1
|
Maiga H, Morrison RD, Duffy PE. Sanger sequencing and deconvolution of polyclonal infections: a quantitative approach to monitor drug-resistant Plasmodium falciparum. EBioMedicine 2024; 103:105115. [PMID: 38636200 PMCID: PMC11031737 DOI: 10.1016/j.ebiom.2024.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Anti-malarial drug resistance in Plasmodium falciparum is a major public health problem in malaria-endemic regions. Although various technical improvements in sequencing methods have been introduced to identify SNPs, the conventional approach with current tools does not discriminate mixed infections, and thus can be improved for more sensitive surveillance of anti-malarial resistance to better inform control strategies. METHODS We developed a computational approach for deconvolution of chromatograms generated by standard Sanger sequencing of PCR amplicons in order to quantify molecular marker variants of anti-malarial drug resistance genes [Plasmodium falciparum dihydropteorate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr)]. We validated this computational approach using mixtures of V1/S and FCR3 at varying proportions between 0 and 100%, then applied it to field samples collected in Doneguebougou, Mali in 2018. We determined the mean fraction of resistance alleles in individual samples, as well as the prevalence of infections carrying resistant parasites. FINDINGS We observed a highly significant correlation between the predicted and measured proportions of V1/S and FCR3 alleles in mixed laboratory samples (all p < 0.001). Among field samples, the mean fraction of resistant Pfdhps alleles was 4.7% 431V, 95.9% 436F/A, 49.9% 437G, 0.0% 540E, 1.2% 581G and 1.5% 613S/T; corresponding prevalences were 50.0%, 100%, 72.5%, 0.0%, 25.0%, and 12.5%, respectively. The mean fraction of resistant Pfdhfr alleles was 0.6% 16V, 11.1% 50R, 89.0% 51I, 98.3% 59R, 74.7% 108T/N, 8.6% 140L and 8.7% 164L; corresponding prevalences were 12.5%, 75.0%, 100%, 100%, 100%, 50.0%, and 28.6%, respectively. We identified two new point mutations on the Pfdhps gene at codons D484T and D545N. INTERPRETATION Computational deconvolution of sequencing chromatograms can discriminate varying proportions of antimalarial drug-sensitive versus -resistant alleles. This cost-effective and quantitative variant-sequencing approach will be useful for population-based surveys that characterize mixed infections at the individual level to survey known and unknown mutations in P. falciparum drug-resistance genes. FUNDING This work was supported by the Division of Intramural Research of the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH). HM was supported by the African Postdoctoral Training Initiative (APTI) Fellowship program jointly managed by the US NIH, The African Academy of Sciences (AAS) and Bill & Melinda Gates Foundation (BMGF); Grant Reference Number: APTI-18-01.
Collapse
Affiliation(s)
- Hamma Maiga
- Laboratory of Malaria Immunology and Vaccinology (LMIV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 29 Lincoln Drive, Bethesda, MD, 20892, USA; Institut National de Santé Publique (INSP), Ministère de la Santé et du Développement Social (MSDS), Bamako, BP: 1771, Mali.
| | - Robert D Morrison
- Laboratory of Malaria Immunology and Vaccinology (LMIV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology (LMIV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 29 Lincoln Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
2
|
Oyieko J, Copeland NK, Otieno S, Kifude C, Ocholla S, Hutter J, Smith H, Roberds A, Luckhart S, Stewart VA. Longitudinal and Cross-sectional Analyses of Asymptomatic HIV-1/Malaria Co-infection in Kisumu County, Kenya. Am J Trop Med Hyg 2023; 108:85-92. [PMID: 36410321 PMCID: PMC9833063 DOI: 10.4269/ajtmh.22-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Individuals infected with HIV-1 experience more frequent and more severe episodes of malaria and are likely to harbor asymptomatic parasitemia, thus potentially making them more efficient reservoirs of malaria. Two studies (cross-sectional and longitudinal) were designed in sequence between 2015-2018 and 2018-2020, respectively, to test the hypothesis that HIV-1 infected individuals have higher prevalence of asymptomatic parasitemia and gametocytemia than the HIV-1 negatives. This article describes the overall design of the two studies, encompassing data for the longitudinal study and additional data to the previously published baseline data for the cross-sectional study. In the cross-sectional study, HIV-1 positive participants were significantly older, more likely to be male, and more likely to have parasitemia relative to HIV-1 negatives (P < 0.01). In the longitudinal study, 300 participants were followed for 6 months. Of these, 102 were HIV-1 negative, 106 were newly diagnosed HIV-1 positive, and 92 were HIV-1 positive and on antiretroviral therapy, including antifolates, at enrollment. Overall parasitemia positivity at enrollment was 17.3% (52/300). Of these, 44% (23/52) were HIV-1 negative, 52% (27/52) were newly diagnosed HIV-1 positives, and only 4% (2/52) were HIV-1 positive and on treatment. Parasitemia for those on stable antiretroviral therapy was significantly lower (hazard ratio: 0.51, P < 0.001), compared with the HIV-1-negatives. On follow-up, there was a significant decline in parasitemia prevalence (hazard ratio: 0.74, P < 0.001) among the HIV patients newly initiated on antiretroviral therapy including trimethoprim-sulfamethoxasole. These data highlight the impact of HIV-1 and HIV treatment on asymptomatic parasitemia over time.
Collapse
Affiliation(s)
- Janet Oyieko
- Kombewa Clinical Research Center, Kenya Medical Research Institute–U.S. Army Medical Research Directorate—Africa, Kisumu, Kenya
| | | | - Solomon Otieno
- Kombewa Clinical Research Center, Kenya Medical Research Institute–U.S. Army Medical Research Directorate—Africa, Kisumu, Kenya
| | - Carolyne Kifude
- Kombewa Clinical Research Center, Kenya Medical Research Institute–U.S. Army Medical Research Directorate—Africa, Kisumu, Kenya
| | - Stephen Ocholla
- Kombewa Clinical Research Center, Kenya Medical Research Institute–U.S. Army Medical Research Directorate—Africa, Kisumu, Kenya
| | - Jack Hutter
- Kombewa Clinical Research Center, Kenya Medical Research Institute–U.S. Army Medical Research Directorate—Africa, Kisumu, Kenya
| | - Hunter Smith
- Kombewa Clinical Research Center, Kenya Medical Research Institute–U.S. Army Medical Research Directorate—Africa, Kisumu, Kenya
| | - Ashleigh Roberds
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - V. Ann Stewart
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
3
|
Cañón M, Diaz H, Olarte A. Mathematical model for the spread of drug resistance in Plasmodium falciparum parasite considering transmission conditions. J Theor Biol 2017; 435:1-11. [PMID: 28888945 DOI: 10.1016/j.jtbi.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/21/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Antimalarial drugs have been used as one of the main strategies for controlling this disease. However, the spread of drug resistance in the Plasmodium falciparum parasite has generated major challenges for the control of malaria. For this reason, it is necessary to develop an efficient policy considering the parasite behavior in relation to drug treatment and epidemiological parameters. To achieve this goal, we propose a mathematical model that describes the dynamics of parasite population considering the transmission effects between mosquitoes and humans. In order to quantify the drug treatment effect on humans and the generation of new parasite genotypes within the mosquito, the parasite population was divided into those found in humans and mosquitoes. To test the model, we simulate several parasite populations, related with pyrimethamine resistance, in high and low transmission conditions. Simulation results show the dynamics of different parasite populations depending on drug coverage and the effect of epidemiological parameters. These results show that disease elimination may not be possible by using only pyrimethamine treatment, so we include different control strategies and we observe that reducing contacts between mosquitoes and humans helped the drug coverage to reduce the prevalence of disease. Finally, this model is used to propose an optimal policy that minimizes disease prevalence; the principal result is that the most effective coverage of the drug is around middle coverage. The model can also be used to evaluate not only pyrimethamine treatments, but it can be adapted for the study of resistance to other drugs.
Collapse
Affiliation(s)
- Mario Cañón
- Universidad Nacional de Colombia, Department of Electrical and Electronics Engineering, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Hernando Diaz
- Universidad Nacional de Colombia, Department of Electrical and Electronics Engineering, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Andrés Olarte
- Universidad Nacional de Colombia, Department of Electrical and Electronics Engineering, Carrera 45 No. 26-85, Bogotá, Colombia.
| |
Collapse
|
4
|
Mohamed AO, Abdel Hamid MM, Mohamed OS, Elkando NS, Suliman A, Adam MA, Elnour FAA, Malik EM. Efficacies of DHA-PPQ and AS/SP in patients with uncomplicated Plasmodium falciparum malaria in an area of an unstable seasonal transmission in Sudan. Malar J 2017; 16:163. [PMID: 28427409 PMCID: PMC5399425 DOI: 10.1186/s12936-017-1817-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/09/2017] [Indexed: 12/03/2022] Open
Abstract
Background Artemisinin-based combination therapy (ACT), together with other control measures, have reduced the burden of falciparum malaria in sub-Saharan countries, including Sudan. Sudan adopted ACT in 2004 with a remarkable reduction in mortality due to falciparum malaria. However, emergence of resistance to the first-line treatment artesunate and sulfadoxine/pyrimethamine (AS/SP) has created new challenges to the control of malaria in Sudan. A search for an alternative drug of choice for treating uncomplicated malaria has become inevitable. The objective of this study was to evaluate the therapeutic efficacies of dihydroartemisinin/piperaquine (DHA–PPQ) and AS/SP in an area of unstable transmission in Blue Nile State, Sudan in 2015–16. Methods A total of 148 patients with uncomplicated malaria were recruited in the study from November 2015 to end of January 2016. Seventy-five patients received DHA–PPQ while 73 received AS/SP. Patients were monitored for clinical and parasitological outcomes following the standard WHO protocol for a period of 42 days for DHA–PPQ and 28 days for AS/SP; nested PCR (nPCR) was performed to confirm parasite re-appearance from day 7 onwards. Results Fifty-five patients completed the DHA–PPQ arm protocol with success cure rate of 98.2% (95% CI 90.3–100%) and one late clinical failure 1.8% (95% CI 0.0–9.7%). The AS/SP showed adequate clinical and parasitological response (ACPR) of 83.6% (95% CI 71.9–91.8%), early treatment failure was 1.6% (95% CI 0.0–8.8%) and late parasitological failure (LPF) was 14.8% (95% CI 7–26.2%). The respective PCR uncorrected LPF was 20%. Conclusion DHA–PPQ is an efficacious ACT and candidate for replacement of first-line treatment in Sudan while AS/SP showed high treatment failure rate and must be replaced. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1817-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdelrahim O Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan. .,Neelain Institute for Medical Research, Alneelain University, Khartoum, Sudan.
| | | | - Omer S Mohamed
- Neelain Institute for Medical Research, Alneelain University, Khartoum, Sudan
| | | | | | - Mariam A Adam
- Communicable & Non Communicable Diseases Control Directorate, Federal Ministry of Health, Khartoum, Sudan
| | - Fahad Awad Ali Elnour
- Communicable & Non Communicable Diseases Control Directorate, Federal Ministry of Health, Khartoum, Sudan
| | - Elfatih M Malik
- Department of Community Medicine, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
5
|
Kaingona-Daniel EPS, Gomes LR, Gama BE, Almeida-de-Oliveira NK, Fortes F, Ménard D, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Low-grade sulfadoxine-pyrimethamine resistance in Plasmodium falciparum parasites from Lubango, Angola. Malar J 2016; 15:309. [PMID: 27267365 PMCID: PMC4895897 DOI: 10.1186/s12936-016-1358-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/24/2016] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a major parasitic disease, affecting millions of people in endemic areas. Plasmodium falciparum parasites are responsible for the most severe cases and its resistance to anti-malarial drugs is notorious. This is a possible obstacle to the effectiveness of intermittent preventive treatment (IPT) based on sulfadoxine–pyrimethamine (SP) cures administrated to pregnant women (IPTp) during their pregnancy. As this intervention is recommended in Angola since 2006, it has assessed, in this country, the molecular profiles in P. falciparumdhfr and dhps, two polymorphic genes associated to pyrimethamine and sulfadoxine resistance, respectively. Methods Blood samples from 52 falciparum patients were collected in Lubango, Angola and pfdhfr and pfdhps polymorphisms were analysed using nested-PCR and DNA sequencing. Results In the pfdhfr gene, the 108N mutation was almost fixed (98 %), followed by 59R (63 %), 51I (46 %), 50R and 164L (2 %, respectively). No 16V/S mutations were found. The most common double mutant genotype was CNRN (59 + 108; 46 %), followed by CICN (51 + 108; 29 %) whereas IRN (51 + 59 + 108; 15 %), CNRNVL (59 + 108 + 164; 2 %) and RICN (50 + 51 + 108; 2 %) triple mutant genotypes were detected. Investigations of the pfdhps gene showed that the 437G mutation was the most prevalent (97 %). Only two and one samples disclosed the 540E (7 %) and the 436A (3 %), respectively. Single mutant SGKAA (437; 86 %) was higher than SGEAA (437 + 540; 7 %) or AGKAA (436 + 437; 3 %) double mutants genotypes. No polymorphism was detected at codons 581G and 613T/S. Combining pfdhfr and pfdhps alleles two triple mutant haplotypes (double mutant in dhfr and single mutant in dhps) were observed: the ACICNVI/SGKAA in 14 (56 %) samples and the ACNRNVI/SGKAA in five (20 %) samples. One quadruple mutant haplotype was detected (ACIRNVI/SGKAA) in six (24 %) P. falciparum samples. No quintuple pfdhfr–pfdhps mutant was noted. Conclusion pfdhfr and pfdhps gene mutations in isolates from Lubango are suggestive of a low-grade SP resistance and IPT for pregnant women and infant based on SP treatment could be effective. Routine molecular studies targeting polymorphism in these two genes need to be routinely conducted at country level.
Collapse
Affiliation(s)
- Elsa P S Kaingona-Daniel
- Laboratório de Pesquisa em Malária-Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.,Hospital Central Dr. António Agostinho Neto, Lubango, Angola.,Health Progress and Investigation Network of the Portuguese-Speaking Countries Community (RIDESMal/CPLP), Lisbon, Portugal
| | - Larissa Rodrigues Gomes
- Laboratório de Pesquisa em Malária-Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.,Health Progress and Investigation Network of the Portuguese-Speaking Countries Community (RIDESMal/CPLP), Lisbon, Portugal
| | - Bianca E Gama
- Laboratório de Pesquisa em Malária-Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratory of Oncovirology, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Natália K Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária-Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.,Health Progress and Investigation Network of the Portuguese-Speaking Countries Community (RIDESMal/CPLP), Lisbon, Portugal
| | - Filomeno Fortes
- Angolan National Malaria Control Programme, National Institute of Public Health, Luanda, Angola.,Health Progress and Investigation Network of the Portuguese-Speaking Countries Community (RIDESMal/CPLP), Lisbon, Portugal
| | - Didier Ménard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária-Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.,Health Progress and Investigation Network of the Portuguese-Speaking Countries Community (RIDESMal/CPLP), Lisbon, Portugal
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária-Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil. .,Health Progress and Investigation Network of the Portuguese-Speaking Countries Community (RIDESMal/CPLP), Lisbon, Portugal.
| |
Collapse
|
6
|
Ogbunugafor CB, Wylie CS, Diakite I, Weinreich DM, Hartl DL. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance. PLoS Comput Biol 2016; 12:e1004710. [PMID: 26808374 PMCID: PMC4726534 DOI: 10.1371/journal.pcbi.1004710] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions-drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR) to two related inhibitors-pyrimethamine and cycloguanil-across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis) influence paths taken at evolutionary "forks in the road" that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC) are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with regards to their basic contribution to the study of empirical adaptive landscapes, and in terms of how they inform new models for the evolution of drug resistance.
Collapse
Affiliation(s)
- C. Brandon Ogbunugafor
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - C. Scott Wylie
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Ibrahim Diakite
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel M. Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
High prevalence of pfdhfr–pfdhps triple mutations associated with anti-malarial drugs resistance in Plasmodium falciparum isolates seven years after the adoption of sulfadoxine–pyrimethamine in combination with artesunate as first-line treatment in Iran. INFECTION GENETICS AND EVOLUTION 2015; 31:183-9. [DOI: 10.1016/j.meegid.2015.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/15/2014] [Accepted: 01/03/2015] [Indexed: 11/20/2022]
|
8
|
Hopkins Sibley C. Artemisinin resistance: the more we know, the more complicated it appears. J Infect Dis 2014; 211:667-9. [PMID: 25180242 DOI: 10.1093/infdis/jiu469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carol Hopkins Sibley
- WorldWide Antimalarial Resistance Network (WWARN), Department of Genome Sciences, University of Washington, Seattle
| |
Collapse
|
9
|
Sibley CH. Understanding drug resistance in malaria parasites: basic science for public health. Mol Biochem Parasitol 2014; 195:107-14. [PMID: 24927641 DOI: 10.1016/j.molbiopara.2014.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/25/2014] [Accepted: 06/03/2014] [Indexed: 01/09/2023]
Abstract
The worlds of basic scientists and those involved in treating patients and making public health decisions do not always intersect. Yet, assuring that when patients are treated, they are efficiently and completely cured, and that public health decisions are based on solid evidence requires a broad foundation of up to date basic research. Research on the malaria parasite, Plasmodium falciparum provides a useful illustration of the role that basic scientific studies have played in the very long relationship between humans and this deadly parasite. Drugs have always been a principal tool in malaria treatment. The ongoing struggle between evolution of resistance to antimalarials by the parasite and public health responses is used here as an illustration of the key contributions of basic scientists to this long history.
Collapse
Affiliation(s)
- Carol Hopkins Sibley
- World Wide Antimalarial Resistance Network, Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA.
| |
Collapse
|
10
|
Mapping 'partially resistant', 'fully resistant', and 'super resistant' malaria. Trends Parasitol 2013; 29:505-15. [PMID: 24028889 DOI: 10.1016/j.pt.2013.08.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 11/24/2022]
Abstract
Sulfadoxine-pyrimethamine (SP) is used throughout Africa for intermittent preventive treatment (IPT) of malaria, but resistance threatens its efficacy. We found marked regional differences in the genotypes responsible for SP resistance when mapping recent surveys of dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutations. In West Africa, a 'partially resistant' combination of dhfr N51I, N59R, and S108N with dhps A437G predominates, whereas in East Africa the 'fully resistant' combination of dhfr N51I, N59R, and S108N with dhps A437G+K540E is found. There are three East African foci where 'fully resistant' populations have additionally acquired dhps 581G and/or dhfr 164L to become 'super resistant'. SP-IPT in infants and pregnant women is reported to have failed in super resistant areas prompting review of SP-IPT use in affected areas.
Collapse
|
11
|
Abdul-Ghani R, Farag HF, Allam AF. Sulfadoxine-pyrimethamine resistance in Plasmodium falciparum: a zoomed image at the molecular level within a geographic context. Acta Trop 2013; 125:163-90. [PMID: 23131424 DOI: 10.1016/j.actatropica.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Antimalarial chemotherapy is one of the main pillars in the prevention and control of malaria. Following widespread resistance of Plasmodium falciparum to chloroquine, sulfadoxine-pyrimethamine came to the scene as an alternative to the cheap and well-tolerated chloroquine. However, widespread resistance to sulfadoxine-pyrimethamine has been documented. In vivo efficacy tests are the gold standard for assessing drug resistance and treatment failure. However, they have many disadvantages, such as influence of host immunity and drug pharmacokinetics. In vitro tests of antimalarial drug efficacy also have many technical difficulties. Molecular markers of resistance have emerged as epidemiologic tools to investigate antimalarial drug resistance even before becoming clinically evident. Mutations in P. falciparum dihydrofolate reductase and dihydrofolate synthase have been extensively studied as molecular markers for resistance to pyrimethamine and sulfadoxine, respectively. This review highlights the resistance of P. falciparum at the molecular level presenting both supporting and opposing studies on the utility of molecular markers.
Collapse
|
12
|
Sibley CH, Price RN. Monitoring antimalarial drug resistance: Applying lessons learned from the past in a fast-moving present. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:126-33. [PMID: 24533274 DOI: 10.1016/j.ijpddr.2012.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/25/2012] [Accepted: 03/28/2012] [Indexed: 11/19/2022]
Abstract
The need for robust surveillance of antimalarial drugs is more urgent than it has ever been. In the western region of Cambodia, artemisinin resistance has emerged in Plasmodium falciparum and threatens to undermine the efficacy of highly effective artemisinin combination therapies. Although some manfestations of artemisinin tolerance are unique to this class of drug, many of its properties mirror previous experience in understanding and tracking resistance to other antimalarials. In this review we outline the spectrum of approaches that were developed to understand the evolution and spread of antifolate resistance, highlighting the importance of integrating information from different methodologies towards a better understanding of the underlying biologic processes. We consider how to apply our experience in investigating and attempting to contain antifolate resistance to inform our prospective assessment of novel antimalarial resistance patterns and their subsequent spread.
Collapse
Affiliation(s)
- Carol Hopkins Sibley
- WorldWide Antimalarial Resistance Network, Box 355065, University of Washington, Seattle, WA 98195 5065, USA
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia ; Center for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| |
Collapse
|
13
|
Al-Farsi HM, Al-Hashami ZS, Bin Dajem SM, Al-Sheikh AAH, Al-Qahtani A, Beja-Pereira A, Idris MA, Babiker HA. Source of drug resistant Plasmodium falciparum in a potential malaria elimination site in Saudi Arabia. INFECTION GENETICS AND EVOLUTION 2012; 12:1253-9. [PMID: 22709478 DOI: 10.1016/j.meegid.2012.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/12/2012] [Accepted: 03/16/2012] [Indexed: 11/30/2022]
Abstract
A major challenge to the success of malaria control program in Saudi Arabia is the high influx of expatriates and holy visitors from malaria endemic countries. In the present study we examined whether drug resistant parasite genotypes reported in Jazan region, southwest of Saudi Arabia are imported or developed locally. We examined 178 Plasmodium falciparum isolates for alleles of dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr), associated with Sulfadoxine-Pyrimethamine (SP) resistance, and three microsatellites flanking each gene. In addition, we examined a neutral polymorphic gene (Pfg377). We compared the dhfr and dhps haplotypes in Jazan, using network analysis, to an existing similar data set of 94 P. falciparum isolates from eastern Sudan. In Jazan, double mutant dhfr allele (51I, 108N) occurred with a prevalence of 33%. The vast majority (99%) of dhps were wild-type alleles. The mean expected heterozygosity (H(e)) of microsatellites around mutant dhfr alleles (H(e)=0.312; n=60) was lower (P ≤ 0.05) than that around the wild-type allele (H(e)=0.834; n=116). Also, the mutant dhfr isolates showed high H(e) for dhps (H(e)=0.80) and the non-drug resistance locus Pfg377 (H(e)=0.63) indicative of selection for mutant dhfr only. The predominant double mutant dhfr haplotype in Jazan (73%), was prevalent among P. falciparum in east Africa. Network analysis suggests the mutant haplotype of dhfr gene was possibly introduced into Jazan from East Africa. The absence of mutations in dhps as well as triple mutant dhfr haplotype associated with SP failure support the current use of SP as a partner with artesunate as a first line therapy in Saudi Arabia. However, the close relationship between the major mutant dhfr haplotype in Sudan and Saudi Arabia, favour the hypothesis of recent migration as a source of the major resistant dhfr lineage. Thus, regular monitoring of the dhfr and dhps haplotypes is of high priority to guard possible importation of high level SP resistant lineages.
Collapse
Affiliation(s)
- Hissa M Al-Farsi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Differences in selective pressure on dhps and dhfr drug resistant mutations in western Kenya. Malar J 2012; 11:77. [PMID: 22439637 PMCID: PMC3338400 DOI: 10.1186/1475-2875-11-77] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/22/2012] [Indexed: 11/23/2022] Open
Abstract
Background Understanding the origin and spread of mutations associated with drug resistance, especially in the context of combination therapy, will help guide strategies to halt and prevent the emergence of resistance. Unfortunately, studies have assessed these complex processes when resistance is already highly prevalent. Even further, information on the evolutionary dynamics leading to multidrug-resistant parasites is scattered and limited to areas with low or seasonal malaria transmission. This study describes the dynamics of strong selection for mutations conferring resistance against sulphadoxine-pyrimethamine (SP), a combination therapy, in western Kenya between 1992 and 1999, just before SP became first-line therapy (1999). Importantly, the study is based on longitudinal data, which allows for a comprehensive analysis that contrasts with previous cross-sectional studies carried out in other endemic regions. Methods This study used 236 blood samples collected between 1992 and 1999 in the Asembo Bay area of Kenya. Pyrosequencing was used to determine the alleles of dihydrofolate reductase (dhfr) and dihydropterote synthase (dhps) genes. Microsatellite alleles spanning 138 kb around dhfr and dhps, as well as, neutral markers spanning approximately 100 kb on chromosomes 2 and 3 were characterized. Results By 1992, the South-Asian dhfr triple mutant was already spreading, albeit in low frequency, in this holoendemic Kenyan population, prior to the use of SP as a first-line therapy. Additionally, dhfr triple mutant alleles that originated independently from the predominant Southeast Asian lineage were present in the sample set. Likewise, dhps double mutants were already present as early as 1992. There is evidence for soft selective sweeps of two dhfr mutant alleles and the possible emergence of a selective sweep of double mutant dhps alleles between 1992 and 1997. The longitudinal structure of the dataset allowed estimation of selection pressures on various dhfr and dhps mutants relative to each other based on a theoretical model tailored to P. falciparum. The data indicate that drug selection acted differently on the resistant alleles of dhfr and dhps, as evidenced by fitness differences. Thus a combination drug therapy such as SP, by itself, does not appear to select for "multidrug"-resistant parasites in areas with high recombination rate. Conclusions The complexity of these observations emphasizes the importance of population-based studies to evaluate the effects of strong drug selection on Plasmodium falciparum populations.
Collapse
|
15
|
Adeel AA. Drug-resistant malaria in Sudan: A review of evidence and scenarios for the future. Sudan J Paediatr 2012; 12:8-20. [PMID: 27493325 PMCID: PMC4949824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Resistance of falciparum malaria to chloroquine (CQ) has gradually emerged in the late 1970s, reaching unacceptably high proportions over the following three decades of use as frst line treatment in Sudan. By 2004-2006 CQ was replaced by artemisinin-based combination treatment (ACTs), with combination of sulfadoxine-pyrimethamine (SP) and artesunate (AS) deployed as frst-line drug against falciparum malaria. The present review follows the evolution of CQ resistance in Sudan and the available evidence on the response to the present frst-line drugs. The fndings in Sudan are analyzed in view of developments in other African countries and at the global level, with the hope of elucidating possible scenarios for the course of events in the Sudan. Northern Sudan has been one of the areas where signals indicating the emergence of drug resistant malaria parasites have frst originated in Africa. The pattern of low endemicity and low population immunity to malaria, together with massive deployment and improper use of anti-malarial drugs created the ideal environment for creation of anti-malarial drug resistance. Such an environment existed in certain areas in South East Asia that had historically been the epicenter from which falciparum malaria parasites resistant to pyrimethamine and chloroquine have spread to the rest of the world. The alarming recent reports about the emergence of artemisinin (ART) resistance in South East Asia have lead WHO to take specifc measures for prevention, early detection and containment of drug resistance. What could be applicable in Sudan in these measures is discussed here.
Collapse
Affiliation(s)
- Ahmed Awad Adeel
- Department of Microbiology , King Khalid university hospital and College of Medicine, King Saud University, Riyadh , Saudi Arabia
| |
Collapse
|
16
|
Saito-Nakano Y, Tanabe K, Mita T. Identification of pyrimethamine- and chloroquine-resistant Plasmodium falciparum in Africa between 1984 and 1998: genotyping of archive blood samples. Malar J 2011; 10:388. [PMID: 22208458 PMCID: PMC3309963 DOI: 10.1186/1475-2875-10-388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the geographical distribution of drug resistance of Plasmodium falciparum is important for the effective treatment of malaria. Drug resistance has previously been inferred mainly from records of clinical resistance. However, clinical resistance is not always consistent with the parasite's genetic resistance. Thus, molecular identification of the parasite's drug resistance is required. In Africa, clinical resistance to pyrimethamine (Pyr) and chloroquine (CQ) was evident before 1980 but few studies investigating the genetic resistance to these drugs were conducted before the late 1990s. In this study, genotyping of genes involved in resistance to Pyr and CQ was performed using archive blood samples from Africa between 1984 and 1998. METHODS Parasite DNA was extracted from P. falciparum-infected blood smears collected from travellers returning to Japan from Africa between 1984 and 1998. Genotypes of the dihydrofolate reductase gene (dhfr) and CQ-resistance transporter gene (pfcrt) were determined by polymerase chain reaction amplification and sequencing. RESULTS Genotyping of dhfr and pfcrt was successful in 59 and 80 samples, respectively. One wild-type and seven mutant dhfr genotypes were identified. Three dhfr genotypes lacking the S108N mutation (NRSI, ICSI, IRSI; amino acids at positions 51, 59, 108, and 164 with mutations underlined) were highly prevalent before 1994 but reduced after 1995, accompanied by an increase in genotypes with the S108N mutation. The dhfr IRNI genotype was first identified in Nigeria in 1991 in the present samples, and its frequency gradually increased. However, two double mutants (ICNI and NRNI), the latter of which was exclusively found in West Africa, were more frequent than the IRNI genotype. Only two pfcrt genotypes were found, the wild-type and a Southeast Asian type (CVIET; amino acids at positions 72-76 with mutations underlined). The CVIET genotype was already present as early as 1984 in Tanzania and Nigeria, and appeared throughout Africa between 1984 and 1998. CONCLUSIONS This study is the first to report the molecular identification of Pyr- and CQ-resistant genotypes of P. falciparum in Africa before 1990. Genotyping of dhfr and pfcrt using archive samples has revealed new aspects of the evolutionary history of Pyr- and CQ-resistant parasites in Africa.
Collapse
Affiliation(s)
- Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | | | | |
Collapse
|
17
|
Malisa AL, Pearce RJ, Mutayoba BM, Abdullah S, Mshinda H, Kachur PS, Bloland P, Roper C. The evolution of pyrimethamine resistant dhfr in Plasmodium falciparum of south-eastern Tanzania: comparing selection under SP alone vs SP+artesunate combination. Malar J 2011; 10:317. [PMID: 22029848 PMCID: PMC3213132 DOI: 10.1186/1475-2875-10-317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 10/26/2011] [Indexed: 11/15/2022] Open
Abstract
Background Sulphadoxine-pyrimethamine (SP) resistance is now widespread throughout east and southern Africa and artemisinin compounds in combination with synthetic drugs (ACT) are recommended as replacement treatments by the World Health Organization (WHO). As well as high cure rates, ACT has been shown to slow the development of resistance to the partner drug in areas of low to moderate transmission. This study looked for evidence of protection of the partner drug in a high transmission African context. The evaluation was part of large combination therapy pilot implementation programme in Tanzania, the Interdisciplinary Monitoring Programme for Antimalarial Combination Therapy (IMPACT-TZ) Methods The growth of resistant dhfr in a parasite population where SP Monotherapy was the first-line treatment was measured for four years (2002-2006), and compared with the development of resistant dhfr in a neighbouring population where SP + artesunate (SP+AS) was used as the first-line treatment during the same interval. The effect of the differing treatment regimes on the emergence of resistance was addressed in three ways. First, by looking at the rate of increase in frequency of pre-existing mutant dhfr alleles under monotherapy and combination therapy. Second, by examining whether de-novo mutant alleles emerged under either treatment. Finally, by measuring diversity at three dhfr flanking microsatellite loci upstream of the dhfr gene. Results The reduction in SP selection pressure resulting from the adoption of ACT slowed the rate of increase in the frequency of the triple mutant resistant dhfr allele. Comparing between the two populations, the higher levels of genetic diversity in sequence flanking the dhfr triple mutant allele in the population where the ACT regimen had been used indicates the reduction in SP selection pressure arising from combination therapy. Conclusion The study demonstrated that, alleles containing two mutations at the dhfr have arisen at least four times independently while those containing triple mutant dhfr arose only once, and were found carrying a single unique Asian-type flanking sequence, which apparently drives the spread of pyrimethamine resistance associated dhfr alleles in east Africa. SP+AS is not recommended for use in areas where SP cure rates are less than 80% but this study reports an observed principle of combination protection from an area where pyrimethamine resistance was already high.
Collapse
Affiliation(s)
- Allen L Malisa
- Sokoine University of Agriculture, Department of Biological Sciences, Faculty of Science, Box 3038, Morogoro, Tanzania.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mita T, Venkatesan M, Ohashi J, Culleton R, Takahashi N, Tsukahara T, Ndounga M, Dysoley L, Endo H, Hombhanje F, Ferreira MU, Plowe CV, Tanabe K. Limited geographical origin and global spread of sulfadoxine-resistant dhps alleles in Plasmodium falciparum populations. J Infect Dis 2011; 204:1980-8. [PMID: 22021623 DOI: 10.1093/infdis/jir664] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Plasmodium falciparum malaria resistant to chloroquine and pyrimethamine originated in limited foci and migrated to Africa. It remains unresolved whether P. falciparum resistance to sulfadoxine, which is conferred by mutations in dihydropteroate synthase (DHPS), evolved following a similar pattern. METHODS The dhps locus of 893 P. falciparum isolates from 12 countries in Asia, the Pacific Islands, Africa, and South America was sequenced. Haplotypes of 6 microsatellite loci flanking the dhps locus were determined to define the genetic relationships among sulfadoxine-resistant lineages. RESULTS Six distinct sulfadoxine-resistant lineages were identified. Highly resistant lineages appear to have originated only in Southeast Asia and South America. Two resistant lineages found throughout Southeast Asia have been introduced to East Africa, where they appear to have spread. CONCLUSIONS The infrequent selection of parasites highly resistant to sulfadoxine and the subsequent migration of resistant lineages from Asia to Africa are similar to the patterns observed in chloroquine and pyrimethamine resistance. These findings strongly suggest that the global migration of resistant parasites has played a decisive role in the establishment of drug-resistant P. falciparum parasites, and that similar patterns may be anticipated for the spread of artemisinin resistance.
Collapse
Affiliation(s)
- Toshihiro Mita
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Akala HM, Eyase FL, Cheruiyot AC, Omondi AA, Ogutu BR, Waters NC, Johnson JD, Polhemus ME, Schnabel DC, Walsh DS. Antimalarial drug sensitivity profile of western Kenya Plasmodium falciparum field isolates determined by a SYBR Green I in vitro assay and molecular analysis. Am J Trop Med Hyg 2011; 85:34-41. [PMID: 21734121 DOI: 10.4269/ajtmh.2011.10-0674] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In vitro drug sensitivity and molecular analyses of Plasmodium falciparum track drug resistance. DNA-binding fluorescent dyes like SYBR Green I may allow field laboratories, proximal to P. falciparum collection sites, to conduct drug assays. In 2007-2008, we assayed 121 P. falciparum field isolates from western Kenya for 50% inhibitory concentrations (IC(50)) against 6 antimalarial drugs using a SYBR Green I in vitro assay: 91 immediate ex vivo (IEV) and 30 culture-adapted, along with P. falciparum reference clones D6 (chloroquine [CQ] sensitive) and W2 (CQ resistant). We also assessed P. falciparum mdr1 (Pfmdr1) copy number and single nucleotide polymorphisms (SNPs) at four codons. The IC(50)s for IEV and culture-adapted P. falciparum isolates were similar, and approximated historical IC(50)s. For Pfmdr1, mean copy number was 1, with SNPs common at codons 86 and 184. The SYBR Green I assay adapted well to our field-based laboratory, for both IEV and culture-adapted P. falciparum, warranting continued use.
Collapse
Affiliation(s)
- Hoseah M Akala
- Global Emerging Infections Surveillance (GEIS) Program, United States Army Medical Research Unit-Kenya (USAMRU-K), Kenya Medical Research Institute (KEMRI)-Walter Reed Project, Kisumu and Nairobi, Kenya.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Intermittent preventive treatment of infants (IPTi) with sulphadoxine pyrimethamine (SP) is recommended as an additional malaria control intervention in high transmission areas of sub-Saharan Africa, provided its protective efficacy is not compromised by SP resistance. A significant obstacle in implementing SP-IPTi, is in establishing the degree of resistance in an area. Since SP monotherapy is discontinued, no contemporary measures of in vivo efficacy can be made, so the World Health Organisation has recommended a cut-off based upon molecular markers, stating that SP-IPTi should not be implemented when the prevalence of the dhps 540E mutation among infections exceeds 50%. We created a geo-referenced database of SP resistance markers in Africa from published literature. By selecting surveys of malaria infected blood samples conducted since 2004 we have mapped the contemporary prevalence of dhps 540E. Additional maps are freely available in interactive form at http://www.drugresistancemaps.org/ipti/. Eight countries in East Africa are classified as unsuitable for SP-IPTi when data are considered at a national level. Fourteen countries in Central and West Africa were classified as suitable while seven countries had no available contemporary data to guide policy. There are clear deficiencies in molecular surveillance data coverage. We discuss requirements for ongoing surveillance of SP resistance markers in support of the use of SP-IPTi.
Collapse
|
21
|
Malisa A, Pearce R, Abdullah S, Mutayoba B, Mshinda H, Kachur P, Bloland P, Roper C. Molecular monitoring of resistant dhfr and dhps allelic haplotypes in Morogoro and Mvomero districts in south eastern Tanzania. Afr Health Sci 2011; 11:142-150. [PMID: 21857842 PMCID: PMC3158517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Resistance to the antimalarial drug sulfadoxine-pyrimethamine (SP) emerged in Plasmodium falciparum from Asia in the 1960s and subsequently spread to Africa. In Tanzania, SP use as a national policy began in 1983 as a second line to chloroquine (CQ) for the treatment of uncomplicated malaria, until August 2001 when it was approved to replace CQ as a national first line. OBJECTIVE The present study assesses the frequency of resistant dhfr and dhps alleles in Morogoro-Mvomero district in south eastern Tanzania and contrast their rate of change during 17 years of SP second line use against five years of SP first line use. METHODOLOGY Cross sectional surveys of asymptomatic infections were carried out at the end of rainy season during July-September of 2000, when SP was the national second line (CQ was the first line) and 2006 when SP was the national first line antimalarial treatment. Genetic analysis of SP resistance genes was carried out on 1,044 asymptomatic infections and the effect of the two policies on SP evolution compared. RESULTS The frequency of the most resistant allele, the double dhps-triple dhfr mutant genotype, increased by only 1% during 17 years of SP second line use, but there was a dramatic increase by 45% during five years of SP first line use. CONCLUSION We conclude that National policy change from second line to first line SP, brought about an immediate shift in treatment practice and this in turn had a highly significant impact on drug pressure. The use of SP in specific programs only such as intermittent preventive treatment of infants (IPTi) and intermittent preventive treatment of pregnant women (IPTp) will most likely reduce substantially SP selection pressure and the SP resistance alleles alike.
Collapse
Affiliation(s)
- A Malisa
- Sokoine University of Agriculture, Department of Biological Sciences, Faculty of Science, Morogoro, Tanzania.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lumb V, Das MK, Singh N, Dev V, Khan W, Sharma YD. Multiple origins of Plasmodium falciparum dihydropteroate synthetase mutant alleles associated with sulfadoxine resistance in India. Antimicrob Agents Chemother 2011; 55:2813-7. [PMID: 21422213 PMCID: PMC3101454 DOI: 10.1128/aac.01151-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/14/2010] [Accepted: 03/10/2011] [Indexed: 11/20/2022] Open
Abstract
With the spread of chloroquine (CQ)-resistant malaria in India, sulfadoxine-pyrimethamine (SP) alone or in combination with artesunate is used as an alternative antimalarial drug. Due to continuous drug pressure, the Plasmodium falciparum parasite is exhibiting resistance to antifolates because of mutations in candidate genes dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps). Our earlier study on flanking microsatellite markers of dhfr mutant alleles from India had shown a single origin of the pyrimethamine resistance and some minor haplotypes which shared haplotypes with Southeast Asian (Thailand) strains. In the present study, we have analyzed 193 of these Indian P. falciparum isolates for 15 microsatellite loci around dhps to investigate the genetic lineages of the mutant dhps alleles in different parts of the country. Eighty-one of these samples had mutant dhps alleles, of which 62 were from Andaman and Nicobar Islands and the remaining 19 were from mainland India. Of 112 isolates with a wild-type dhps allele, 109 were from mainland India and only 3 were from Andaman and Nicobar Islands. Consistent with the model of selection, the mean expected heterozygosity (H(e)) around mutant dhps alleles (H(e) = 0.55; n = 81) associated with sulfadoxine resistance was lower (P ≤ 0.05) than the mean H(e) around the wild-type dhps allele (H(e) = 0.80; n = 112). There was more genetic diversity in flanking microsatellites of dhps than dhfr among these isolates, which confirms the assertion that dhps mutations are at a very early stage of fixation in the parasite population. Microsatellite haplotypes around various mutant dhps alleles suggest that the resistant dhps alleles have multiple independent origins in India, especially in Andaman and Nicobar Islands. Determining the genetic lineages of the resistant dhps alleles on Andaman and Nicobar Islands and mainland India is significant, given the role of Asia in the intercontinental spread of chloroquine- and pyrimethamine-resistant parasites in the past.
Collapse
Affiliation(s)
- Vanshika Lumb
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Manoj K. Das
- National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110077, India
| | - Neeru Singh
- Regional Medical Research Center for Tribals, Jabalpur, Madhya Pradesh, India
| | - Vas Dev
- National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110077, India
| | - Wajihullah Khan
- Department of Zoology, Aligarh Muslim University, Aligarh (U.P.), India
| | - Yagya D. Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
23
|
Induction of antimalaria immunity by pyrimethamine prophylaxis during exposure to sporozoites is curtailed by parasite resistance. Antimicrob Agents Chemother 2011; 55:2760-7. [PMID: 21444698 DOI: 10.1128/aac.01717-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each year, infections with the protozoan parasite Plasmodium falciparum kill 1 million people, mostly children in Africa. Intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine (SP) reduces the incidence of malaria and aims to prevent mortality in infants, children, and pregnant women. There is contradictory evidence as to whether this strategy may generate additional protection against reinfection beyond the limited duration of the intervention. Previous work established that ablation of either liver-stage maturation or subsequent life cycle conversion by causal prophylactic drugs elicits protective immune responses against reinfections when drugs are no longer present. Here we show in the rodent malaria model that pyrimethamine, a component of SP, inhibits liver-stage development in vitro and in vivo, confirming the causal prophylactic activity of pyrimethamine. Repeated exposure to high doses of Plasmodium berghei sporozoites during pyrimethamine prophylaxis induced complete protection in C57BL/6 mice against challenge with high doses of sporozoites delivered intravenously 35 to 199 days later. Immunizations by infectious mosquito bites induced limited, inoculation-dependent protection against subsequent challenge by infected mosquito bites but provided partial protection against experimental cerebral malaria. Short-term pyrimethamine prophylaxis during intravenous transmission of sporozoites from a pyrimethamine-resistant strain delayed, but did not prevent, blood-stage infection. Our data provide a rationale for the notion of sustained protective efficacy of IPT based on the capacity of arrested, drug-sensitive liver-stage and/or suppressed blood-stage parasites to mount lasting protection.
Collapse
|
24
|
Alam MT, de Souza DK, Vinayak S, Griffing SM, Poe AC, Duah NO, Ghansah A, Asamoa K, Slutsker L, Wilson MD, Barnwell JW, Udhayakumar V, Koram KA. Selective sweeps and genetic lineages of Plasmodium falciparum drug -resistant alleles in Ghana. J Infect Dis 2011; 203:220-7. [PMID: 21288822 PMCID: PMC3071065 DOI: 10.1093/infdis/jiq038] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In 2005, Ghana adopted artemisinin-based combination therapy (ACT) for primary treatment of falciparum malaria. A comprehensive study of the drug-resistance-associated mutations and their genetic lineages will lead to a better understanding of the evolution of antimalarial drug resistance in this region. METHODS The pfcrt, pfmdr1, dhps, and dhfr mutations associated with chloroquine (CQ) and sulfadoxine-pyrimethamine (SP) resistance and the microsatellite loci flanking these genes were genotyped in Plasmodium falciparum isolates from Ghana. RESULTS The prevalence of mutations associated with both CQ and SP resistance was high in Ghana. However, we observed a decrease in prevalence of the pfcrt K76T mutation in northern Ghana after the change in drug policy from CQ to ACT. Analysis of genetic diversity and differentiation at microsatellite loci flanking all 4 genes indicated that they have been under strong selection, because of CQ and SP use. The triple-mutant pfcrt and dhfr alleles in Ghana were derived from Southeast Asia, whereas the double-mutant dhfr, dhps, and pfmdr1 alleles were of African lineage. CONCLUSION Because of the possible role of pfmdr1 in amodiaquine and mefloquine resistance, demonstrating selection on pfmdr1 and defining lineages of resistant alleles in an African population holds great importance.
Collapse
Affiliation(s)
- Md Tauqeer Alam
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sridaran S, McClintock SK, Syphard LM, Herman KM, Barnwell JW, Udhayakumar V. Anti-folate drug resistance in Africa: meta-analysis of reported dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum parasite populations. Malar J 2010; 9:247. [PMID: 20799995 PMCID: PMC2940896 DOI: 10.1186/1475-2875-9-247] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes of Plasmodium falciparum are associated with resistance to anti-folate drugs, most notably sulphadoxine-pyrimethamine (SP). Molecular studies document the prevalence of these mutations in parasite populations across the African continent. However, there is no systematic review examining the collective epidemiological significance of these studies. This meta-analysis attempts to: 1) summarize genotype frequency data that are critical for molecular surveillance of anti-folate resistance and 2) identify the specific challenges facing the development of future molecular databases. METHODS This review consists of 220 studies published prior to 2009 that report the frequency of select dhfr and dhps mutations in 31 African countries. Maps were created to summarize the location and prevalence of the highly resistant dhfr triple mutant (N51I, C59R, S108N) genotype and dhps double mutant (A437G and K540E) genotype in Africa. A hierarchical mixed effects logistic regression was used to examine the influence of various factors on reported mutant genotype frequency. These factors include: year and location of study, age and clinical status of sampled population, and reporting conventions for mixed genotype data. RESULTS A database consisting of dhfr and dhps mutant genotype frequencies from all African studies that met selection criteria was created for this analysis. The map illustrates particularly high prevalence of both the dhfr triple and dhps double mutant genotypes along the Kenya-Tanzania border and Malawi. The regression model shows a statistically significant increase in the prevalence of both the dhfr triple and dhps double mutant genotypes in Africa. CONCLUSION Increasing prevalence of the dhfr triple mutant and dhps double mutant genotypes in Africa are consistent with the loss of efficacy of SP for treatment of clinical malaria in most parts of this continent. Continued assessment of the effectiveness of SP for the treatment of clinical malaria and intermittent preventive treatment in pregnancy is needed. The creation of a centralized resistance data network, such as the one proposed by the WorldWide Antimalarial Resistance Network (WWARN), will become a valuable resource for planning timely actions to combat drug resistant malaria.
Collapse
Affiliation(s)
- Sankar Sridaran
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton road NE, Mail Stop D-67 Atlanta, GA, 30333, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Malisa AL, Pearce RJ, Abdulla S, Mshinda H, Kachur PS, Bloland P, Roper C. Drug coverage in treatment of malaria and the consequences for resistance evolution--evidence from the use of sulphadoxine/pyrimethamine. Malar J 2010; 9:190. [PMID: 20602754 PMCID: PMC2908640 DOI: 10.1186/1475-2875-9-190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/05/2010] [Indexed: 11/24/2022] Open
Abstract
Background It is argued that, the efficacy of anti-malarials could be prolonged through policy-mediated reductions in drug pressure, but gathering evidence of the relationship between policy, treatment practice, drug pressure and the evolution of resistance in the field is challenging. Mathematical models indicate that drug coverage is the primary determinant of drug pressure and the driving force behind the evolution of drug resistance. These models show that where the basis of resistance is multigenic, the effects of selection can be moderated by high recombination rates, which disrupt the associations between co-selected resistance genes. Methods To test these predictions, dhfr and dhps frequency changes were measured during 2000-2001 while SP was the second-line treatment and contrasted these with changes during 2001-2002 when SP was used for first-line therapy. Annual cross sectional community surveys carried out before, during and after the policy switch in 2001 were used to collect samples. Genetic analysis of SP resistance genes was carried out on 4,950 Plasmodium falciparum infections and the selection pressure under the two policies compared. Results The influence of policy on the parasite reservoir was profound. The frequency of dhfr and dhps resistance alleles did not change significantly while SP was the recommended second-line treatment, but highly significant changes occurred during the subsequent year after the switch to first line SP. The frequency of the triple mutant dhfr (N51I,C59R,S108N) allele (conferring pyrimethamine resistance) increased by 37% - 63% and the frequency of the double A437G, K540E mutant dhps allele (conferring sulphadoxine resistance) increased 200%-300%. A strong association between these unlinked alleles also emerged, confirming that they are co-selected by SP. Conclusion The national policy change brought about a shift in treatment practice and the resulting increase in coverage had a substantial impact on drug pressure. The selection applied by first-line use is strong enough to overcome recombination pressure and create significant linkage disequilibrium between the unlinked genetic determinants of pyrimethamine and sulphadoxine resistance, showing that recombination is no barrier to the emergence of resistance to combination treatments when they are used as the first-line malaria therapy.
Collapse
Affiliation(s)
- Allen L Malisa
- Department of Biological Sciences, Faculty of Science, Sokoine University of Agriculture, SUA, PO Box 3038, Morogoro, Tanzania
| | | | | | | | | | | | | |
Collapse
|
27
|
Naidoo I, Roper C. Following the path of most resistance: dhps K540E dispersal in African Plasmodium falciparum. Trends Parasitol 2010; 26:447-56. [PMID: 20728060 DOI: 10.1016/j.pt.2010.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 05/07/2010] [Accepted: 05/07/2010] [Indexed: 11/16/2022]
Abstract
Chloroquine resistant malaria (CQR) emerged in East Africa during the late 1970s and then spread westward. A molecular marker only became available in the late 1990s, and by that time CQR had permeated throughout Africa. By contrast, resistance to sulphadoxine-pyrimethamine (SPR) has emerged during an era of molecular surveillance, and the changing prevalence of SPR conferred by point mutations in the dhfr and dhps genes has been recorded in hundreds of sites across Africa. We have collated and mapped reports of the dhps K540E mutation, a uniquely informative marker of SPR, and used these to describe the geography of its dispersal through time. Like CQR, dhps K540E appeared first in East Africa and spread west. We discuss whether there are common principles governing resistance dispersal in Africa and how these might guide surveillance in future.
Collapse
Affiliation(s)
- Inbarani Naidoo
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | |
Collapse
|
28
|
Origins and spread of pfdhfr mutant alleles in Plasmodium falciparum. Acta Trop 2010; 114:166-70. [PMID: 19607799 DOI: 10.1016/j.actatropica.2009.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 06/12/2009] [Accepted: 07/03/2009] [Indexed: 11/24/2022]
Abstract
The emergence and spread of Plasmodium falciparum parasite resistant to sulfadoxine and pyrimethamine (SP) poses a serious public health problem. Resistance is caused by point mutations in dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps), the two key enzymes in the folate biosynthetic pathway. The use of microsatellite markers flanking pfdhfr has recently shown that the invasion of limited resistant lineages may explain the widespread SP resistance in many endemic regions. In Africa, however, multiple indigenous origins of pfdhfr triple mutants have been demonstrated. More new independent lineages and routes of geographical spread of resistance may be found by further molecular evolutionary analyses using samples from various endemic regions. Here, I review recent studies about the history of SP usage and the evolution and spread of resistant lineages while addressing the technical issue of microsatellite analysis.
Collapse
|
29
|
Kheir A, Nwakanma D, Al-Gazali A, Akbarova Y, Al-Saai S, Swedberg G, Babiker HA. Transmission and cross-mating of high-level resistance Plasmodium falciparum dihydrofolate reductase haplotypes in The Gambia. Am J Trop Med Hyg 2010; 82:535-41. [PMID: 20348495 DOI: 10.4269/ajtmh.2010.09-0378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A high-level pyrimethamine resistance Plasmodium falciparum lineage with triple dihydrofolate reductase (dhfr) mutations prevails across Africa. However, additional minority lineages were seen. We examined transmission success of mutant dhfr haplotypes among 22 children in The Gambia and 60 infected Anopheles gambiae mosquitoes fed on their blood. Additional polymorphic genes of the gametocyte-specific protein (pfg377) and merozoite surface protein-1 (MSP-1) were examined. Similarities were seen between pfg377 and MSP-1 alleles in children and mosquitoes and evidence of cross-mating between different parasite genotypes was seen in some infected mosquitoes, reflecting high transmission success of existing clones. With regard to dhfr, 16 haplotypes were seen among the children: 2 carried double mutations and 14 carried triple mutations. However, only nine haplotypes, all with triple mutations, were detected among mosquitoes. A single triple-mutant dhfr haplotype, similar to that in other countries in Africa, predominated among children (42%) and mosquitoes (60%), supporting the hypothesis of migration of this haplotype across Africa. However, evidence of cross-mating between the above haplotypes signifies the role of local evolution.
Collapse
Affiliation(s)
- Amani Kheir
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Vinayak S, Alam MT, Mixson-Hayden T, McCollum AM, Sem R, Shah NK, Lim P, Muth S, Rogers WO, Fandeur T, Barnwell JW, Escalante AA, Wongsrichanalai C, Ariey F, Meshnick SR, Udhayakumar V. Origin and evolution of sulfadoxine resistant Plasmodium falciparum. PLoS Pathog 2010; 6:e1000830. [PMID: 20360965 PMCID: PMC2847944 DOI: 10.1371/journal.ppat.1000830] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 02/22/2010] [Indexed: 11/29/2022] Open
Abstract
The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions. Widespread resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine (SP), the two least expensive and widely available antimalarial drugs, has become a major global public health challenge. It is known that point mutations in Plasmodium falciparum crt, dhfr and dhps genes contribute to resistance to CQ, pyrimethamine and sulfadoxine, respectively. CQ and pyrimethamine resistance spread to Africa and Asia from a few founding mutant lineages originating from the Thailand-Cambodia border. Here, we define the origins of dhps alleles in Cambodia and their relationships to African and South American counterparts. Three different triple mutant alleles including a novel allele comprised of 437G, 540N, and 581G mutations (S436G437N540G581A613) were found in Cambodia as opposed to a single triple mutant allele in South America and two common double mutant alleles in Africa. Microsatellite data suggest strong selection operating on triple mutant alleles as compared to double and single mutants in Cambodia. We report three major independent origins for the double mutants and at least two independent origins for the highly resistant triple mutant dhps alleles in Cambodia. We also show that the resistant dhps alleles in Africa and South America have distinct origins from Cambodia. These results suggest that the evolution and spread of sulfadoxine resistance is different from CQ and pyrimethamine resistance.
Collapse
Affiliation(s)
- Sumiti Vinayak
- Atlanta Research and Education Foundation, Atlanta, Georgia, United States of America
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic Vector Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Md Tauqeer Alam
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic Vector Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tonya Mixson-Hayden
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic Vector Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Andrea M. McCollum
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic Vector Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rithy Sem
- National Malaria Center, Phnom Penh, Cambodia
- US Naval Medical Research Unit No. 2, Jakarta, Indonesia
| | - Naman K. Shah
- Department of Epidemiology, UNC School of Public Health, Chapel Hill, North Carolina, United States of America
| | - Pharath Lim
- Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Sinuon Muth
- National Malaria Center, Phnom Penh, Cambodia
| | | | - Thierry Fandeur
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
| | - John W. Barnwell
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic Vector Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ananias A. Escalante
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | | | - Steven R. Meshnick
- Department of Epidemiology, UNC School of Public Health, Chapel Hill, North Carolina, United States of America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic Vector Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Mackinnon MJ, Li J, Mok S, Kortok MM, Marsh K, Preiser PR, Bozdech Z. Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates. PLoS Pathog 2009; 5:e1000644. [PMID: 19898609 PMCID: PMC2764095 DOI: 10.1371/journal.ppat.1000644] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 10/05/2009] [Indexed: 11/18/2022] Open
Abstract
Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment.
Collapse
|
32
|
Characteristics of genetic hitchhiking around dihydrofolate reductase gene associated with pyrimethamine resistance in Plasmodium falciparum isolates from India. Antimicrob Agents Chemother 2009; 53:5173-80. [PMID: 19786603 DOI: 10.1128/aac.00045-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfadoxine-pyrimethamine (SP) resistance in Plasmodium falciparum has been widespread across continents, causing the major hurdle of controlling malaria. Resistance is encoded mainly by point mutations in P. falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) target genes. To study the origin and evolution of pyrimethamine resistance on the Indian subcontinent, microsatellite markers flanking the pfdhfr gene were mapped. Here we describe the characteristics of genetic hitchhiking around the pfdhfr gene among 190 P. falciparum isolates. These isolates were collected from five different geographical regions of India (Uttar Pradesh, Madhya Pradesh, Assam, Orissa, and Andaman and Nicobar Islands) where malarial transmission rates and levels of drug resistance vary across regions. Among the isolates, we observed a significant reduction in genetic variation in the +/-20-kb vicinity of the mutant pfdhfr alleles due to hitchhiking. This reduction in genetic diversity was more prominent around quadruple pfdhfr alleles (heterozygosity [H(e)] = 0.23) than around double (H(e) = 0.365) and single (H(e) = 0.465) mutant alleles. Asymmetry in the selective sweep flanking the pfdhfr alleles was observed with regional isolates, emphasizing the drug usage with the parasite population. All the pfdhfr alleles share a single microsatellite haplotype and seem to have originated from a single progenitor similar to that of Southeast Asian (Thailand) pfdhfr mutants. Results of the present study also indicate that the emergence of drug-resistant alleles is a recent phenomenon in India compared to Southeast Asian countries.
Collapse
|
33
|
Menegon M, Pearce RJ, Inojosa WO, Pisani V, Abel PM, Matondo A, Bisoffi Z, Majori G, Ord R, Warhurst DC, Roper C, Severini C. Monitoring for multidrug-resistant Plasmodium falciparum isolates and analysis of pyrimethamine resistance evolution in Uige province, Angola. Trop Med Int Health 2009; 14:1251-7. [PMID: 19708897 DOI: 10.1111/j.1365-3156.2009.02369.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To assess the extent of drug resistance in Uige through molecular genetic analysis and to test whether the dhfr triple mutant alleles present in Angola are of southeast Asian origin. METHODS Seventy-one samples of blood from children admitted to the Pediatric Emergency Unit of Uige Provincial Hospital in 2004 were screened for resistance mutations at pfcrt, pfmdr1, pfdhfr, pfdhps and pfATPase6. RESULTS Mutations in pfcrt (codon76), pfmdr1 (codon86), pfdhfr (codons 51, 59, 108) and pfdhps (codons 436, 437) were common. Among the 66 isolates for which we were able to determine complete genetic information 13.7% carried all seven of these mutations. Flanking microsatellite analysis revealed the triple mutant pfdhfr was derived from the southeast Asian lineage, while the N51I+S108N double mutant pfdhfr alleles are a local origin. pfATPase6 mutations were rare and S769N was not found. CONCLUSION The parasite population of Uige Angola has high frequency mutations in pfcrt, dhfr and dhps associated with resistance to chloroquine and sulphadoxine pyrimethamine, reflecting past reliance on these two drugs which were the mainstay of treatment until recently. Our findings show that drug resistance in Uige has occurred through a combination of local drug pressure and the regional and international dispersal of resistance mutant alleles.
Collapse
Affiliation(s)
- Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Roepe PD. Molecular and physiologic basis of quinoline drug resistance in Plasmodium falciparum malaria. Future Microbiol 2009; 4:441-55. [PMID: 19416013 PMCID: PMC2724744 DOI: 10.2217/fmb.09.15] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
30 years before the discovery of the pfcrt gene, altered cellular drug accumulation in drug-resistant malarial parasites had been well documented. Heme released from catabolized hemoglobin was thought to be a key target for quinoline drugs, and additional modifications to quinoline drug structure in order to improve activity against chloroquine-resistant malaria were performed in a few laboratories. However, parasite cell culture methods were still in their infancy, assays for drug susceptibility were not well standardized, and the power of malarial genetics was decades away. The last 10 years have witnessed explosive progress in elucidation of the biochemistry of chloroquine resistance. This review briefly summarizes that progress, and discusses where additional work is needed.
Collapse
Affiliation(s)
- Paul D Roepe
- Department of Chemistry and Department of Biochemistry, Cellular & Molecular Biology, and Center for Infectious Disease, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
35
|
Mita T, Tanabe K, Kita K. Spread and evolution of Plasmodium falciparum drug resistance. Parasitol Int 2009; 58:201-9. [PMID: 19393762 DOI: 10.1016/j.parint.2009.04.004] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/25/2009] [Accepted: 04/16/2009] [Indexed: 11/19/2022]
Abstract
Worldwide spread of Plasmodium falciparum drug resistance to conventional antimalarials, chloroquine and sulfadoxine/pyrimethamine, has been imposing a serious public health problem in many endemic regions. Recent discovery of drug resistance-associated genes, pfcrt, pfmdr1, dhfr, and dhps, and applications of microsatellite markers flanking the genes have revealed the evolution of parasite resistance to these antimalarials and the geographical spread of drug resistance. Here, we review our recent knowledge of the evolution and spread of parasite resistance to chloroquine and sulfadoxine/pyrimethamine. In both antimalarials, resistance appears to be largely explained by the invasion of limited resistant lineages to many endemic regions. However, multiple, indigenous evolutionary origins of resistant lineages have also been demonstrated. Further molecular evolutionary and population genetic approaches will greatly facilitate our understanding of the evolution and spread of parasite drug resistance, and will contribute to developing strategies for better control of malaria.
Collapse
Affiliation(s)
- Toshihiro Mita
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, School of Medicine, 9-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | |
Collapse
|
36
|
Multiple origins and regional dispersal of resistant dhps in African Plasmodium falciparum malaria. PLoS Med 2009; 6:e1000055. [PMID: 19365539 PMCID: PMC2661256 DOI: 10.1371/journal.pmed.1000055] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 02/13/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although the molecular basis of resistance to a number of common antimalarial drugs is well known, a geographic description of the emergence and dispersal of resistance mutations across Africa has not been attempted. To that end we have characterised the evolutionary origins of antifolate resistance mutations in the dihydropteroate synthase (dhps) gene and mapped their contemporary distribution. METHODS AND FINDINGS We used microsatellite polymorphism flanking the dhps gene to determine which resistance alleles shared common ancestry and found five major lineages each of which had a unique geographical distribution. The extent to which allelic lineages were shared among 20 African Plasmodium falciparum populations revealed five major geographical groupings. Resistance lineages were common to all sites within these regions. The most marked differentiation was between east and west African P. falciparum, in which resistance alleles were not only of different ancestry but also carried different resistance mutations. CONCLUSIONS Resistant dhps has emerged independently in multiple sites in Africa during the past 10-20 years. Our data show the molecular basis of resistance differs between east and west Africa, which is likely to translate into differing antifolate sensitivity. We have also demonstrated that the dispersal patterns of resistance lineages give unique insights into recent parasite migration patterns.
Collapse
|
37
|
Mita T, Tanabe K, Takahashi N, Culleton R, Ndounga M, Dzodzomenyo M, Akhwale WS, Kaneko A, Kobayakawa T. Indigenous evolution of Plasmodium falciparum pyrimethamine resistance multiple times in Africa. J Antimicrob Chemother 2008; 63:252-5. [PMID: 19036751 PMCID: PMC2639266 DOI: 10.1093/jac/dkn482] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Resistance to pyrimethamine in Plasmodium falciparum is conferred by mutations in the gene encoding dihydrofolate reductase (DHFR). It is known that DHFR double mutants have evolved independently in multiple geographic areas, whereas the triple mutant prevalent in Africa appears to have originated in south-east Asia. In this study, we investigated whether other triple mutants may have evolved independently in Africa. METHODS We determined the DHFR genotypes and haplotypes of five microsatellite loci flanking the DHFR locus between 4.49 kb upstream and 1.48 kb downstream of 159 isolates collected from three African countries (Republic of Congo, Ghana and Kenya). RESULTS The CIRNI type of DHFR triple mutant (with mutations underlined at amino acid positions 51, 59 and 108) was predominant in the Republic of Congo (82%) and Ghana (81%) and was the second most prevalent in Kenya (27%), where the CICNI type of DHFR double mutant was dominant. Three distinct microsatellite haplotypes were identified in the DHFR triple mutant. One haplotype was identical to that originating in south-east Asia. The other two haplotypes occurred in Ghana and Kenya, which were unique, previously undescribed and identical to those of the two DHFR double mutants found in the same locations. CONCLUSIONS This study presents strong evidence for the unique, multiple independent evolution of pyrimethamine resistance in Africa. Indigenous evolution of the triple mutant from the double mutant appears to have occurred in a step-wise manner in Kenya and Ghana or in nearby countries in east and west Africa.
Collapse
Affiliation(s)
- Toshihiro Mita
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 9-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|