomic Medicine, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER) U-745, Barcelona, Spain
| | - Cristina Saura
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Adriana Lasa
- Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER) U-705, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Orland Diez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Jordi Surrallés
- Genome Instability and DNA repair Syndromes Group and Join Unit UAB-IR Sant Pau on Genomic Medicine, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. .,Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER) U-745, Barcelona, Spain.
| |
Collapse
|
37
|
Drenner K, Basu GD, Goodman LJ, Ozols AA, LoBello JR, Royce T, Gordon MS, Borazanci EH, Steinbach MA, Trent J, Sharma S. The value of comprehensive genomic sequencing to maximize the identification of clinically actionable alterations in advanced cancer patients: a case series. Oncotarget 2021; 12:1836-1847. [PMID: 34504655 PMCID: PMC8416559 DOI: 10.18632/oncotarget.28046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
PURPOSE We present seven cases of advanced cancer patients who initially underwent tumor testing utilizing smaller, panel-based tests, followed by a variety of therapeutic treatments which ultimately resulted in progression of their disease. These cases demonstrate the value of utilizing WES/RNA seq and characterization following disease progression in these patients and the determination of clinically targetable alterations as well as acquired resistance mutations. MATERIALS AND METHODS All patients are part of an IRB approved observational study. WES and RNA sequencing were performed, using GEM ExTra® on tumor and blood samples obtained during routine clinical care. To accurately determine somatic versus germline alterations the test was performed with paired normal testing from peripheral blood. RESULTS The presented cases demonstrate the clinical impact of actionable findings uncovered using GEM ExTra® in patients with advanced disease who failed many rounds of treatment. Unique alterations were identified resulting in newly identified potential targeted therapies, mechanisms of resistance, and variation in the genomic characterization of the primary versus the metastatic tumor. CONCLUSIONS Taken together our results demonstrate that GEM ExTra® maximizes detection of actionable mutations, thus allowing for appropriate treatment selection for patients harboring both common and rare genomic alterations.
Collapse
Affiliation(s)
- Kevin Drenner
- Translational Genomic Research Institute (Tgen), Phoenix, AZ 85004, USA
- These authors contributed equally to this work
| | - Gargi D. Basu
- Ashion Analytics, LLC, Phoenix, AZ 85004, USA
- These authors contributed equally to this work
| | | | | | | | | | | | | | | | - Jeffrey Trent
- Translational Genomic Research Institute (Tgen), Phoenix, AZ 85004, USA
| | - Sunil Sharma
- Translational Genomic Research Institute (Tgen), Phoenix, AZ 85004, USA
| |
Collapse
|
38
|
Fortuno C, Pesaran T, Dolinsky J, Yussuf A, McGoldrick K, Tavtigian SV, Goldgar D, Spurdle AB, James PA. An updated quantitative model to classify missense variants in the TP53 gene: A novel multifactorial strategy. Hum Mutat 2021; 42:1351-1361. [PMID: 34273903 DOI: 10.1002/humu.24264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 11/07/2022]
Abstract
Multigene panel testing has led to an increase in the number of variants of uncertain significance identified in the TP53 gene, associated with Li-Fraumeni syndrome. We previously developed a quantitative model for predicting the pathogenicity of P53 missense variants based on the combination of calibrated bioinformatic information and somatic to germline ratio. Here, we extended this quantitative model for the classification of P53 predicted missense variants by adding new pieces of evidence (personal and family history parameters, loss-of-function results, population allele frequency, healthy individual status by age 60, and breast tumor pathology). We also annotated which missense variants might have an effect on splicing based on bioinformatic predictions. This updated model plus annotation led to the classification of 805 variants into a clinically relevant class, which correlated well with existing ClinVar classifications, and resolved a large number of conflicting and uncertain classifications. We propose this model as a reliable approach to TP53 germline variant classification and emphasize its use in contributing to optimize TP53-specific ACMG/AMP guidelines.
Collapse
Affiliation(s)
- Cristina Fortuno
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Amal Yussuf
- Ambry Genetics, Aliso Viejo, California, USA
| | | | - Sean V Tavtigian
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - David Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Amanda B Spurdle
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
39
|
Lee M, Shorthouse D, Mahen R, Hall BA, Venkitaraman AR. Cancer-causing BRCA2 missense mutations disrupt an intracellular protein assembly mechanism to disable genome maintenance. Nucleic Acids Res 2021; 49:5588-5604. [PMID: 33978741 PMCID: PMC8191791 DOI: 10.1093/nar/gkab308] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer-causing missense mutations in the 3418 amino acid BRCA2 breast and ovarian cancer suppressor protein frequently affect a short (∼340 residue) segment in its carboxyl-terminal domain (DBD). Here, we identify a shared molecular mechanism underlying their pathogenicity. Pathogenic BRCA2 missense mutations cluster in the DBD’s helical domain (HD) and OB1-fold motifs, which engage the partner protein DSS1. Pathogenic - but not benign – DBD mutations weaken or abolish DSS1-BRCA2 assembly, provoking mutant BRCA2 oligomers that are excluded from the cell nucleus, and disable DNA repair by homologous DNA recombination (HDR). DSS1 inhibits the intracellular oligomerization of wildtype, but not mutant, forms of BRCA2. Remarkably, DSS1 expression corrects defective HDR in cells bearing pathogenic BRCA2 missense mutants with weakened, but not absent, DSS1 binding. Our findings identify a DSS1-mediated intracellular protein assembly mechanism that is disrupted by cancer-causing BRCA2 missense mutations, and suggest an approach for its therapeutic correction.
Collapse
Affiliation(s)
- Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - David Shorthouse
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Robert Mahen
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Benjamin A Hall
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.,The Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599 & Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove 138648, Singapore
| |
Collapse
|
40
|
Brnich SE, Arteaga EC, Wang Y, Tan X, Berg JS. A Validated Functional Analysis of Partner and Localizer of BRCA2 Missense Variants for Use in Clinical Variant Interpretation. J Mol Diagn 2021; 23:847-864. [PMID: 33964450 PMCID: PMC8491091 DOI: 10.1016/j.jmoldx.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Clinical genetic testing readily detects germline genetic variants. Yet, the rarity of individual variants limits the evidence available for variant classification, leading to many variants of uncertain significance (VUS). VUS cannot guide clinical decisions, complicating counseling and management. In hereditary breast cancer gene PALB2, approximately 50% of clinically identified germline variants are VUS and approximately 90% of VUS are missense. Truncating PALB2 variants have homologous recombination (HR) defects and rely on error-prone nonhomologous end-joining for DNA damage repair (DDR). Recent reports show that some missense PALB2 variants may also be damaging, but most functional studies have lacked benchmarking controls required for sufficient predictive power for clinical use. Here, variant-level DDR capacity in hereditary breast cancer genes was assessed using the Traffic Light Reporter (TLR) to quantify cellular HR/nonhomologous end-joining with fluorescent markers. First, using BRCA2 missense variants of known significance as benchmarks, the TLR distinguished between normal/abnormal HR function. The TLR was then validated for PALB2 and used to test 37 PALB2 variants. Based on the TLR's ability to correctly classify PALB2 validation controls, these functional data where applied in subsequent germline variant interpretations at a moderate level of evidence toward a pathogenic interpretation (PS3_moderate) for 8 variants with abnormal DDR, or a supporting level of evidence toward a benign interpretation (BS3_supporting) for 13 variants with normal DDR.
Collapse
Affiliation(s)
- Sarah E Brnich
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eyla Cristina Arteaga
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yueting Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
41
|
Caputo SM, Telly D, Briaux A, Sesen J, Ceppi M, Bonnet F, Bourdon V, Coulet F, Castera L, Delnatte C, Hardouin A, Mazoyer S, Schultz I, Sevenet N, Uhrhammer N, Bonnet C, Tilkin-Mariamé AF, Houdayer C, Moncoutier V, Andrieu C, Bièche I, Stern MH, Stoppa-Lyonnet D, Lidereau R, Toulas C, Rouleau E. 5' Region Large Genomic Rearrangements in the BRCA1 Gene in French Families: Identification of a Tandem Triplication and Nine Distinct Deletions with Five Recurrent Breakpoints. Cancers (Basel) 2021; 13:cancers13133171. [PMID: 34202044 PMCID: PMC8268747 DOI: 10.3390/cancers13133171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Large genomic rearrangements in BRCA1 consisting of deletions/duplications of one or several exons are complex events, often occurring in the 5′ region. We characterized 10 events in 20 families: one large triplication classified as benign and nine large deletions classified as pathogenic. The breakpoint localization will certainly help to further understand the chromatin structure in regions sensitive to rearrangement. Abstract Background: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5′ region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. Methods: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. Results: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. Conclusions: Taken together, our results firmly establish that the BRCA1 5′ region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious.
Collapse
Affiliation(s)
- Sandrine M. Caputo
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Dominique Telly
- Laboratoire d’Oncogénétique, Institut Claudius Regaud, IUCT-O, F-31059 Toulouse, France;
| | - Adrien Briaux
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Julie Sesen
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Maurizio Ceppi
- Roche Innovation Center Basel (RICB), Roche Pharma Research and Early Development, CH-4052 Basel, Switzerland;
| | - Françoise Bonnet
- Laboratoire de Génétique Constitutionnelle et INSERM U916 VINCO, Institut Bergonié, CEDEX, F-33076 Bordeaux, France; (F.B.); (N.S.)
| | - Violaine Bourdon
- Laboratoire d’Oncogénétique Moléculaire, Département de Biologie du Cancer, Institut Paoli-Calmettes, F-13273 Marseille, France;
| | - Florence Coulet
- Department of Genetics, Pitié-Salpêtriere Hospital, Assistance Publique-Hopitaux de Paris, Sorbonne University, F-75013 Paris, France;
| | - Laurent Castera
- Laboratoire de Biologie et de Génétique du Cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, F-14076 Caen, France; (L.C.); (A.H.)
| | - Capucine Delnatte
- Service de Génétique Médicale, Unité de Génétique Moléculaire, CHU Nantes, F-44093 Nantes, France;
| | - Agnès Hardouin
- Laboratoire de Biologie et de Génétique du Cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, F-14076 Caen, France; (L.C.); (A.H.)
| | - Sylvie Mazoyer
- Centre de Recherche en Neurosciences de Lyon, INSERM, U1028, CNRS, UMR5292, Université de Lyon, F-69008 Lyon, France;
| | - Inès Schultz
- Centre Paul Strauss, Laboratoire de Biologie Tumorale—Oncogénétique, F-67000 Strasbourg, France;
| | - Nicolas Sevenet
- Laboratoire de Génétique Constitutionnelle et INSERM U916 VINCO, Institut Bergonié, CEDEX, F-33076 Bordeaux, France; (F.B.); (N.S.)
| | - Nancy Uhrhammer
- Biologie Clinique et Oncologique, Biologie Moléculaire—Centre Jean Perrin, F-63000 Clermont-Ferrand, France;
| | - Céline Bonnet
- Institut de Cancérologie, 6 Avenue de Bourgogne, F-54519 Vandœuvre-lès-Nancy, France;
| | - Anne-Françoise Tilkin-Mariamé
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, F-31000 Toulouse, France;
| | - Claude Houdayer
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, F-76183 Rouen, France;
- Normandy Centre for Genomic and 41 Personalized Medicine, Department of Genetics, University Hospital, F-76183 Rouen, France
| | - Virginie Moncoutier
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Catherine Andrieu
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | | | - Ivan Bièche
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Faculty of Pharmaceutical and Biological Sciences, University of Paris, F-75006 Paris, France
| | - Marc-Henri Stern
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), PSL Research University, F-75005 Paris, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), PSL Research University, F-75005 Paris, France
- Faculty of Medicine, University of Paris, F-75005 Paris, France
| | - Rosette Lidereau
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Christine Toulas
- Laboratoire d’Oncogénétique, Institut Claudius Regaud, IUCT-O, F-31059 Toulouse, France;
- Correspondence: (C.T.); (E.R.)
| | - Etienne Rouleau
- Department of Biology, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (C.T.); (E.R.)
| |
Collapse
|
42
|
Fanale D, Fiorino A, Incorvaia L, Dimino A, Filorizzo C, Bono M, Cancelliere D, Calò V, Brando C, Corsini LR, Sciacchitano R, Magrin L, Pivetti A, Pedone E, Madonia G, Cucinella A, Badalamenti G, Russo A, Bazan V. Prevalence and Spectrum of Germline BRCA1 and BRCA2 Variants of Uncertain Significance in Breast/Ovarian Cancer: Mysterious Signals From the Genome. Front Oncol 2021; 11:682445. [PMID: 34178674 PMCID: PMC8226162 DOI: 10.3389/fonc.2021.682445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
About 10–20% of breast/ovarian (BC/OC) cancer patients undergoing germline BRCA1/2 genetic testing have been shown to harbor Variants of Uncertain Significance (VUSs). Since little is known about the prevalence of germline BRCA1/2 VUS in Southern Italy, our study aimed at describing the spectrum of these variants detected in BC/OC patients in order to improve the identification of potentially high-risk BRCA variants helpful in patient clinical management. Eight hundred and seventy-four BC or OC patients, enrolled from October 2016 to December 2020 at the “Sicilian Regional Center for the Prevention, Diagnosis and Treatment of Rare and Heredo-Familial Tumors” of University Hospital Policlinico “P. Giaccone” of Palermo, were genetically tested for germline BRCA1/2 variants through Next-Generation Sequencing analysis. The mutational screening showed that 639 (73.1%) out of 874 patients were BRCA-w.t., whereas 67 (7.7%) were carriers of germline BRCA1/2 VUSs, and 168 (19.2%) harbored germline BRCA1/2 pathogenic/likely pathogenic variants. Our analysis revealed the presence of 59 different VUSs detected in 67 patients, 46 of which were affected by BC and 21 by OC. Twenty-one (35.6%) out of 59 variants were located on BRCA1 gene, whereas 38 (64.4%) on BRCA2. We detected six alterations in BRCA1 and two in BRCA2 with unclear interpretation of clinical significance. Familial anamnesis of a patient harboring the BRCA1-c.3367G>T suggests for this variant a potential of pathogenicity, therefore it should be carefully investigated. Understanding clinical significance of germline BRCA1/2 VUS could improve, in future, the identification of potentially high-risk variants useful for clinical management of BC or OC patients and family members.
Collapse
Affiliation(s)
- Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessia Fiorino
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandra Dimino
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Clarissa Filorizzo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marco Bono
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Daniela Cancelliere
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Valentina Calò
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Lidia Rita Corsini
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Roberta Sciacchitano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Luigi Magrin
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessia Pivetti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Erika Pedone
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giorgio Madonia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandra Cucinella
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
43
|
Schmutzler RK. Quality and Quantity: How to Organize a Countrywide Genetic Counseling and Testing. Breast Care (Basel) 2021; 16:196-201. [PMID: 34248460 PMCID: PMC8248770 DOI: 10.1159/000515429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND About 30% of all women with breast or ovarian cancer exhibit a family history of the disease. So far, the genetic cause could be deciphered in about 30% of these cases. The results demonstrate a high genetic heterogeneity, with high-risk and moderate-risk genes and low-risk variants contributing alone or in concert to the development of cancer. Furthermore, it has been shown that the genotype significantly determines the phenotype and that knowledge of the phenotype is as important as the genotype to offer adequate and risk-adapted prevention to persons at risk. For newly identified risk genes, however, the phenotype is not sufficiently characterized at first, and thus prevention measures are not sufficiently evaluated. SUMMARY The German Consortium for Hereditary Breast and Ovarian Cancer has developed a concept for collecting the missing data in the context of knowledge-generating care and at the same time ensuring care based on the best available knowledge. Core elements of this concept are: structured and standardized care, an outcome-oriented evaluation based on a comprehensive registry, networking with certified breast and gynecological cancer centers combined with regular training on state-of-the-art care for doctors, and compilation of comprehensible patient information. This comprehensive concept has been incorporated into contracts for specialized care with health insurers and thus ensures nationwide care at the highest scientific and clinical levels. KEY MESSAGES This article describes how to implement a concept of evidence-generating care for risk-adjusted prevention in a nationwide health care system.
Collapse
Affiliation(s)
- Rita Katharina Schmutzler
- Center for Familial Breast and Ovarian Cancer and Center for Integrated Oncology (CIO), University Hospital Cologne, Cologne, Germany
| |
Collapse
|
44
|
Jimenez-Sainz J, Jensen RB. Imprecise Medicine: BRCA2 Variants of Uncertain Significance (VUS), the Challenges and Benefits to Integrate a Functional Assay Workflow with Clinical Decision Rules. Genes (Basel) 2021; 12:genes12050780. [PMID: 34065235 PMCID: PMC8161351 DOI: 10.3390/genes12050780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pathological mutations in homology-directed repair (HDR) genes impact both future cancer risk and therapeutic options for patients. HDR is a high-fidelity DNA repair pathway for resolving DNA double-strand breaks throughout the genome. BRCA2 is an essential protein that mediates the loading of RAD51 onto resected DNA breaks, a key step in HDR. Germline mutations in BRCA2 are associated with an increased risk for breast, ovarian, prostate, and pancreatic cancer. Clinical findings of germline or somatic BRCA2 mutations in tumors suggest treatment with platinum agents or PARP inhibitors. However, when genetic analysis reveals a variant of uncertain significance (VUS) in the BRCA2 gene, precision medicine-based decisions become complex. VUS are genetic changes with unknown pathological impact. Current statistics indicate that between 10–20% of BRCA sequencing results are VUS, and of these, more than 50% are missense mutations. Functional assays to determine the pathological outcome of VUS are urgently needed to provide clinical guidance regarding cancer risk and treatment options. In this review, we provide a brief overview of BRCA2 functions in HDR, describe how BRCA2 VUS are currently assessed in the clinic, and how genetic and biochemical functional assays could be integrated into the clinical decision process. We suggest a multi-step workflow composed of robust and accurate functional assays to correctly evaluate the potential pathogenic or benign nature of BRCA2 VUS. Success in this precision medicine endeavor will offer actionable information to patients and their physicians.
Collapse
Affiliation(s)
- Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| |
Collapse
|
45
|
Nguyen-Dumont T, Stewart J, Winship I, Southey MC. Rare genetic variants: making the connection with breast cancer susceptibility. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.4.281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe practice of clinical genetics in the context of breast cancer predisposition has reached another critical point in its evolution. For the past two decades, genetic testing offered to women attending clinics has been limited to BRCA1 and BRCA2 unless other syndromic indicators have been evident (e.g. PTEN and TP53 for Cowden and Li-Fraumeni syndrome, respectively). Women (and their families) who are concerned about their personal and/or family history of breast and ovarian cancer have enthusiastically engaged with clinical genetics services, anticipating a genetic cause for their cancer predisposition will be identified and to receive clinical guidance for their risk management and treatment options. Genetic testing laboratories have demonstrated similar enthusiasm for transitioning from single gene to gene panel testing that now provide opportunities for the large number of women found not to carry mutations in BRCA1 and BRCA2, enabling them to undergo additional genetic testing. However, these panel tests have limited clinical utility until more is understood about the cancer risks (if any) associated with the genetic variation observed in the genes included on these panels. New data is urgently needed to improve the interpretation of the genetic variation data that is already reported from these panels and to inform the selection of genes included in gene panel tests in the future. To address this issue, large internationally coordinated research studies are required to provide the evidence-base from which clinical genetics for breast cancer susceptibility can be practiced in the era of gene panel testing and oncogenetic practice.Two significant steps associated with this process include i) validating the genes on these panels (and those likely to be added in the future) as bona fide1
breast cancer predisposition genes and ii) interpreting the variation, on a variant-by-variant basis in terms of their likely “pathogenicity”—a process commonly referred to as “variant classification” that will enable this new genetic information to be used at an individual level in clinical genetics services. Neither of these fundamental steps have been achieved for the majority of genes included on the panels.We are thus at a critical point for translational research in breast cancer clinical genetics—how can rare genetic variants be interpreted such that they can be used in clinical genetics services and oncogenetic practice to identify and to inform the management of families that carry these variants?
Collapse
Affiliation(s)
- Tú Nguyen-Dumont
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Victoria, 3010, Australia and The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Jenna Stewart
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Victoria, 3010, Australia and The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Ingrid Winship
- Department of Medicine, The University of Melbourne, Victoria, 3010, Australia and The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Melissa C. Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Victoria, 3010, Australia and The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| |
Collapse
|
46
|
Hosoya N, Miyagawa K. Implications of the germline variants of DNA damage response genes detected by cancer precision medicine for radiological risk communication and cancer therapy decisions. JOURNAL OF RADIATION RESEARCH 2021; 62:i44-i52. [PMID: 33978181 PMCID: PMC8114223 DOI: 10.1093/jrr/rrab009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/22/2021] [Indexed: 05/08/2023]
Abstract
Large-scale cancer-associated gene testing is now being rapidly incorporated into clinical settings, and is leading to incidental identification of the germline variants present in cancer patients. Because many cancer susceptibility genes are related to DNA damage response and repair, the variants may reflect not only the susceptibility to cancer but also the genetically defined radiation sensitivity of the patients and their relatives. When the presence of a certain germline variant increases the risk for developing radiation toxicity or radiation-induced secondary cancers, it will greatly influence the clinical decision-making. In order to achieve optimal radiological risk communication and to select the best cancer management for a given patient based on information from gene testing, healthcare professionals including genetic counselors, risk communicators and clinicians need to increase their knowledge of the health effects of various genetic variants. While germline loss-of-function mutations in both of the alleles of the DNA damage response genes cause rare hereditary diseases characterized by extreme hypersensitivity to radiation, the health effects of the carriers who have germline variants in one allele of such genes would be a matter of debate, especially when the significance of the variants is currently unknown. In this review, we describe the clinical significance of the genetic variants of the important DNA damage response genes, including ATM and TP53, and discuss how we can apply current knowledge to the management of cancer patients and their relatives from a radiological point of view.
Collapse
Affiliation(s)
- Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
A Population-Based Analysis of BRCA1/ 2 Genes and Associated Breast and Ovarian Cancer Risk in Korean Patients: A Multicenter Cohort Study. Cancers (Basel) 2021; 13:cancers13092192. [PMID: 34063308 PMCID: PMC8125125 DOI: 10.3390/cancers13092192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Although it has been suggested that cancer risk and genetic variation vary by population, there is still a lack of research on non-European populations. In this study, we applied Korean patients as a model to find out the way to conduct BRCA1/2-related clinical studies in non-European populations who do not have as much clinical data as Europeans. The BRCA1/2 variants were classified following the 2015 ACMG standards/guidelines and using a multifactorial probability-based approach. To estimate the additional sample numbers needed to resolve BRCA1/2 unclassified status, we applied a simulation analysis considering population-specific clinical characteristics. In addition, we estimated the risks of breast or ovarian cancer for BRCA1/2 carriers by mutation regions. Data from this study reveal that BRCA1/2 variants in the non-European population are highly specific; therefore, population-specific study is essential for clinical application of treatment or prevention for breast or ovarian cancer. Abstract In this study, we performed a comprehensive analysis of BRCA1/2 variants and associated cancer risk in Korean patients considering two aspects: variants of uncertain significance (VUS) and pathogenic or likely pathogenic variants (PLPVs) in BRCA1 and BRCA2. This study included 5433 Korean participants who were tested for BRCA1/2 genes. The BRCA1/2 variants were classified following the standards/guidelines for interpretation of genetic variants and using a multifactorial probability-based approach. In Korea, 15.8% of participants had BRCA1 or BRCA2 PLPVs. To estimate the additional sample numbers needed to resolve unclassified status, we applied a simulation analysis. The simulation study for VUS showed that the smaller the number of samples, the more the posterior probability was affected by the prior probability; in addition, more samples for BRCA2 VUS than those of BRCA1 VUS were required to resolve the unclassified status, and the presence of clinical information associated with their VUS was an important factor. The cumulative lifetime breast cancer risk was 59.1% (95% CI: 44.1–73.6%) for BRCA1 and 58.3% (95% CI: 43.2–73.0%) for BRCA2 carriers. The cumulative lifetime ovarian cancer risk was estimated to be 36.9% (95% CI: 23.4–53.9%) for BRCA1 and 14.9% (95% CI: 7.4–28.5%) for BRCA2 carriers.
Collapse
|
48
|
Richardson ME, Hu C, Lee KY, LaDuca H, Fulk K, Durda KM, Deckman AM, Goldgar DE, Monteiro AN, Gnanaolivu R, Hart SN, Polley EC, Chao E, Pesaran T, Couch FJ. Strong functional data for pathogenicity or neutrality classify BRCA2 DNA-binding-domain variants of uncertain significance. Am J Hum Genet 2021; 108:458-468. [PMID: 33609447 PMCID: PMC8008494 DOI: 10.1016/j.ajhg.2021.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Determination of the clinical relevance of rare germline variants of uncertain significance (VUSs) in the BRCA2 cancer predisposition gene remains a challenge as a result of limited availability of data for use in classification models. However, laboratory-based functional data derived from validated functional assays of known sensitivity and specificity may influence the interpretation of VUSs. We evaluated 252 missense VUSs from the BRCA2 DNA-binding domain by using a homology-directed DNA repair (HDR) assay and identified 90 as non-functional and 162 as functional. The functional assay results were integrated with other available data sources into an ACMG/AMP rules-based classification framework used by a hereditary cancer testing laboratory. Of the 186 missense variants observed by the testing laboratory, 154 were classified as VUSs without functional data. However, after applying protein functional data, 86% (132/154) of the VUSs were reclassified as either likely pathogenic/pathogenic (39/132) or likely benign/benign (93/132), which impacted testing results for 1,900 individuals. These results indicate that validated functional assay data can have a substantial impact on VUS classification and associated clinical management for many individuals with inherited alterations in BRCA2.
Collapse
|
49
|
George SHL, Donenberg T, Alexis C, DeGennaro V, Dyer H, Yin S, Ali J, Butler R, Chin SN, Curling D, Lowe D, Lunn J, Turnquest T, Wharfe G, Cerbon D, Barreto-Coelho P, Schlumbrecht MP, Akbari MR, Narod SA, Hurley JE. Gene Sequencing for Pathogenic Variants Among Adults With Breast and Ovarian Cancer in the Caribbean. JAMA Netw Open 2021; 4:e210307. [PMID: 33646313 PMCID: PMC7921902 DOI: 10.1001/jamanetworkopen.2021.0307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE Rates of breast and ovarian cancer are high in the Caribbean; however, to date, few published data quantify the prevalence of inherited cancer in the Caribbean population. OBJECTIVE To determine whether deleterious variants in genes that characterize the hereditary breast and ovarian cancer syndrome are associated with the development of breast and ovarian cancer in the English- and Creole-speaking Caribbean populations. DESIGN, SETTING, AND PARTICIPANTS This multisite genetic association study used data from germline genetic test results between June 2010 and June 2018 in the Bahamas, Cayman Islands, Barbados, Dominica, Jamaica, Haiti, and Trinidad and Tobago. Next-generation sequencing on a panel of 30 genes and multiplex ligation-dependent probe amplification (BRCA1 and BRCA2) were performed. Medical records were reviewed at time of study enrollment. Women and men diagnosed with breast and ovarian cancer with at least 1 grandparent born in the participating study sites were included; 1018 individuals were eligible and consented to participate in this study. Data were analyzed from November 4, 2019, to May 6, 2020. EXPOSURES Breast and/or ovarian cancer diagnosis. MAIN OUTCOMES AND MEASURES Rate of inherited breast and ovarian cancer syndrome and spectrum and types of variants. RESULTS Of 1018 participants, 999 (98.1%) had breast cancer (mean [SD] age, 46.6 [10.8] years) and 21 (2.1%) had ovarian cancer (mean [SD] age, 47.6 [13.5] years). Three individuals declined to have their results reported. A total of 144 of 1015 (14.2%) had a pathogenic or likely pathogenic (P/LP) variant in a hereditary breast and ovarian cancer syndrome gene. A total of 64% of variant carriers had P/LP variant in BRCA1, 23% in BRCA2, 9% in PALB2 and 4% in RAD51C, CHEK2, ATM, STK11 and NBN. The mean (SD) age of variant carriers was 40.7 (9.2) compared with 47.5 (10.7) years in noncarriers. Individuals in the Bahamas had the highest proportion of hereditary breast and ovarian cancer (23%), followed by Barbados (17.9%), Trinidad (12%), Dominica (8.8%), Haiti (6.7%), Cayman Islands (6.3%), and Jamaica (4.9%). In Caribbean-born women and men with breast cancer, having a first- or second-degree family member with breast cancer was associated with having any BRCA1 or BRCA2 germline variant (odds ratio, 1.58; 95% CI, 1.24-2.01; P < .001). A BRCA1 vs BRCA2 variant was more strongly associated with triple negative breast cancer (odds ratio, 6.33; 95% CI, 2.05-19.54; P = .001). CONCLUSIONS AND RELEVANCE In this study, among Caribbean-born individuals with breast and ovarian cancer, 1 in 7 had hereditary breast and ovarian cancer. The proportion of hereditary breast and ovarian cancer varied by island and ranged from 23% in the Bahamas to 4.9% in Jamaica. Each island had a distinctive set of variants.
Collapse
Affiliation(s)
- Sophia H. L. George
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Talia Donenberg
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Department of Genetics, University of Miami, Miami, Florida
| | - Cheryl Alexis
- Faculty of Medical Sciences, University of West Indies-Cave Hill, Barbados
| | | | - Hedda Dyer
- Ross University School of Medicine, Commonwealth of Dominica (now in Barbados)
| | - Sook Yin
- Cayman Islands Cancer Society, Grand Cayman, Cayman Islands
| | - Jameel Ali
- St. James Medical Complex, Northwest Regional Health Authority, Port-of-Spain, Trinidad and Tobago
| | - Raleigh Butler
- Princess Margaret Hospital, University of the West Indies, School of Clinical Medicine and Research, Nassau, Bahamas
| | - Sheray N. Chin
- Department of Pathology, University of West Indies-Mona, Kingston, Jamaica
| | - DuVaughn Curling
- Princess Margaret Hospital, University of the West Indies, School of Clinical Medicine and Research, Nassau, Bahamas
| | - Dwight Lowe
- Department of Pathology, University of West Indies-Mona, Kingston, Jamaica
| | - John Lunn
- Princess Margaret Hospital, University of the West Indies, School of Clinical Medicine and Research, Nassau, Bahamas
| | - Theodore Turnquest
- Princess Margaret Hospital, University of the West Indies, School of Clinical Medicine and Research, Nassau, Bahamas
| | - Gilian Wharfe
- Department of Pathology, University of West Indies-Mona, Kingston, Jamaica
| | - Danielle Cerbon
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Division of Medical Oncology, Department of Medicine, University of Miami, Miami, Florida
| | - Priscila Barreto-Coelho
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Division of Medical Oncology, Department of Medicine, University of Miami, Miami, Florida
| | - Matthew P. Schlumbrecht
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Mohammad R. Akbari
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, Canada
| | - Steven A. Narod
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, Canada
| | - Judith E. Hurley
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Division of Medical Oncology, Department of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
50
|
Berliner JL, Cummings SA, Boldt Burnett B, Ricker CN. Risk assessment and genetic counseling for hereditary breast and ovarian cancer syndromes-Practice resource of the National Society of Genetic Counselors. J Genet Couns 2021; 30:342-360. [PMID: 33410258 DOI: 10.1002/jgc4.1374] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Cancer risk assessment and genetic counseling for hereditary breast and ovarian cancer (HBOC) are a communication process to inform and prepare patients for genetic test results and the related medical management. An increasing number of healthcare providers are active in the delivery of cancer risk assessment and testing, which can have enormous benefits for enhanced patient care. However, genetics professionals remain key in the multidisciplinary care of at-risk patients and their families, given their training in facilitating patients' understanding of the role of genetics in cancer development, the potential psychological, social, and medical implications associated with cancer risk assessment and genetic testing. A collaborative partnership of non-genetics and genetics experts is the ideal approach to address the growing number of patients at risk for hereditary breast and ovarian cancer. The goal of this practice resource is to provide allied health professionals an understanding of the key components of risk assessment for HBOC as well as the use of risk models and published guidelines for medical management. We also highlight what patient types are appropriate for genetic testing, what are the most appropriate test(s) to consider, and when to refer individuals to a genetics professional. This practice resource is intended to serve as a resource for allied health professionals in determining their approach to delivering comprehensive care for families and individuals facing HBOC. The cancer risk and prevalence figures in this document are based on cisgender women and men; the risks for transgender or non-binary individuals have not been studied and therefore remain poorly understood.
Collapse
Affiliation(s)
- Janice L Berliner
- Genetic Counseling Department, Bay Path University, East Longmeadow, MA, USA
| | | | | | - Charité N Ricker
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|