1
|
Kwan GT, Sanders T, Huang S, Kilaghbian K, Sam C, Wang J, Weihrauch K, Wilson RW, Fangue NA. Impacts of ash-induced environmental alkalinization on fish physiology, and their implications to wildfire-scarred watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176040. [PMID: 39245385 DOI: 10.1016/j.scitotenv.2024.176040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/04/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Changes in land use, a warming climate and increased drought have amplified wildfire frequency and magnitude globally. Subsequent rainfall in wildfire-scarred watersheds washes ash into aquatic systems, increasing water pH and exposing organisms to environmental alkalinization. In this study, 15 or 20 °C-acclimated Chinook salmon (Oncorhynchus tshawytscha) yearlings were exposed to an environmentally-relevant ash concentration (0.25 % w/v), increasing water pH from ∼8.1 to ∼9.2. Salmon experienced significant disturbance to blood plasma pH (pHe) and red blood cell intracellular pH (RBC pHi) within 1 h, but recovered within 24 h. Impacts on plasma ion concentrations were relatively mild, and plasma glucose increased by 2- to 4-fold at both temperatures. Temperature-specific differences were observed: 20 °C salmon recovered their pHe more rapidly, perhaps facilitated by higher basal metabolism and anaerobic metabolic H+ production. Additionally, 20 °C salmon experienced dramatically greater spikes in plasma total ammonia, [NH3] and [NH4+] after 1 h of exposure that decreased over time, whereas 15 °C salmon experienced a gradual nitrogenous waste accumulation. Despite pHe and RBC pHi recovery and non-lethal nitrogenous waste levels, we observed 20 % and 33 % mortality in 15 and 20 °C treatments within 12 h of exposure, respectively. The mortalities cannot be explained by high water pH alone, nor was it likely to be singularly attributable to a heavy metal or organic compound released from ash input. This demonstrates post-wildfire ash input can induce lethal yet previously unexplored physiological disturbances in fish, and further highlights the complex interaction with warmer temperatures typical of wildfire-scarred landscapes.
Collapse
Affiliation(s)
- Garfield T Kwan
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Trystan Sanders
- Biosciences Department, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sammuel Huang
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Kristen Kilaghbian
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Cameron Sam
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Junhan Wang
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Kelly Weihrauch
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Rod W Wilson
- Biosciences Department, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|
2
|
Makri V, Giantsis IA, Nathanailides C, Feidantsis K, Antonopoulou E, Theodorou JA, Michaelidis B. Seasonal energy investment and metabolic patterns in a farmed fish. J Therm Biol 2024; 123:103894. [PMID: 38879912 DOI: 10.1016/j.jtherbio.2024.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The present research focuses on the seasonal changes in the energy content and metabolic patterns of red porgy (Pagrus pagrus) sampled in a fish farm in North Evoikos Gulf (Greece). The study was designed in an effort to evaluate the influence of seasonality in several physiological feauteres of high commercial importance that may affect feed intake and growth. We determined glycogen, lipids and proteins levels, and cellular energy allocation (CEA) as a valuable marker of exposure to stress, which integrates available energy (Ea) and energy consumption (Ec). Metabolic patterns and aerobic oxidation potential were based on the determination of glucose transporter (GLU), carnitine transporter (CTP), L-lactate dehydrogenase (L-LDH), citrate synthase (CS), cytochrome C oxidase subunit IV isoform 1 (COX1) and 3-hydroxyacyl CoA dehydrogenase (HOAD) relative gene expression. To integrate metabolic patterns and gene expression, L-LDH, CS, COX and HOAD activities were also determined. For further estimation of biological stores oxidized during seasonal acclimatization, we determined the blood levels of glucose, lipids and lactate. The results indicated seasonal changes in energy content, different patterns in gene expression and reorganization of metabolic patterns during cool acclimatization with increased lipid oxidation. During warm acclimatization, however, energy consumption was mostly based on carbohydrates oxidation. The decrease of Ec and COX1 activity in the warm exposed heart seem to be consistent with the OCLTT hypothesis, suggesting that the heart may be one of the first organs to be limited during seasonal warming. Overall, this study has profiled changes in energetics and metabolic patterns occurring at annual temperatures at which P. pagrus is currently farmed, suggesting that this species is living at the upper edge of their thermal window, at least during summer.
Collapse
Affiliation(s)
- Vasiliki Makri
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | | | | | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, GR-26504, Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| |
Collapse
|
3
|
Collar DC, Hobbs TJ, Thompson JS. Scaling of fast-start performance and its thermal dependence in mummichog Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2024; 104:611-623. [PMID: 37942892 DOI: 10.1111/jfb.15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Fast-start predator-escape performance and its sensitivity to temperature (24, 30, and 36°C) were evaluated in mummichog Fundulus heteroclitus across a range of body sizes spanning YOY to adult (35-68 mm standard length). Mummichogs exhibit isometry of body dimensions and areas of the dorsal and anal fins but negative allometry of the caudal fin area. These scaling relationships are consistent with observed decreases in fast-start angular velocities with increasing body size. Linear velocity, on the contrary, does not vary with size, and both large and small mummichogs are capable of traversing similar distances in a given amount of time. In addition, temperature influences fast-start performance in similar ways over the size range, though the magnitude of the effect varies with size for some performance measures. In general, fast-start performance increases with test temperature, but mummichogs acclimated to warmer temperatures exhibit lower performance at each test temperature. Altogether, our results suggest that mummichogs across the adult size range may suffer decreases in their predator-escape performance as increasing sea temperatures combine with short-term temperature fluctuations in the estuaries these fish occupy.
Collapse
Affiliation(s)
- David C Collar
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Trevor J Hobbs
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Jessica S Thompson
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| |
Collapse
|
4
|
Gordillo L, Quiroga L, Ray M, Sanabria E. Changes in thermal sensitivity of Rhinella arenarum tadpoles (Anura: Bufonidae) exposed to sublethal concentrations of different pesticide fractions (Lorsban® 75WG). J Therm Biol 2024; 120:103816. [PMID: 38428105 DOI: 10.1016/j.jtherbio.2024.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The intensive use of agrochemicals and the rapid increase of global temperatures have modified the thermal conditions of aquatic environments, thus increasing amphibians' vulnerability to global warming and positioning them at great risk. Commercial formulations of chlorpyrifos (COM) are the pesticides most widely used in agricultural activities, with a high toxic potential on amphibians. However, little is known about the separate effects of the active ingredient (CPF) and adjuvants (AD). We studied the thermal sensitivity at different concentrations and pesticide fractions in Rhinella arenarum tadpoles, on thermal tolerance limits (CTmax = Critical thermal maximum and CTmin = Critical thermal minimum), swimming speed (Ss), Optimum temperature (Top), and Thermal breadth 50 (B50). Our results demonstrate that the pesticide active ingredient, the adjuvants, and the commercial formulation of chlorpyrifos differentially impair the thermal sensitivity of R. arenarum tadpoles. The pesticide fractions affected the heat and the cold tolerance (CTmax and CTmin), depending on the concentrations they were exposed to. The locomotor performance (Ss, Top, and B50) of tadpoles also varied among fractions, treatments, and environmental temperatures. In the context of climate change, the outcomes presented are particularly relevant, as mean temperatures are increasing at unprecedented rates, which suggests that tadpoles inhabiting warming and polluted ponds are currently experiencing deleterious conditions. Considering that larval stages of amphibians are the most susceptible to changing environmental conditions and the alarming predictions about environmental temperatures in the future, it is likely that the synergism between high temperatures and pesticide exposure raise the threat of population deletions in the coming years.
Collapse
Affiliation(s)
- Luciana Gordillo
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Lorena Quiroga
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Maribel Ray
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina.
| | - Eduardo Sanabria
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo. Padre Jorge Contreras 1300. (M5502JMA), Mendoza, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
5
|
Santos N, Domingues I, Oliveira M. The role of temperature on zebrafish ontogenic development and sensitivity to pharmaceuticals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104256. [PMID: 37652315 DOI: 10.1016/j.etap.2023.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study assessed the effects of two emerging environmental pollutants caffeine (CAF) and metformin (METF) on juvenile zebrafish, raised at 22 °C or 27 ºC, after 96 h exposure. The temperature influenced the basal behaviour of unexposed juveniles, with higher swimming activity and a greater percentage of movements at the well edges observed in fish raised at 27 °C. A significant interaction between CAF and temperature was found for behavioural endpoints, but not for AChE activity, associated with neurotoxicity effects. CAF reduced swimming distance, increased erratic swimming, and inhibited AChE activity at 22 ºC, while at 27 ºC, CAF did not affect behaviour but increased AChE. METF exposure at 22 °C decreased swimming distance and increased erratic movements, but at 27 °C no effects were detected. Overall, temperature plays a more important role in the effects induced by CAF than METF.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Grimmelpont M, Milinkovitch T, Dubillot E, Lefrançois C. Individual aerobic performance and anaerobic compensation in a temperate fish during a simulated marine heatwave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160844. [PMID: 36528094 DOI: 10.1016/j.scitotenv.2022.160844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Marine heatwaves (MHWs) are becoming more frequent and intense due to climate change and have strong negative effects on ecosystem. Few studies have reproduced the complex nature of temperature changes of a MHW, while it is suggested that ectotherms may be more vulnerable to rapid changes such as during MHWs. Effects of an experimental MHW were investigated in the golden grey mullet Chelon auratus. Juveniles acclimated to 20 °C were exposed to a rapid 5 °C increase in temperature, followed by a five-day period at 25 °C, before quickly returning to 20°C. Metabolic variables (SMR-standard, MMR-maximum rate, AS-aerobic scope, EPOC-excess post‑oxygen consumption) and critical swimming speed (Ucrit) were measured at different phases of this MHW and after a thermally stable recovery phase. Although the pattern was only significant for the SMR, the aerobic three variables describing aerobic metabolism (SMR, MMR and AS) immediately increased in fish exposed to the acute elevation of temperature, and remained elevated when fish stayed at 25 °C for five days. A similar increase of these metabolic variables was observed for fish that were progressively acclimated to 25 °C. This suggests that temperature increases contribute to increases in metabolism; however, the acute nature of the MHW had no influence. At the end of the MHW, the SMR remained elevated, suggesting an additional cost of obligatory activities due to the extreme event. In parallel, Ucrit did not vary regardless of the thermal conditions. Concerning EPOC, it significantly increased only when fish were acutely exposed to 25 °C. This strongly suggests that fish may buffer the effects of acute changes in temperature by shifting to anaerobic metabolism. Globally, this species appears able to cope with this MHW, but that's without taking into consideration future projections describing an increase in both intensity and frequency of such events, as well as other stressors like pollution or hypoxia.
Collapse
Affiliation(s)
- Margot Grimmelpont
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| | - Thomas Milinkovitch
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| | - Emmanuel Dubillot
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| | - Christel Lefrançois
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| |
Collapse
|
7
|
Cominassi L, Ressel KN, Brooking AA, Marbacher P, Ransdell-Green EC, O'Brien KM. Metabolic rate increases with acclimation temperature and is associated with mitochondrial function in some tissues of threespine stickleback. J Exp Biol 2022; 225:jeb244659. [PMID: 36268761 PMCID: PMC9687547 DOI: 10.1242/jeb.244659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022]
Abstract
The metabolic rate (ṀO2) of eurythermal fishes changes in response to temperature, yet it is unclear how changes in mitochondrial function contribute to changes in ṀO2. We hypothesized that ṀO2 would increase with acclimation temperature in the threespine stickleback (Gasterosteus aculeatus) in parallel with metabolic remodeling at the cellular level but that changes in metabolism in some tissues, such as liver, would contribute more to changes in ṀO2 than others. Threespine stickleback were acclimated to 5, 12 and 20°C for 7 to 21 weeks. At each temperature, standard and maximum metabolic rate (SMR and MMR, respectively), and absolute aerobic scope (AAS) were quantified, along with mitochondrial respiration rates in liver, oxidative skeletal and cardiac muscles, and the maximal activity of citrate synthase (CS) and lactate dehydrogenase (LDH) in liver, and oxidative and glycolytic skeletal muscles. SMR, MMR and AAS increased with acclimation temperature, along with rates of mitochondrial phosphorylating respiration in all tissues. Low SMR and MMR at 5°C were associated with low or undetectable rates of mitochondrial complex II activity and a greater reliance on complex I activity in liver, oxidative skeletal muscle and heart. SMR was positively correlated with cytochrome c oxidase (CCO) activity in liver and oxidative muscle, but not mitochondrial proton leak, whereas MMR was positively correlated with CCO activity in liver. Overall, the results suggest that changes in ṀO2 in response to temperature are driven by changes in some aspects of mitochondrial function in some, but not all, tissues of threespine stickleback.
Collapse
Affiliation(s)
- Louise Cominassi
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | - Kirsten N. Ressel
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | - Allison A. Brooking
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | - Patrick Marbacher
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | | | - Kristin M. O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| |
Collapse
|
8
|
Nancollas SJ, Todgham AE. The influence of stochastic temperature fluctuations in shaping the physiological performance of the California mussel, Mytilus californianus. J Exp Biol 2022; 225:276100. [PMID: 35749162 DOI: 10.1242/jeb.243729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/20/2022] [Indexed: 11/20/2022]
Abstract
Climate change is forecasted to increase temperature variability and stochasticity. Most of our understanding of thermal physiology of intertidal organisms has come from laboratory experiments that acclimate organisms to submerged conditions and steady-state increases in temperatures. For organisms experiencing the ebb and flow of tides with unpredictable low tide aerial temperatures, the reliability of reported tolerances and thus predicted responses to climate change requires incorporation of environmental complexity into empirical studies. Using the mussel Mytilus californianus, our study examined how stochasticity of the thermal regime influences physiological performance. Mussels were acclimated to either submerged conditions or a tidal cycle that included either predictable, unpredictable or no thermal stress during daytime low tide. Physiological performance was measured through anaerobic metabolism, energy stores and cellular stress mechanisms just before low tide, and cardiac responses during a thermal ramp. Both air exposure and stochasticity of temperature change were important in determining thermal performance. Glycogen content was highest in the mussels from the unpredictable treatment, but there was no difference in the expression of heat shock proteins between thermal treatments, suggesting that mussels prioritise energy reserves to deal with unpredictable low tide conditions. Mussels exposed to fluctuating thermal regimes had lower gill anaerobic metabolism, which could reflect increased metabolic capacity. Our results suggest that while thermal magnitude plays an important role in shaping physiological performance, other key elements of the intertidal environment complexity such as stochasticity, thermal variability, and thermal history are also important considerations for determining how species will respond to climate warming.
Collapse
Affiliation(s)
- Sarah J Nancollas
- Department of Animal Science, University of California Davis, Davis, CA USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, Davis, CA USA
| |
Collapse
|
9
|
Swimming behavior of emigrating Chinook Salmon smolts. PLoS One 2022; 17:e0263972. [PMID: 35290382 PMCID: PMC8923499 DOI: 10.1371/journal.pone.0263972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Swimming behavior of Chinook Salmon (Oncorhynchus tshawytscha) smolts affects transit time, route selection and survival in complex aquatic ecosystems. Behavior quantified at the river reach and junction scale is of particular importance for route selection and predator avoidance, though few studies have developed field-based approaches for quantifying swimming behavior of juvenile migratory fishes at this fine spatial scale. Two-dimensional acoustic fish telemetry at a river junction was combined with a three-dimensional hydrodynamic model to estimate in situ emigration swimming behavior of federally-threatened juvenile Chinook salmon smolts. Fish velocity over ground was estimated from telemetry, while the hydrodynamic model supplied simultaneous, colocated water velocities, with swimming velocity defined by the vector difference of the two velocities. Resulting swimming speeds were centered around 2 body lengths/second, and included distinct behaviors of positive rheotaxis, negative rheotaxis, lateral swimming, and passive transport. Lateral movement increased during the day, and positive rheotaxis increased in response to local hydrodynamic velocities. Swim velocity estimates were sensitive to the combination of vertical shear in water velocities and vertical distribution of fish.
Collapse
|
10
|
Ressel KN, Cominassi L, Sarrimanolis J, O’Brien KM. Aerobic scope is not maintained at low temperature and is associated with cardiac aerobic capacity in the three-spined stickleback Gasterosteus aculeatus. JOURNAL OF FISH BIOLOGY 2022; 100:444-453. [PMID: 34816430 PMCID: PMC8881366 DOI: 10.1111/jfb.14955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Metabolic thermal plasticity is central to the survival of fishes in a changing environment. The eurythermal three-spined stickleback Gasterosteus aculeatus displays thermal plasticity at the cellular level with an increase in the activity of key metabolic enzymes in response to cold acclimation. Nonetheless, it is unknown if these changes are sufficient to completely compensate for the depressive effects of cold temperature on whole organismal metabolic rate (ṀO2 ). The authors hypothesized that as a cold-tolerant, eurythermal fish, absolute aerobic scope (AAS), the difference between the maximum metabolic rate (MMR) and standard metabolic rate (SMR), would be maintained in G. aculeatus following acclimation to a range of temperatures that span its habitat temperatures. To test this hypothesis, G. aculeatus were acclimated to 5, 12 and 20°C for 20-32 weeks, and SMR, MMR and aerobic scope (AS) were quantified at each acclimation temperature. The maximal activity of citrate synthase (CS), a marker enzyme of aerobic metabolism, was also quantified in heart ventricles to determine if cardiac aerobic capacity is associated with AS at these temperatures. SMR increased with acclimation temperature and was significantly different among all three temperature groups. MMR was similar between animals at 5 and 12°C and between animals at 12 and 20°C but was 2.6-fold lower in fish at 5°C compared with those at 20°C, resulting in a lower AAS in fish at 5°C compared with those at 12 and 20°C. Correlated with a higher AAS in animals acclimated to 12 and 20°C was a larger relative ventricular mass and higher CS activity per 100 g body mass compared with animals at 5°C. Together, the results indicate that despite their eurythermal nature, AS is not maintained at low temperature but is associated with cardiac aerobic metabolic capacity.
Collapse
Affiliation(s)
- Kirsten N. Ressel
- University of Alaska, Fairbanks, Institute of Arctic Biology, Fairbanks, Alaska, U.S.A
| | - Louise Cominassi
- University of Alaska, Fairbanks, Institute of Arctic Biology, Fairbanks, Alaska, U.S.A
| | - Jon Sarrimanolis
- University of Alaska, Fairbanks, Institute of Arctic Biology, Fairbanks, Alaska, U.S.A
| | - Kristin M. O’Brien
- University of Alaska, Fairbanks, Institute of Arctic Biology, Fairbanks, Alaska, U.S.A
| |
Collapse
|
11
|
Effects of early low temperature exposure on the growth, glycolipid metabolism and growth hormone (gh) gene methylation in the late stage of Chinese perch (Siniperca chuatsi). Comp Biochem Physiol B Biochem Mol Biol 2021; 259:110705. [PMID: 34958964 DOI: 10.1016/j.cbpb.2021.110705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022]
Abstract
Temperature is an important factor affecting the early development, growth and physiology of fish, as well as on aspects of feeding and metabolism. Here, we investigated the impact of low temperature on the growth, glycolipid metabolism and growth hormone (gh) gene methylation in the late stage of Chinese perch (Siniperca chuatsi). Chinese perch larvae were exposed to temperatures with 21 °C (low temperature group (LT)) and 25 °C (control group) for 7 days, and then the LT group was slowly heated to 25 °C and raised at this temperature for two months. Results indicated that the LT group exhibited significantly lower growth rate and weight gain rate than the control group (p < 0.05), but no obvious food intake (FI) were detected yet between LT group and control group. The larvae exposed at 21 °C relative to the 25 °C group had significant decreased transcript levels of GH-IGF axis genes (gh, igf1 and igf2) in Chinese perch juvenile (p < 0.05). Further analysis of the DNA methylation levels of gh showed that the LT group had higher at the CpG sites of -3029 and - 3032 than the control group in larvae (p < 0.05), whereas the DNA methylation levels at CpG sites of -2982 and - 3039 of gh were significantly lower compared with the control group in juveniles (p < 0.05). In addition, the plasma glucose was significantly increased in the LT group (p < 0.05), suggesting the metabolism of blood glucose slowed at low temperature. In larvae, the expressions of glycolipid metabolism genes (ins-ra and ins-rb) in LT group were significantly up-regulated compared to control group in larvae (p < 0.05), while down-regulated in juveniles (p < 0.05). The expression level of ucp2 mRNA was continuously up-regulated under low temperature stress. All these data demonstrate that early exposure to low temperature affected the growth and glycolipid metabolism of Chinese perch.
Collapse
|
12
|
Liao ML, Li GY, Wang J, Marshall DJ, Hui TY, Ma SY, Zhang YM, Helmuth B, Dong YW. Physiological determinants of biogeography: The importance of metabolic depression to heat tolerance. GLOBAL CHANGE BIOLOGY 2021; 27:2561-2579. [PMID: 33666308 DOI: 10.1111/gcb.15578] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
A quantitative understanding of physiological thermal responses is vital for forecasting species distributional shifts in response to climate change. Many studies have focused on metabolic rate as a global metric for analyzing the sublethal effects of changing environments on physiology. Thermal performance curves (TPCs) have been suggested as a viable analytical framework, but standard TPCs may not fully capture physiological responses, due in part to failure to consider the process of metabolic depression. We derived a model based on the nonlinear regression of biological temperature-dependent rate processes and built a heart rate data set for 26 species of intertidal molluscs distributed from 33°S to ~40°N. We then calculated physiological thermal performance limits with continuous heating using T 1 / 2 H , the temperature at which heart rate is decreased to 50% of the maximal rate, as a more realistic measure of upper thermal limits. Results indicate that heat-induced metabolic depression of cardiac performance is a common adaptive response that allows tolerance of harsh environments. Furthermore, our model accounted for the high inter-individual variability in the shape of cardiac TPCs. We then used these TPCs to calculate physiological thermal safety margins (pTSM), the difference between the maximal operative temperature (95th percentile of field temperatures) and T 1 / 2 H of each individual. Using pTSMs, we developed a physiological species distribution model (pSDM) to forecast future geographic distributions. pSDM results indicate that climate-induced species range shifts are potentially less severe than predicted by a simple correlative SDM. Species with metabolic depression below the optimum temperature will be more thermal resistant at their warm trailing edges. High intraspecific variability further suggests that models based on species-level vulnerability to environmental change may be problematic. This multi-scale, mechanistic understanding that incorporates metabolic depression and inter-individual variability in thermal response enables better predictions about the relationship between thermal stress and species distributions.
Collapse
Affiliation(s)
- Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Gao-Yang Li
- School of Environment, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Jie Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - David J Marshall
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Tin Yan Hui
- Swire Institute of Marine Science, the University of Hong Kong, HKSAR, China
| | - Shu-Yang Ma
- Fisheries College, Ocean University of China, Qingdao, China
| | - Yi-Min Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Brian Helmuth
- Marine Science Center, Northeastern University, Nahant, MA, USA
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, Nati JJH, Farrell AP. Intraspecific variation in tolerance of warming in fishes. JOURNAL OF FISH BIOLOGY 2021; 98:1536-1555. [PMID: 33216368 DOI: 10.1111/jfb.14620] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 05/12/2023]
Abstract
Intraspecific variation in key traits such as tolerance of warming can have profound effects on ecological and evolutionary processes, notably responses to climate change. The empirical evidence for three primary elements of intraspecific variation in tolerance of warming in fishes is reviewed. The first is purely mechanistic that tolerance varies across life stages and as fishes become mature. The limited evidence indicates strongly that this is the case, possibly because of universal physiological principles. The second is intraspecific variation that is because of phenotypic plasticity, also a mechanistic phenomenon that buffers individuals' sensitivity to negative impacts of global warming in their lifetime, or to some extent through epigenetic effects over successive generations. Although the evidence for plasticity in tolerance to warming is extensive, more work is required to understand underlying mechanisms and to reveal whether there are general patterns. The third element is intraspecific variation based on heritable genetic differences in tolerance, which underlies local adaptation and may define long-term adaptability of a species in the face of ongoing global change. There is clear evidence of local adaptation and some evidence of heritability of tolerance to warming, but the knowledge base is limited with detailed information for only a few model or emblematic species. There is also strong evidence of structured variation in tolerance of warming within species, which may have ecological and evolutionary significance irrespective of whether it reflects plasticity or adaptation. Although the overwhelming consensus is that having broader intraspecific variation in tolerance should reduce species vulnerability to impacts of global warming, there are no sufficient data on fishes to provide insights into particular mechanisms by which this may occur.
Collapse
Affiliation(s)
- David J McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Yangfan Zhang
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| | - Felipe R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, Araraquara, Brazil
| | - Julie J H Nati
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Cano-Barbacil C, Radinger J, Argudo M, Rubio-Gracia F, Vila-Gispert A, García-Berthou E. Key factors explaining critical swimming speed in freshwater fish: a review and statistical analysis for Iberian species. Sci Rep 2020; 10:18947. [PMID: 33144649 PMCID: PMC7609642 DOI: 10.1038/s41598-020-75974-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
Swimming performance is a key feature that mediates fitness and survival in aquatic animals. Dispersal, habitat selection, predator-prey interactions and reproduction are processes that depend on swimming capabilities. Testing the critical swimming speed (Ucrit) of fish is the most straightforward method to assess their prolonged swimming performance. We analysed the contribution of several predictor variables (total body length, experimental water temperature, time step interval between velocity increments, species identity, taxonomic affiliation, native status, body shape and form factor) in explaining the variation of Ucrit, using linear models and random forests. We compiled in total 204 studies testing Ucrit of 35 inland fishes of the Iberian Peninsula, including 17 alien species that are non-native to that region. We found that body length is largely the most important predictor of Ucrit out of the eight tested variables, followed by family, time step interval and species identity. By contrast, form factor, temperature, body shape and native status were less important. Results showed a generally positive relationship between Ucrit and total body length, but regression slopes varied markedly among families and species. By contrast, linear models did not show significant differences between native and alien species. In conclusion, the present study provides a first comprehensive database of Ucrit in Iberian freshwater fish, which can be thus of considerable interest for habitat management and restoration plans. The resulting data represents a sound foundation to assess fish responses to hydrological alteration (e.g. water flow tolerance and dispersal capacities), or to categorize their habitat preferences.
Collapse
Affiliation(s)
- Carlos Cano-Barbacil
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain.
| | - Johannes Radinger
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - María Argudo
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Francesc Rubio-Gracia
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Anna Vila-Gispert
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Emili García-Berthou
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| |
Collapse
|
15
|
The metabolism and swimming performance of sheepshead minnows (Cyprinodon variegatus) following thermal acclimation or acute thermal exposure. J Comp Physiol B 2020; 190:557-568. [PMID: 32671461 DOI: 10.1007/s00360-020-01293-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 10/23/2022]
Abstract
Ectothermic animals are especially susceptible to temperature change, considering that their metabolism and core temperature are linked to the environmental temperature. As global water temperatures continue to increase, so does the need to understand the capacity of organisms to tolerate change. Sheepshead minnows (Cyprinodon variegatus) are the most eurythermic fish species known to date and can tolerate a wide range of environmental temperatures from - 1.9 to 43.0 °C. But little is known about the physiological adjustments that occur when these fish are subjected to acute thermal challenges and long-term thermal acclimation. Minnows were acclimated to 10, 21, or 32 °C for 4 weeks or acutely exposed to 10 and 32 °C and then assessed for swimming performance [maximum sustained swimming velocity (Ucrit), optimum swimming velocity (Uopt)] and metabolic endpoints (extrapolated standard and maximum metabolic rate [SMR, MMR), absolute aerobic scope (AS), and cost of transport (COT)]. Our findings show that the duration of thermal exposure (acute vs. acclimation) did not influence swimming performance. Rather, swimming performance was influenced by the exposure temperature. Swimming performance was statistically similar in fish exposed to 21 or 32 °C (approximately 7.0 BL s-1), but was drastically reduced in fish exposed to 10 °C (approximately 2.0 BL s-1), resulting in a left-skewed performance curve. There was no difference in metabolic end points between fish acutely exposed or acclimated to 10 °C. However, a different pattern was observed in fish exposed to 32 °C. MMR was similar between acutely exposed or acclimated fish, but acclimated fish had a 50% reduction in extrapolated SMR, which increased AS by 25%. However, this enhanced AS was not associated with changes in swimming performance, which opposes the oxygen-capacity limited thermal tolerance concept. Our findings suggest that sheepshead minnows may utilize two distinct acclimation strategies, resulting in different swimming performance and metabolic patterns observed between 10 and 32 °C exposures.
Collapse
|
16
|
Rutherford R, Lister A, Bosker T, Blewett T, Gillio Meina E, Chehade I, Kanagasabesan T, MacLatchy D. Mummichog (Fundulus heteroclitus) are less sensitive to 17α-ethinylestradiol (EE 2) than other common model teleosts: A comparative review of reproductive effects. Gen Comp Endocrinol 2020; 289:113378. [PMID: 31899193 DOI: 10.1016/j.ygcen.2019.113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 12/28/2022]
Abstract
The environmental estrogen 17α-ethinylestradiol (EE2) will depress or completely inhibit egg production in many common model teleosts at low concentrations (≤0.5 ng/L; Runnalls et al., 2015). This inhibition is not seen in the estuarine killifish, or mummichog (Fundulus heteroclitus), even when exposed to 100 ng/L EE2. This relative insensitivity to EE2 exposure indicates species-specific mechanisms for compensating for exogenous estrogenic exposure. This review compares various reproductive responses elicited by EE2 in mummichog to other common model teleosts, such as zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), identifying key endpoints where mummichog differ from other studied fish. For example, EE2 accumulates primarily in the liver/gall bladder of mummichog, which is different than zebrafish and fathead minnow in which accumulation is predominantly in the carcass. Despite causing species-specific differences in fecundity, EE2 has been shown to consistently induce hepatic vitellogenin in males and cause feminization/sex reversal during gonadal differentiation in larval mummichog, similar to other species. In addition, while gonadal steroidogenesis and plasma steroid levels respond to exogenous EE2, it is generally at higher concentrations than observed in other species. In mummichog, production of 17β-estradiol (E2) by full grown ovarian follicles remains high; unlike other teleost models where E2 synthesis decreases as 17α,20β-dihydroxy-4-prenen-3-on levels increase to induce oocyte maturation. New evidence in mummichog indicates some dissimilarity in gonadal steroidogenic gene expression responses compared to gene expression responses in zebrafish and fathead minnow exposed to EE2. The role of ovarian physiology continues to warrant investigation regarding the tolerance of mummichog to exogenous EE2 exposure. Here we present a comprehensive review, highlighting key biological differences in response to EE2 exposure between mummichog and other commonly used model teleosts.
Collapse
Affiliation(s)
- Robert Rutherford
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Andrea Lister
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Thijs Bosker
- Leiden University College/Institute of Environmental Sciences, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands.
| | - Tamzin Blewett
- University of Alberta, Edmonton, AB, 116 St & 85 Ave, T6G 2R3, Canada.
| | | | - Ibrahim Chehade
- New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | | | - Deborah MacLatchy
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
17
|
Collar DC, Thompson JS, Ralston TC, Hobbs TJ. Fast-start escape performance across temperature and salinity gradients in mummichog Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2020; 96:755-767. [PMID: 32010969 DOI: 10.1111/jfb.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Fast-start predator-escape performance of mummichogs Fundulus heteroclitus was tested across field-informed variation in temperature (24, 30 and 36°C) and salinity (2, 12 and 32 ppt). Performance was similar across temperatures and salinities when fish were allowed to acclimate to these conditions. However, when mummichogs experienced acute temperature changes, performance exhibited thermal dependence in two contrasting ways. Fast-start turning rates and linear speeds varied directly with the temperature at which the manoeuvre was executed, but these aspects of performance varied inversely with acclimation temperature, with cool-acclimated fish exhibiting faster starts across test temperatures. Temperature effects were consistent across salinities. These results suggest that while mummichogs increase performance with acute temperature increases, long-term rises in sea temperature may cause these fish to become more susceptible to predation during abrupt cooling events, such as when storm events flood shallow water estuaries with cool rainwater.
Collapse
Affiliation(s)
- David C Collar
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Jessica S Thompson
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Tyler C Ralston
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Trevor J Hobbs
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| |
Collapse
|
18
|
Kulesza A, Leonard EM, McClelland GB. Influence of 96h sub-lethal copper exposure on aerobic scope and recovery from exhaustive exercise in killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105373. [PMID: 31786386 DOI: 10.1016/j.aquatox.2019.105373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Production of industrial effluents have led to increased copper (Cu) pollution of aquatic ecosystems, impacting the physiology of aquatic vertebrates. Past work has shown that Cu exerts its toxicity by disruption ion regulation and/ or increasing oxidative stress. However, it remains unclear how Cu may influence aerobic metabolism and hypoxia tolerance, two possible targets of its toxicity. To address this issue, we exposed freshwater acclimated killifish (F. heteroclitus) to a 96 h Cu exposure at a target concentration of 100 μg L-1. We determined resting oxygen consumption (ṀO2), ṀO2max after exhaustive exercise, and followed ṀO2 for 3 h in post-exercise recovery in water with either no Cu or 100 μg L-1 Cu. We assessed hypoxia tolerance by determining the critical oxygen tension (Pcrit). It was found that killifish exposed to combined 96 h Cu exposure and Cu present during metabolic measurements, showed a significant decrease in ṀO2max and in aerobic scope (ṀO2max - ṀO2rest), compared to control fish. However, changes in blood and muscle lactate and muscle glycogen were not consistent with an upregulation of anaerobic metabolism as compensation for reduced aerobic performance in Cu exposed fish. Hypoxia tolerance was not influenced by the 96 h Cu exposure or by presence or absence of Cu during the Pcrit test. This study suggests that Cu differentially influences responses to changes in oxygen demand and oxygen availability.
Collapse
Affiliation(s)
- Adomas Kulesza
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Erin M Leonard
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Grant B McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
19
|
McKenzie JL, Chung DJ, Healy TM, Brennan RS, Bryant HJ, Whitehead A, Schulte PM. Mitochondrial Ecophysiology: Assessing the Evolutionary Forces That Shape Mitochondrial Variation. Integr Comp Biol 2019; 59:925-937. [PMID: 31282925 DOI: 10.1093/icb/icz124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mitonuclear species concept hypothesizes that incompatibilities between interacting gene products of the nuclear and mitochondrial genomes are a major factor establishing and maintaining species boundaries. However, most of the data available to test this concept come from studies of genetic variation in mitochondrial DNA, and clines in the mitochondrial genome across contact zones can be produced by a variety of forces. Here, we show that using a combination of population genomic analyses of the nuclear and mitochondrial genomes and studies of mitochondrial function can provide insight into the relative roles of neutral processes, adaptive evolution, and mitonuclear incompatibility in establishing and maintaining mitochondrial clines, using Atlantic killifish (Fundulus heteroclitus) as a case study. There is strong evidence for a role of secondary contact following the last glaciation in shaping a steep mitochondrial cline across a contact zone between northern and southern subspecies of killifish, but there is also evidence for a role of adaptive evolution in driving differentiation between the subspecies in a variety of traits from the level of the whole organism to the level of mitochondrial function. In addition, studies are beginning to address the potential for mitonuclear incompatibilities in admixed populations. However, population genomic studies have failed to detect evidence for a strong and pervasive influence of mitonuclear incompatibilities, and we suggest that polygenic selection may be responsible for the complex patterns observed. This case study demonstrates that multiple forces can act together in shaping mitochondrial clines, and illustrates the challenge of disentangling their relative roles.
Collapse
Affiliation(s)
- Jessica L McKenzie
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dillon J Chung
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Timothy M Healy
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Reid S Brennan
- Department of Environmental Toxicology, University of California-Davis, 4138 Meyer Hall, 1 Shields Avenue, Davis, CA 95616, USA
| | - Heather J Bryant
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California-Davis, 4138 Meyer Hall, 1 Shields Avenue, Davis, CA 95616, USA
| | - Patricia M Schulte
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
20
|
Thompson JS. Salinity affects growth but not thermal preference of adult mummichogs Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2019; 95:1107-1115. [PMID: 31329269 DOI: 10.1111/jfb.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The effects of an ecologically relevant range of salinities (2, 12, 22, 32) on thermal preferences and growth of adult mummichogs Fundulus heteroclitus were determined for fish from a southern Chesapeake Bay population. Salinity did not affect the mean temperature selected by F. heteroclitus in a thermal gradient, which was identified as 26.6°C based on observations of 240 individuals. Salinity and temperature had significant and interacting effects on growth rates of F. heteroclitus measured over 12 weeks. Growth rates were highest overall and remained high over a broader range of temperatures at moderate salinities (12 and 22), while high growth rates were shifted toward lower temperatures for fish grown at a salinity of 2 and higher temperatures at a salinity of 32. Significant reductions in growth relative to the optimal conditions (28.6°C, salinity of 22) were observed at the coolest (19.6°C) and warmest (33.6°C) temperature tested at all salinities, as well as temperatures ≥ 26.6°C at a salinity of 2, ≥ 28.6°C at a salinity of 12 and ≤ 26.6°C at a salinity of 32. Growth rates provide a long-term, organismal measure of performance and results of this study indicate that performance may be reduced under conditions that the highly euryhaline F. heteroclitus can otherwise easily tolerate. The combination of reduced salinity and increased temperature that is predicted for temperate estuaries as a result of climate change may have negative effects on growth of this ecologically important species.
Collapse
Affiliation(s)
- Jessica S Thompson
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| |
Collapse
|
21
|
Campbell LA, Gormley PT, Bennett JC, Murimboh JD, MacCormack TJ. Functionalized silver nanoparticles depress aerobic metabolism in the absence of overt toxicity in brackish water killifish, Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105221. [PMID: 31207537 DOI: 10.1016/j.aquatox.2019.105221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Engineered nanomaterials (ENMs) tend to precipitate in saline waters so the majority of aquatic toxicity studies have focused on freshwaters, where bioavailability is presumed to be higher. Recent studies have illustrated that some ENM formulations are bioavailable and bioactive in salt water and that their effects are more pronounced at the physiological than biochemical level. These findings raise concerns regarding the effects of ENMs on marine organisms. Therefore, our goal was to characterize the effects of polyvinylpyrolidone-functionalized silver ENMs (nAg) on aerobic performance in the killifish (Fundulus heteroclitus), a common euryhaline teleost. Fish were exposed to 80 μg L-1 of 5 nm nAg for 48 h in brackish water (12 ppt) and routine (ṀO2min) and maximum (ṀO2max) rates of oxygen consumption were quantified. Silver dissolution was minimal and nAg remained well dispersed in brackish water, with a hydrodynamic diameter of 21.0 nm, compared to 19.3 in freshwater. Both ṀO2min and ṀO2max were significantly lower (by 53 and 30%, respectively) in killifish exposed to nAg and a reduction in ṀO2 variability suggested spontaneous activity was suppressed. Neither gill Na+/K+-ATPase activity, nor various other biochemical markers were affected by nAg exposure. The results illustrate that a common ENM formulation is bioactive in salt water and, as in previous studies on functionalized copper ENMs, that effects are more pronounced at the whole animal than the biochemical level.
Collapse
Affiliation(s)
- L A Campbell
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - P T Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - J C Bennett
- Department of Physics, Acadia University, Wolfville, NS, Canada
| | - J D Murimboh
- Department Chemistry, Acadia University, Wolfville, NS, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
22
|
Gomez Isaza DF, Cramp RL, Smullen R, Glencross BD, Franklin CE. Coping with climatic extremes: Dietary fat content decreased the thermal resilience of barramundi (Lates calcarifer). Comp Biochem Physiol A Mol Integr Physiol 2019; 230:64-70. [DOI: 10.1016/j.cbpa.2019.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
|
23
|
da Silva CRB, Riginos C, Wilson RS. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. J Comp Physiol B 2019; 189:385-398. [PMID: 30874900 DOI: 10.1007/s00360-019-01212-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
The co-evolution of acclimation capacity and thermal performance breadth has been a contentious issue for decades, and little is known regarding the extent to which acclimation alters the shape of acute thermal performance curves. Current acclimation theory suggests that when daily variation is large and unpredictable ectotherms should not acclimate but should evolve wide performance breadths, allowing maintenance of performance across a wide thermal range. The subtropical intertidal zone, however, experiences a large amount of daily thermal variation, but daily means and ranges shift in predictable ways with season, where daily and seasonal variation is roughly equal. We predicted that animals in this habitat would maintain their capacity to acclimate and that performance breadth would not be altered by acclimation to maintain function with rapidly fluctuating daily temperatures. We tested our prediction using a subtropical goby, Bathygobius cocosensis, which lives in tide pools that vary widely, over days and seasons. We exposed B. cocosensis to winter (12-17 °C) and summer (30-35 °C) thermal conditions for six weeks and then measured the thermal dependence of burst swimming speed, routine and maximum metabolic rate, and ventilation rate between 12 and 36 °C. B. cocosensis exhibited an acclimation response for burst swimming speed, maximum metabolic rate and metabolic scope, but acclimation did not alter the shape of acute thermal performance curves. These results indicate that thermal acclimation can occur when short-term thermal variability is large and equal to seasonal variation, and wide performance breadths can be maintained with acclimation in heterogeneous environments.
Collapse
Affiliation(s)
- Carmen Rose Burke da Silva
- School of Biological Sciences, Faculty of Science, The University of Queensland, Saint Lucia, Brisbane, 4072, Australia.
| | - Cynthia Riginos
- School of Biological Sciences, Faculty of Science, The University of Queensland, Saint Lucia, Brisbane, 4072, Australia
| | - Robbie Stuart Wilson
- School of Biological Sciences, Faculty of Science, The University of Queensland, Saint Lucia, Brisbane, 4072, Australia
| |
Collapse
|
24
|
Oxygen consumption of desert pupfish at ecologically relevant temperatures suggests a significant role for anaerobic metabolism. J Comp Physiol B 2018; 188:821-830. [DOI: 10.1007/s00360-018-1174-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 05/28/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
|
25
|
Chung DJ, Healy TM, McKenzie JL, Chicco AJ, Sparagna GC, Schulte PM. Mitochondria, Temperature, and the Pace of Life. Integr Comp Biol 2018; 58:578-590. [DOI: 10.1093/icb/icy013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dillon J Chung
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy M Healy
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA 92037, USA
| | - Jessica L McKenzie
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Genevieve C Sparagna
- Anschutz Medical Campus, Division of Cardiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Patricia M Schulte
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
26
|
Jayasundara N, Fernando PW, Osterberg JS, Cammen KM, Schultz TF, Di Giulio RT. Cost of Tolerance: Physiological Consequences of Evolved Resistance to Inhabit a Polluted Environment in Teleost Fish Fundulus heteroclitus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8763-8772. [PMID: 28682633 PMCID: PMC5745795 DOI: 10.1021/acs.est.7b01913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Anthropogenic stressors, including pollutants, are key evolutionary drivers. It is hypothesized that rapid evolution to anthropogenic changes may alter fundamental physiological processes (e.g., energy metabolism), compromising an organism's capacity to respond to additional stressors. The Elizabeth River (ER) Superfund site represents a "natural-experiment" to explore this hypothesis in several subpopulations of Atlantic killifish that have evolved a gradation of resistance to a ubiquitous pollutant-polycyclic aromatic hydrocarbons (PAH). We examined bioenergetic shifts and associated consequences in PAH-resistant killifish by integrating genomic, physiological, and modeling approaches. Population genomics data revealed that genomic regions encoding bioenergetic processes are under selection in PAH-adapted fish from the most contaminated ER site and ex vivo studies confirmed altered mitochondrial function in these fish. Further analyses extending to differentially PAH-resistant subpopulations showed organismal level bioenergetic shifts in ER fish that are associated with increased cost of living, decreased performance, and altered metabolic response to temperature stress-an indication of reduced thermal plasticity. A movement model predicted a higher energetic cost for PAH-resistant subpopulations when seeking an optimum habitat. Collectively, we demonstrate that pollution adaption and inhabiting contaminated environments may result in physiological shifts leading to compromised organismal capacity to respond to additional stressors.
Collapse
Affiliation(s)
- Nishad Jayasundara
- School of Marine Sciences, University of Maine, Orono, Maine United States
- Nicholas School of the Environment, Duke University, Durham, North Carolina United States
| | - Pani W. Fernando
- Department of Mathematics and Information Technology, University of Leoben, Leoben, Austria
| | - Joshua S. Osterberg
- Duke Marine Lab, Nicholas School of the Environment, Duke University, Beaufort, North Carolina United States
| | - Kristina M. Cammen
- Nicholas School of the Environment, Duke University, Durham, North Carolina United States
- Duke Marine Lab, Nicholas School of the Environment, Duke University, Beaufort, North Carolina United States
| | - Thomas F. Schultz
- Duke Marine Lab, Nicholas School of the Environment, Duke University, Beaufort, North Carolina United States
| | - Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, North Carolina United States
| |
Collapse
|
27
|
Borcier E, Charrier G, Amérand A, Théron M, Loizeau V, Pédron N, Laroche J. Bioenergetic Transcriptomic Responses of European Flounder ( Platichthys Flesus) Populations in Contrasted Environments: Impacts of Pollution and Global Warming. J Xenobiot 2016; 6:6586. [PMID: 30701052 PMCID: PMC6324483 DOI: 10.4081/xeno.2016.6586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- E Borcier
- Université de Bretagne Occidentale, LEMAR UMR 6539 CNRS/IRD/UBO/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| | - G Charrier
- Université de Bretagne Occidentale, LEMAR UMR 6539 CNRS/IRD/UBO/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| | - A Amérand
- Université de Bretagne Occidentale, EA 4324, Laboratoire Optimisation des Régulations Physiologiques (ORPHY), Brest, France
| | - M Théron
- Université de Bretagne Occidentale, EA 4324, Laboratoire Optimisation des Régulations Physiologiques (ORPHY), Brest, France
| | - V Loizeau
- Unité Biogéochimie et Ecotoxicologie, IFRE-MER, Centre de Brest, Plouzané, France
| | - N Pédron
- Université de Bretagne Occidentale, LEMAR UMR 6539 CNRS/IRD/UBO/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| | - J Laroche
- Université de Bretagne Occidentale, LEMAR UMR 6539 CNRS/IRD/UBO/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| |
Collapse
|
28
|
McKenzie JL, Dhillon RS, Schulte PM. Steep, coincident, and concordant clines in mitochondrial and nuclear-encoded genes in a hybrid zone between subspecies of Atlantic killifish, Fundulus heteroclitus. Ecol Evol 2016; 6:5771-87. [PMID: 27547353 PMCID: PMC4983590 DOI: 10.1002/ece3.2324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/15/2023] Open
Abstract
Steep genetic clines resulting from recent secondary contact between previously isolated taxa can either gradually erode over time or be stabilized by factors such as ecological selection or selection against hybrids. We used patterns of variation in 30 nuclear and two mitochondrial SNPs to examine the factors that could be involved in stabilizing clines across a hybrid zone between two subspecies of the Atlantic killifish, Fundulus heteroclitus. Increased heterozygote deficit and cytonuclear disequilibrium in populations near the center of the mtDNA cline suggest that some form of reproductive isolation such as assortative mating or selection against hybrids may be acting in this hybrid zone. However, only a small number of loci exhibited these signatures, suggesting locus-specific, rather than genomewide, factors. Fourteen of the 32 loci surveyed had cline widths inconsistent with neutral expectations, with two SNPs in the mitochondrial genome exhibiting the steepest clines. Seven of the 12 putatively non-neutral nuclear clines were for SNPs in genes related to oxidative metabolism. Among these putatively non-neutral nuclear clines, SNPs in two nuclear-encoded mitochondrial genes (SLC25A3 and HDDC2), as well as SNPs in the myoglobin, 40S ribosomal protein S17, and actin-binding LIM protein genes, had clines that were coincident and concordant with the mitochondrial clines. When hybrid index was calculated using this subset of loci, the frequency distribution of hybrid indices for a population located at the mtDNA cline center was non-unimodal, suggesting selection against advanced-generation hybrids, possibly due to effects on processes involved in oxidative metabolism.
Collapse
Affiliation(s)
- Jessica L. McKenzie
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Aquaculture and Environmental ResearchFisheries and Oceans CanadaWest VancouverBritish ColumbiaCanada
| | - Rashpal S. Dhillon
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Present address: Department of Biomolecular ChemistryEpigenetics ThemeWisconsin Institute for DiscoveryUniversity of WisconsinMadisonWisconsin
| | - Patricia M. Schulte
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
29
|
Blewett TA, Ransberry VE, McClelland GB, Wood CM. Investigating the mechanisms of Ni uptake and sub-lethal toxicity in the Atlantic killifish Fundulus heteroclitus in relation to salinity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:370-381. [PMID: 26796747 DOI: 10.1016/j.envpol.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/24/2015] [Accepted: 01/01/2016] [Indexed: 06/05/2023]
Abstract
The Atlantic killifish (Fundulus heteroclitus) is a resilient estuarine species that may be subjected to anthropogenic contamination of its natural habitat, by toxicants such as nickel (Ni). We investigated Ni accumulation and potential modes of Ni toxicity, in killifish, as a function of environmental salinity. Killifish were acclimated to 4 different salinities [0 freshwater (FW), 10, 30 and 100% seawater (SW)] and exposed to 5 mg/L of Ni for 96 h. Tissue Ni accumulation, whole body ions, critical swim speed and oxidative stress parameters were examined. SW was protective against Ni accumulation in the gills and kidney. Addition of Mg and Ca to FW protected against gill Ni accumulation, suggesting competition with Ni for uptake. Concentration-dependent Ni accumulation in the gill exhibited saturable relationships in both FW- and SW-acclimated fish. However SW fish displayed a lower Bmax (i.e. lower number of Ni binding sites) and a lower Km (i.e. higher affinity for Ni binding). No effect of Ni exposure was observed on critical swim speed (Ucrit) or maximum rate of oxygen consumption (MO2max). Markers of oxidative stress showed either no effect (e.g. protein carbonyl formation), or variable effects that appeared to depend more on salinity than on Ni exposure. These data indicate that the killifish is very tolerant to Ni toxicity, a characteristic that may facilitate the use of this species as a site-specific biomonitor of contaminated estuaries.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | | | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
30
|
Rummer JL, Binning SA, Roche DG, Johansen JL. Methods matter: considering locomotory mode and respirometry technique when estimating metabolic rates of fishes. CONSERVATION PHYSIOLOGY 2016; 4:cow008. [PMID: 27382471 PMCID: PMC4922262 DOI: 10.1093/conphys/cow008] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 05/26/2023]
Abstract
Respirometry is frequently used to estimate metabolic rates and examine organismal responses to environmental change. Although a range of methodologies exists, it remains unclear whether differences in chamber design and exercise (type and duration) produce comparable results within individuals and whether the most appropriate method differs across taxa. We used a repeated-measures design to compare estimates of maximal and standard metabolic rates (MMR and SMR) in four coral reef fish species using the following three methods: (i) prolonged swimming in a traditional swimming respirometer; (ii) short-duration exhaustive chase with air exposure followed by resting respirometry; and (iii) short-duration exhaustive swimming in a circular chamber. We chose species that are steady/prolonged swimmers, using either a body-caudal fin or a median-paired fin swimming mode during routine swimming. Individual MMR estimates differed significantly depending on the method used. Swimming respirometry consistently provided the best (i.e. highest) estimate of MMR in all four species irrespective of swimming mode. Both short-duration protocols (exhaustive chase and swimming in a circular chamber) produced similar MMR estimates, which were up to 38% lower than those obtained during prolonged swimming. Furthermore, underestimates were not consistent across swimming modes or species, indicating that a general correction factor cannot be used. However, SMR estimates (upon recovery from both of the exhausting swimming methods) were consistent across both short-duration methods. Given the increasing use of metabolic data to assess organismal responses to environmental stressors, we recommend carefully considering respirometry protocols before experimentation. Specifically, results should not readily be compared across methods; discrepancies could result in misinterpretation of MMR and aerobic scope.
Collapse
Affiliation(s)
- Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Sandra A. Binning
- Australian Research Council Centre of Excellence for Coral Reef Studies, Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
- Éco-Éthologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel 2000, Switzerland
| | - Dominique G. Roche
- Australian Research Council Centre of Excellence for Coral Reef Studies, Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
- Éco-Éthologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel 2000, Switzerland
| | - Jacob L. Johansen
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
31
|
Bjelde BE, Miller NA, Stillman JH, Todgham AE. The Role of Oxygen in Determining Upper Thermal Limits in Lottia digitalis under Air Exposure and Submersion. Physiol Biochem Zool 2015; 88:483-93. [PMID: 26658246 DOI: 10.1086/682220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxygen limitation of aerobic metabolism is hypothesized to drive organismal thermal tolerance limits. Differences in oxygen availability in air and water may underlie observed differences in upper thermal tolerance of intertidal limpets if oxygen is limiting in submerged environments. We explored how cardiac performance (heart rate, breakpoint temperature [BPT], flat-line temperature [FLT], and temperature sensitivity) was affected by hyperoxia and hypoxia in the finger limpet, Lottia digitalis, under air exposure and submersion. Upper thermal tolerance limits were unchanged by increasing availability of oxygen, although air-exposed limpets were able to maintain cardiac function to higher temperatures than submerged limpets. Maximum heart rate did not increase with greater partial pressure of oxygen (Po2), suggesting that tissue Po2 levels are likely maximized during normoxia. Hypoxia reduced breakpoint BPTs and FLTs in air-exposed and submerged limpets and accentuated the difference in BPTs between the two groups through greater reductions in BPT in submerged limpets. Differences in respiratory structures and the degree to which thermal limits are already maximized may play significant roles in determining how oxygen availability influences upper temperature tolerance.
Collapse
Affiliation(s)
- Brittany E Bjelde
- Department of Biology, San Francisco State University, San Francisco, California 94132; 2Department of Animal Science, University of California, Davis, California 95616; 3Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, California 94920; 4Department of Integrative Biology, University of California, Berkeley, California 94720
| | | | | | | |
Collapse
|
32
|
Baris TZ, Crawford DL, Oleksiak MF. Acclimation and acute temperature effects on population differences in oxidative phosphorylation. Am J Physiol Regul Integr Comp Physiol 2015; 310:R185-96. [PMID: 26582639 DOI: 10.1152/ajpregu.00421.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022]
Abstract
Temperature changes affect metabolism on acute, acclamatory, and evolutionary time scales. To better understand temperature's affect on metabolism at these different time scales, we quantified cardiac oxidative phosphorylation (OxPhos) in three Fundulus taxa acclimated to 12 and 28°C and measured at three acute temperatures (12, 20, and 28°C). The Fundulus taxa (northern Maine and southern Georgia F. heteroclitus, and a sister taxa, F. grandis) were used to identify evolved changes in OxPhos. Cardiac OxPhos metabolism was quantified by measuring six traits: state 3 (ADP and substrate-dependent mitochondrial respiration); E state (uncoupled mitochondrial activity); complex I, II, and IV activities; and LEAK ratio. Acute temperature affected all OxPhos traits. Acclimation only significantly affected state 3 and LEAK ratio. Populations were significantly different for state 3. In addition to direct effects, there were significant interactions between acclimation and population for complex I and between population and acute temperature for state 3. Further analyses suggest that acclimation alters the acute temperature response for state 3, E state, and complexes I and II: at the low acclimation temperature, the acute response was dampened at low assay temperatures, and at the high acclimation temperature, the acute response was dampened at high assay temperatures. Closer examination of the data also suggests that differences in state 3 respiration and complex I activity between populations were greatest between fish acclimated to low temperatures when assayed at high temperatures, suggesting that differences between the populations become more apparent at the edges of their thermal range.
Collapse
Affiliation(s)
- Tara Z Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| | - Douglas L Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| | - Marjorie F Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| |
Collapse
|
33
|
Yetsko K, Sancho G. The effects of salinity on swimming performance of two estuarine fishes, Fundulus heteroclitus and Fundulus majalis. JOURNAL OF FISH BIOLOGY 2015; 86:827-833. [PMID: 25557804 DOI: 10.1111/jfb.12590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Prolonged and high-speed swimming performance measurements were used to explore the swimming abilities of two species of estuarine fishes, the mummichog Fundulus heteroclitus and the striped killifish Fundulus majalis, under different salinities. Critical swimming performance was significantly higher for F. majalis in high salinity than in low salinity, but no difference was observed in brief constant acceleration swimming trials in this species; however, the swimming performance of F. heteroclitus was not significantly affected by salinity changes, indicating that this species is well adapted to regular estuarine salinity oscillations. Fundulus majalis displayed higher swimming speeds than F. heteroclitus in both high and low salinities, and while this cannot be explained by their respective salinity preferences, the specific habitat preferences of F. majalis for sandy subtidal habitats and F. heteroclitus for vegetated marshes could explain the better swimming performance of F. majalis.
Collapse
Affiliation(s)
- K Yetsko
- Department of Biology, College of Charleston, 58 Coming St, Charleston, SC 29401, U.S.A
| | - G Sancho
- Department of Biology, College of Charleston, 58 Coming St, Charleston, SC 29401, U.S.A
| |
Collapse
|
34
|
Chung DJ, Schulte PM. Mechanisms and costs of mitochondrial thermal acclimation in a eurythermal killifish (Fundulus heteroclitus). J Exp Biol 2015; 218:1621-31. [DOI: 10.1242/jeb.120444] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
Processes acting at the level of the mitochondria have been suggested to affect the thermal limits of organisms. To determine whether changes in mitochondrial properties could underlie shifts in thermal limits, we have examined how mitochondrial properties are affected by thermal acclimation in the eurythermal killifish, Fundulus heteroclitus—a species with substantial plasticity in whole-organism thermal limits. We hypothesized that thermal acclimation would result in functional changes in the mitochondria that could result in trade-offs in function during acute thermal shifts. We measured mitochondrial respiration rates through multiple complexes of the ETS following thermal acclimation (5, 15, 33°C), and assessed maintenance of mitochondrial membrane potential (Δp), and rates of reactive oxygen species (ROS) production as an estimate of costs. Acclimation to 5°C resulted in a modest compensation of mitochondrial respiration at low temperatures, but these mitochondria were able to maintain Δp with acute exposure to high temperatures, and ROS production did not differ between acclimation groups, suggesting that these increases in mitochondrial capacity do not alter mitochondrial thermal sensitivity. Acclimation to 33°C caused suppression of mitochondrial respiration due to effects on NADH-dehydrogenase (complex I). These high-temperature acclimated fish nonetheless maintained Δp and ROS production similar to that of the other acclimation groups. This work demonstrates that killifish mitochondria can successfully acclimate to a wide range of temperatures without incurring major functional trade-offs during acute thermal shifts, and that high temperature acclimation results in a suppression of metabolism, consistent with patterns observed at the organismal level.
Collapse
Affiliation(s)
- Dillon J. Chung
- Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver BC, Canada, V6T 1Z4
| | - Patricia M. Schulte
- Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver BC, Canada, V6T 1Z4
| |
Collapse
|
35
|
Schulte PM. What is environmental stress? Insights from fish living in a variable environment. ACTA ACUST UNITED AC 2014; 217:23-34. [PMID: 24353201 DOI: 10.1242/jeb.089722] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the term environmental stress is used across multiple fields in biology, the inherent ambiguity associated with its definition has caused confusion when attempting to understand organismal responses to environmental change. Here I provide a brief summary of existing definitions of the term stress, and the related concepts of homeostasis and allostasis, and attempt to unify them to develop a general framework for understanding how organisms respond to environmental stressors. I suggest that viewing stressors as environmental changes that cause reductions in performance or fitness provides the broadest and most useful conception of the phenomenon of stress. I examine this framework in the context of animals that have evolved in highly variable environments, using the Atlantic killifish, Fundulus heteroclitus, as a case study. Consistent with the extreme environmental variation that they experience in their salt marsh habitats, killifish have substantial capacity for both short-term resistance and long-term plasticity in the face of changing temperature, salinity and oxygenation. There is inter-population variation in the sensitivity of killifish to environmental stressors, and in their ability to acclimate, suggesting that local adaptation can shape the stress response even in organisms that are broadly tolerant and highly plastic. Whole-organism differences between populations in stressor sensitivity and phenotypic plasticity are reflected at the biochemical and molecular levels in killifish, emphasizing the integrative nature of the response to environmental stressors. Examination of this empirical example highlights the utility of using an evolutionary perspective on stressors, stress and stress responses.
Collapse
Affiliation(s)
- Patricia M Schulte
- Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
36
|
Stitt BC, Burness G, Burgomaster KA, Currie S, McDermid JL, Wilson CC. Intraspecific Variation in Thermal Tolerance and Acclimation Capacity in Brook Trout (Salvelinus fontinalis): Physiological Implications for Climate Change. Physiol Biochem Zool 2014; 87:15-29. [DOI: 10.1086/675259] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Kern P, Cramp RL, Franklin CE. Temperature and UV-B-insensitive performance in tadpoles of the ornate burrowing frog: an ephemeral pond specialist. ACTA ACUST UNITED AC 2013; 217:1246-52. [PMID: 24363412 DOI: 10.1242/jeb.097006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals may overcome the challenges of temperature instability through behavioural and physiological mechanisms in response to short- and long-term temperature changes. When ectotherms face the challenge of large diel temperature fluctuations, one strategy may be to reduce the thermal sensitivity of key traits in order to maintain performance across the range of temperatures experienced. Additional stressors may limit the ability of animals to respond to these thermally challenging environments through changes to energy partitioning or interactive effects. Ornate burrowing frog (Platyplectrum ornatum) tadpoles develop in shallow ephemeral pools that experience high diel thermal variability (>20°C) and can be exposed to high levels of UV-B radiation. Here, we investigated how development in fluctuating versus stable temperature conditions in the presence of high or low UV-B radiation influences thermal tolerance and thermal sensitivity of performance traits of P. ornatum tadpoles. Tadpoles developed in either stable (24°C) or fluctuating temperatures (18-32°C) under high or low UV-B conditions. Tadpoles were tested for upper critical thermal limits, thermal dependence of resting metabolic rate and maximum burst swimming performance. We hypothesised that developmental responses to thermal fluctuations would increase thermal tolerance and reduce thermal dependence of physiological traits, and that trade-offs in the allocation of metabolic resources towards repairing UV-B-induced damage may limit the ability to maintain performance over the full range of temperatures experienced. We found that P. ornatum tadpoles were thermally insensitive for both burst swimming performance, across the range of temperatures tested, and resting metabolic rate at high temperatures independent of developmental conditions. Maintenance of performance led to a trade-off for growth under fluctuating temperatures and UV-B exposure. Temperature treatment and UV-B exposure had an interactive effect on upper critical thermal limits possibly due to the upregulation of the cellular stress response. Thermal independence of key traits may allow P. ornatum tadpoles to maintain performance in the thermal variability inherent in their environment.
Collapse
Affiliation(s)
- Pippa Kern
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
38
|
Bosker T, Munkittrick KR, Nacci DE, MacLatchy DL. Laboratory Spawning Patterns of Mummichogs,Fundulus heteroclitus(Cyprinodontiformes: Fundulidae). COPEIA 2013. [DOI: 10.1643/ci-11-175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Blewett TA, Robertson LM, Maclatchy DL, Wood CM. Impact of environmental oxygen, exercise, salinity, and metabolic rate on the uptake and tissue-specific distribution of 17α-ethynylestradiol in the euryhaline teleost Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 138-139:43-51. [PMID: 23685400 DOI: 10.1016/j.aquatox.2013.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
17α-ethynylestradiol (EE2) is a synthetic estrogen that is an endocrine disruptive toxicant in aquatic environments. The aim of this study was to determine whether metabolic rate influenced EE2 uptake in male killifish (Fundulus heteroclitus), based on the hypothesis that the mechanism of EE2 uptake at the gills is similar to that of oxygen. F. heteroclitus were exposed to 100 ng/L radiolabeled [³H]EE2 for 2 h while swimming at 0, 15, and 40 cm/s. A positive linear correlation between the rates of oxygen consumption (MO₂) and EE2 accumulation was seen (r² = 0.99, p<0.01), with more EE2 taken up at higher swimming speeds, suggesting that oxygen uptake predicts EE2 uptake. EE2 tended to accumulate in the liver (where lipophilic toxicants are metabolized), the gall bladder (where metabolized toxicants enter bile), and the gut (where bile is received). In a subsequent experiment killifish were exposed to both hypoxic and hyperoxic conditions (PO₂=70-80 Torr, and PO₂=400-500 Torr respectively). Despite significant decreases in MO₂ during hypoxia, EE2 uptake rates increased only slightly with hypoxia, but in individual fish there was still a significant correlation between MO₂ and EE2 uptake. This correlation was lost during hyperoxia, and EE2 uptake rates did not change significantly in hyperoxia. Marked influences of salinity on EE2 uptake rate occurred regardless of the oxygen condition, with higher uptake rates in 50% seawater than in freshwater or 100% seawater. Tissue distribution of EE2 in these exposures may have been influenced by changes in tissue blood flow patterns and oxygen supply. These data will be useful in eventually constructing a predictive model to manage the optimal timing for discharge of EE2 from sewage treatment plants into receiving waters.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | | | | | | |
Collapse
|
40
|
A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle. J Comp Physiol B 2013; 183:723-33. [PMID: 23483325 DOI: 10.1007/s00360-013-0748-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/12/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
Environmental temperature varies spatially and temporally, affecting many aspects of an organism's biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.
Collapse
|
41
|
McKenzie DJ, Estivales G, Svendsen JC, Steffensen JF, Agnèse JF. Local adaptation to altitude underlies divergent thermal physiology in tropical killifishes of the genus Aphyosemion. PLoS One 2013; 8:e54345. [PMID: 23349857 PMCID: PMC3551936 DOI: 10.1371/journal.pone.0054345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/12/2012] [Indexed: 01/01/2023] Open
Abstract
In watersheds of equatorial West Africa, monophyletic groups of killifish species (genus Aphyosemion) occur in discrete altitudinal ranges, low altitude species (LA, sea level to ∼350 m) or high altitude species (HA, 350 to 900 m). We investigated the hypothesis that local adaptation to altitude by the LA and HA species would be revealed as divergent effects of temperature on their physiological energetics. Two species from each group (mass ∼350 mg) were acclimated to 19, 25 and 28°C, with 19 and 28°C estimated to be outside the thermal envelope for LA or HA, respectively, in the wild. Wild-caught animals (F0 generation) were compared with animals raised in captivity at 25°C (F1 generation) to investigate the contribution of adaptation versus plasticity. Temperature significantly increased routine metabolic rate in all groups and generations. However, LA and HA species differed in the effects of temperature on their ability to process a meal. At 25°C, the specific dynamic action (SDA) response was completed within 8 h in all groups, but acclimation to temperatures beyond the thermal envelope caused profound declines in SDA performance. At 19°C, the LA required ∼14 h to complete the SDA, whereas the HA required only ∼7 h. The opposite effect was observed at 28°C. This effect was evident in both F0 and F1. Reaction norms for effects of temperature on SDA therefore revealed a trade-off, with superior performance at warmer temperatures by LA being associated with inferior performance at cooler temperatures, and vice-versa in HA. The data indicate that divergent physiological responses to temperature in the LA and HA species reflect local adaptation to the thermal regime in their habitat, and that local adaptation to one thermal environment trades off against performance in another.
Collapse
Affiliation(s)
- David J McKenzie
- UMR5554 Institut des Sciences de l'Evolution, Université Montpellier 2, Montpellier, France.
| | | | | | | | | |
Collapse
|
42
|
Bjelde B, Todgham A. Thermal physiology of the fingered limpet Lottia digitalis under emersion and immersion. J Exp Biol 2013; 216:2858-69. [DOI: 10.1242/jeb.084178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Summary
Marine animals living high in the rocky intertidal zone experience long durations of aerial-emersion, sometimes enduring rapid increases in temperature. To date, much of our understanding of the thermal physiology of intertidal organisms comes from studies in which organisms are exposed to increasing temperatures when immersed, with the added effect of aerial emersion rarely considered. In this study, we examined the physiological response of the finger limpet, Lottia digitalis, to increases in temperature under both immersed and emersed conditions. We investigated the thermal sensitivity and upper temperature tolerance of limpets through assessments of cardiac performance, metabolic rate, glycogen depletion and maintenance of protein integrity. Cardiac performance in response to ecologically relevant increases in temperature was similar in emersed and immersed limpets from 15 to 35°C and showed multiple break patterns in heart rate as temperature was increased. Overall, emersed limpets had a greater upper thermal limit on cardiac performance with the ability to maintain heart rate 3-5°C higher than immersed limpets. Metabolism in limpets also differed significantly between emersion and immersion, where a significant depression in aerobic metabolic rate was observed under immersion with increasing temperature. Greater levels of ubiquitin-conjugated proteins were found under emersed conditions compared to immersed limpets. Maintaining cardiac performance and aerobic metabolism to higher temperatures under emersed conditions is likely reflective of physiological adaptations to live in an aerially exposed environment. Measured field temperatures where fingered limpets were collected demonstrated that limpets have a narrow thermal safety margin for aerobic performance, and currently experience multiple days where summer temperatures might exceed their threshold limits.
Collapse
|
43
|
Pang X, Yuan XZ, Cao ZD, Fu SJ. The effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis). J Comp Physiol B 2012; 183:99-108. [PMID: 22903168 PMCID: PMC3536957 DOI: 10.1007/s00360-012-0690-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 06/28/2012] [Accepted: 07/13/2012] [Indexed: 01/09/2023]
Abstract
To investigate the effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis), we measured the following: (1) the resting oxygen consumption rate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {{\dot{\text{M}}\text{O}}_{{ 2 {\text{rest}}}} } \right) $$\end{document}, critical swimming speed (Ucrit) and active oxygen consumption rate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {{\dot{\text{M}}\text{O}}_{{ 2 {\text{active}}}} } \right) $$\end{document} of fish at acclimation temperatures of 10, 15, 20, 25 and 30 °C and (2) the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{M}{\text{O}}_{{ 2 {\text{rest}}}} $$\end{document}, Ucrit and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$\end{document} of both exercise-trained (exhaustive chasing training for 14 days) and control fish at both low and high acclimation temperatures (15 and 25 °C). The relationship between Ucrit and temperature (T) approximately followed a bell-shaped curve as temperature increased: Ucrit = 8.21/{1 + [(T − 27.2)/17.0]2} (R2 = 0.915, P < 0.001, N = 40). The optimal temperature for maximal Ucrit (8.21 BL s−1) in juvenile qingbo was 27.2 °C. Both the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$\end{document} and the metabolic scope (MS, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} - \dot{M}{\text{O}}_{{ 2 {\text{rest}}}} $$\end{document}) of qingbo increased with temperature from 10 to 25 °C (P < 0.05), but there were no significant differences between fish acclimated to 25 and 30 °C. The relationships between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$\end{document} or MS and temperature were described as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\dot{\text{M}}\text{O}}_{{ 2 {\text{active}}}} = 1,214.29/\left\{ {1 + \left[ {\left( {T - 28.8} \right)/10.6} \right]^{2} } \right\}\;\left( {R^{2} = 0.911,\;P < 0.001,\;N = 40} \right) $$\end{document} and MS = 972.67/{1 + [(T − 28.0)/9.34]2} (R2 = 0.878, P < 0.001, N = 40). The optimal temperatures for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$\end{document} and MS in juvenile qingbo were 28.8 and 28.0 °C, respectively. Exercise training resulted in significant increases in both Ucrit and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$\end{document} at a low temperature (P < 0.05), but training exhibited no significant effect on either Ucrit or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$\end{document} at a high temperature. These results suggest that exercise training had different effects on swimming performance at different temperatures. These differences may be related to changes in aerobic metabolic capability, arterial oxygen delivery, available dissolved oxygen, imbalances in ion fluxes and stimuli to remodel tissues with changes in temperature.
Collapse
Affiliation(s)
- Xu Pang
- College of Resources and Environmental Science, Key Laboratory of Southwest Resource Exploitation and Environmental Disaster Controlling Project of the Education Ministry, Chongqing University, Chongqing, China.
| | | | | | | |
Collapse
|
44
|
Assessing the impact of thermal acclimation on physiological condition in the zebrafish model. J Comp Physiol B 2012; 183:109-21. [DOI: 10.1007/s00360-012-0691-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 06/03/2012] [Accepted: 07/13/2012] [Indexed: 01/05/2023]
|
45
|
James RS, Tallis J, Herrel A, Bonneaud C. Warmer is better: thermal sensitivity of both maximal and sustained power output in the iliotibialis muscle isolated from adult Xenopus tropicalis. J Exp Biol 2012; 215:552-8. [DOI: 10.1242/jeb.063396] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Environmental temperature varies temporally and spatially and may consequently affect organismal function in complex ways. Effects of temperature are often most pertinent on locomotor performance traits of ectothermic animals. Given the importance of locomotion to mobility and dispersion, variability in temperature may therefore affect the current and future distribution of species. Many previous studies have demonstrated that burst muscle performance changes with temperature. However, less is known about the effects of temperature on sustained skeletal muscle performance. The iliotibialis muscle was isolated from eight male Xenopus tropicalis individuals and subjected to in vitro isometric and work-loop studies at test temperatures of 15, 24, 30 and 32°C. Work-loop power output (average power per cycle) was maximised at each temperature by altering stimulation and strain parameters. A series of 10 work loops was also delivered at each test temperature to quantify endurance performance. Warmer test temperatures tended to increase twitch stress (force normalised to muscle cross-sectional area) and significantly increased tetanic stress. Increased temperature significantly reduced twitch and tetanus activation and relaxation times. Increased temperature also significantly increased both burst muscle power output (cycle average) and sustained (endurance) performance during work loop studies. The increase in burst power output between 15 and 24°C yielded a high Q10 value of 6.86. Recent studies have demonstrated that the negative effects of inorganic phosphate accumulation during prolonged skeletal muscle performance are reduced with increased temperature, possibly explaining the increases in endurance found with increased test temperature in the present study.
Collapse
Affiliation(s)
- Rob S. James
- Department of Biomolecular and Sport Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Jason Tallis
- Department of Biomolecular and Sport Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Anthony Herrel
- UMR 7179 C.N.R.S./M.N.H.N., Département d'Ecologie et de Gestion de la Biodiversité, 57 rue Cuvier, Case postale 55, 75231, Paris Cedex 5, France
| | - Camille Bonneaud
- Station d'Ecologie Expérimentale du CNRS (USR 2936), 09200, Moulis, France
| |
Collapse
|
46
|
Healy TM, Schulte PM. Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiol Biochem Zool 2012; 85:107-19. [PMID: 22418704 DOI: 10.1086/664584] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Loss of aerobic scope at high and low temperatures is a physiological mechanism proposed to limit the thermal performance and tolerance of organisms, a theory known as oxygen- and capacity-limited thermal tolerance (OCLTT). Eurythermal organisms maintain aerobic scope over wide ranges of temperatures, but it is unknown whether acclimation is necessary to maintain this breadth. The objective of this study was to examine changes in aerobic scope in Fundulus heteroclitus, a eurythermal fish, after acclimation and acute exposure to temperatures from 5° to 33°C. The range of temperatures over which aerobic scope was nonzero was similar in acclimated and acutely exposed fish, suggesting that acclimation has modest effects on the thermal breadth of aerobic scope. However, in acclimated fish, there was a clear optimum temperature range for aerobic scope between 25° and 30°C, whereas aerobic scope was relatively constant across the entire temperature range with acute temperature exposure. Therefore, the primary effect of acclimation was to increase aerobic scope between 25° and 30°C, which paradoxically resulted in a narrower temperature range of optimal performance in acclimated fish compared to acutely exposed fish. There was only weak evidence for correlations between the thermal optimum of aerobic scope and the thermal optimum of measures of performance (specific growth rate and gonadosomatic index), and indicators of anaerobic metabolism (lactate accumulation and lactate dehydrogenase activity) only increased at high temperatures. Together these data fit many, but not all, of the predictions made by OCLTT.
Collapse
Affiliation(s)
- Timothy M Healy
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada.
| | | |
Collapse
|
47
|
Dhillon RS, Schulte PM. Intraspecific variation in the thermal plasticity of mitochondria in killifish. ACTA ACUST UNITED AC 2012; 214:3639-48. [PMID: 21993793 DOI: 10.1242/jeb.057737] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Populations of the Atlantic killifish (Fundulus heteroclitus) inhabit salt marshes and estuaries along the eastern coast of North America from Newfoundland to northern Florida, and are thus exposed to a large range of temperatures. Previous studies have shown higher whole-organism metabolic rates in the northern subspecies (F. h. macrolepidotus) compared with the southern subspecies (F. h. heteroclitus) of these fish. Here, we examine phenotypic plasticity in the response to cold temperatures between the two subspecies by acclimating fish to 5, 15 and 25°C and comparing several mitochondrial and muscle properties. The relative area of oxidative muscle versus glycolytic muscle fibers was greater in the northern subspecies at the 5 and 15°C acclimation temperatures. However, there were no differences in capillary density between the two subspecies or at different temperatures. Mitochondrial volume and surface densities increased in response to cold temperature acclimation in red and white muscle, but only in the northern killifish. Citrate synthase activities also increased in the northern killifish at 5 and 15°C. The ratio of calculated [free ADP] to [ATP] increased in the 5°C acclimated southern killifish but not in the northern killifish at 5°C when compared with the 15°C acclimation group, suggesting that there are differences in adenylate signaling for mitochondrial respiration between subspecies at low temperature. Taken together, our data indicate that the northern subspecies have a greater ability to increase mitochondrial capacity at colder temperatures compared with the southern subspecies, providing one of the few examples of intraspecific variation in phenotypic plasticity in mitochondrial amount in response to cold temperatures.
Collapse
Affiliation(s)
- Rashpal S Dhillon
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| | | |
Collapse
|
48
|
Ferrari L, Eissa BL, Salibián A. Energy balance of juvenile Cyprinus carpio after a short-term exposure to sublethal water-borne cadmium. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:853-862. [PMID: 21472463 DOI: 10.1007/s10695-011-9483-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 03/23/2011] [Indexed: 05/30/2023]
Abstract
Stress in fish can be assessed by means of a bioenergetic approach, based on the evaluation of changes in their physiological parameters. The objective of this study was to determine the impact of sublethal water-borne cadmium (Cd) on the energetic balance of juvenile Cyprinus carpio under laboratory conditions after a short-term exposure. Fish were exposed to a concentration of Cd (0.15 mg Cd l(-1)) for 2 weeks. This concentration is environmentally realistic since it is usually found, even at higher values, in heavily polluted periurban water bodies of Argentina. No mortality was recorded among the animals used in the experiments. Food intake, food assimilation and assimilation efficiency, fecal production, liver glycogen content, oxygen consumption, oxygen extraction efficiency, specific metabolic rate, ammonia excretion and ammonia quotient (AQ), condition factor, and liver somatic index were determined. The overall balance was expressed as the scope for growth (SFG). The morphological indices and the liver glycogen content of Cd-exposed fish showed no significant differences when compared to those of controls. There was a significant decrease in the food intake, fecal production, and food assimilation rates as well as in AQ; the SFG exhibited a highly significant decrease. The remaining parameters (assimilation efficiency, oxygen consumption, oxygen extraction efficiency, specific metabolic rate, and ammonia excretion) increased after the exposure to Cd. We concluded that the sub-chronic exposure of Cyprinus carpio to a sublethal concentration of Cd causes important alterations in the energy-related homeostasis of fish. Most of the responses are indicative of physiological adaptations to compensate an increased energy requirement due to the impairments caused by the metal.
Collapse
Affiliation(s)
- L Ferrari
- Basic Sciences Department, Applied Ecophysiology Program and Institute of Ecology and Sustainable Development (PRODEA-INEDES), National University of Lujan (UNLu), Lujan, Argentina.
| | | | | |
Collapse
|
49
|
Dalziel AC, Vines TH, Schulte PM. REDUCTIONS IN PROLONGED SWIMMING CAPACITY FOLLOWING FRESHWATER COLONIZATION IN MULTIPLE THREESPINE STICKLEBACK POPULATIONS. Evolution 2011; 66:1226-39. [PMID: 22486700 DOI: 10.1111/j.1558-5646.2011.01498.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Anne C Dalziel
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
50
|
Lister AL, Van Der Kraak GJ, Rutherford R, MacLatchy D. Fundulus heteroclitus: ovarian reproductive physiology and the impact of environmental contaminants. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:278-87. [PMID: 21771666 DOI: 10.1016/j.cbpc.2011.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 07/07/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
Abstract
Fundulus heteroclitus, the mummichog or Atlantic killifish, is the dominant small-bodied fish species of the east coast estuaries and salt marshes of Canada and the USA, where it is present as two subspecies, the northern F. h. macrolepidotus and the southern F. h. heteroclitus. Recently identified as the premier teleost model in environmental biology, the species has long been of value in understanding evolved tolerance to toxicants and more lately in adding to our knowledge about reproductive effects of environmental endocrine disruptors. The body of literature on F. heteroclitus ovarian physiology and reproduction, from both field and laboratory studies, provides the foundation for present work focused on understanding the reproductive effects and modes of action of environmental toxicants. In this paper, we review the environmental and endocrine factors controlling ovarian and reproductive cycling in F. heteroclitus, noting specifics related to field and laboratory studies on the two subspecies as well as key research gaps compared to other fish species. We also summarize recent development of methodologies to study the effects of environmental contaminants on endocrine signalling and egg production in F. heteroclitus. Continued efforts to progress both our fundamental understanding of reproductive physiology in mummichog, coupled with studies focused on the modes of action of environmental contaminants, have high potential to further develop this teleost model. While the model may presently lag behind those based on other species of fish, the unique biochemical and physiological adaptations which allow F. heteroclitus to adapt to changing environmental and toxic conditions provide a valuable experimental system for comparative physiologists, ecotoxicologists and evolutionary biologists.
Collapse
Affiliation(s)
- Andrea L Lister
- Department of Biology, Wilfrid Laurier University, 75 University Ave West, Waterloo, Ontario, Canada N2L3C5.
| | | | | | | |
Collapse
|