1
|
Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms 2022; 10:microorganisms10122334. [PMID: 36557586 PMCID: PMC9784227 DOI: 10.3390/microorganisms10122334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.
Collapse
|
2
|
The battle for oxygen during bacterial and fungal infections. Trends Microbiol 2022; 30:643-653. [DOI: 10.1016/j.tim.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
|
3
|
Overcoming the Prokaryote/Eukaryote Barrier in Tuberculosis Treatment: A Prospect for the Repurposing and Use of Antiparasitic Drugs. Microorganisms 2021; 9:microorganisms9112335. [PMID: 34835459 PMCID: PMC8622410 DOI: 10.3390/microorganisms9112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance, the so-called silent pandemic, is pushing industry and academia to find novel antimicrobial agents with new mechanisms of action in order to be active against susceptible and drug-resistant microorganisms. In the case of tuberculosis, the need of novel anti-tuberculosis drugs is specially challenging because of the intricate biology of its causative agent, Mycobacterium tuberculosis. The repurposing of medicines has arisen in recent years as a fast, low-cost, and efficient strategy to identify novel biomedical applications for already approved drugs. This review is focused on anti-parasitic drugs that have additionally demonstrated certain levels of anti-tuberculosis activity; along with this, natural products with a dual activity against parasites and against M. tuberculosis are discussed. A few clinical trials have tested antiparasitic drugs in tuberculosis patients, and have revealed effective dose and toxicity issues, which is consistent with the natural differences between tuberculosis and parasitic infections. However, through medicinal chemistry approaches, derivatives of drugs with anti-parasitic activity have become successful drugs for use in tuberculosis therapy. In summary, even when the repurposing of anti-parasitic drugs for tuberculosis treatment does not seem to be an easy job, it deserves attention as a potential contributor to fuel the anti-tuberculosis drug pipeline.
Collapse
|
4
|
Danchik C, Wang S, Karakousis PC. Targeting the Mycobacterium tuberculosis Stringent Response as a Strategy for Shortening Tuberculosis Treatment. Front Microbiol 2021; 12:744167. [PMID: 34690990 PMCID: PMC8529327 DOI: 10.3389/fmicb.2021.744167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The stringent response is well conserved across bacterial species and is a key pathway involved both in bacterial survival and virulence and in the induction of antibiotic tolerance in Mycobacteria. It is mediated by the alarmone (p)ppGpp and the regulatory molecule inorganic polyphosphate in response to stress conditions such as nutrient starvation. Efforts to pharmacologically target various components of the stringent response have shown promise in modulating mycobacterial virulence and antibiotic tolerance. In this review, we summarize the current understanding of the stringent response and its role in virulence and tolerance in Mycobacteria, including evidence that targeting this pathway could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - Petros C. Karakousis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Li Y, Sharma MR, Koripella RK, Banavali NK, Agrawal RK, Ojha AK. Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria. MICROBIOLOGY-SGM 2021; 167. [PMID: 33555244 DOI: 10.1099/mic.0.001035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Nilesh K Banavali
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
6
|
André AC, Debande L, Marteyn BS. The selective advantage of facultative anaerobes relies on their unique ability to cope with changing oxygen levels during infection. Cell Microbiol 2021; 23:e13338. [PMID: 33813807 DOI: 10.1111/cmi.13338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Bacteria, including those that are pathogenic, have been generally classified according to their ability to survive and grow in the presence or absence of oxygen: aerobic and anaerobic bacteria, respectively. Strict aerobes require oxygen to grow (e.g., Neisseria), and strict anaerobes grow exclusively without, and do not survive oxygen exposure (e.g., Clostridia); aerotolerant bacteria (e.g., Lactobacilli) are insensitive to oxygen exposure. Facultative anaerobes (e.g., E. coli) have the unique ability to grow in the presence or in the absence of oxygen and are thus well-adapted to these changing conditions, which may constitute an underestimated selective advantage for infection. In the WHO antibiotic-resistant 'priority pathogens' list, facultative anaerobes are overrepresented (8 among 12 listed pathogens), consistent with clinical studies performed in populations particularly susceptible to infectious diseases. Bacteria aerobic respiratory chain plays a central role in oxygen consumption, leading to the formation of hypoxic infectious sites (infectious hypoxia). Facultative anaerobes have developed a wide diversity of aerotolerance and anaerotolerance strategies in vivo. However, at a single cell level, the modulation of the intracellular oxygen level in host infected cells remains elusive and will be discussed in this review. In conclusion, the ability of facultative bacteria to evolve in the presence or the absence of oxygen is essential for their virulence strategy and constitute a selective advantage. TAKE AWAY: Most life-threatening pathogenic bacteria are facultative anaerobes. Only facultative anaerobes are aerotolerant, anaerotolerant and capable of consuming O2 . Facultative anaerobes induce and are well adapted to cellular hypoxia.
Collapse
Affiliation(s)
- Antonin C André
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,Université de Paris, Paris, France
| | - Lorine Debande
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France
| | - Benoit S Marteyn
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut Pasteur, Unité de Pathogenèse des Infections Vasculaires, Paris Cedex 15, France
| |
Collapse
|
7
|
Deletion of pknG Abates Reactivation of Latent Mycobacterium tuberculosis in Mice. Antimicrob Agents Chemother 2021; 65:AAC.02095-20. [PMID: 33468473 DOI: 10.1128/aac.02095-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023] Open
Abstract
Eradication of tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been a challenge due to its uncanny ability to survive in a dormant state inside host granulomas for decades. Mtb rewires its metabolic and redox regulatory networks to survive in the hostile hypoxic and nutrient-limiting environment, facilitating the formation of drug-tolerant persisters. Previously, we showed that protein kinase G (PknG), a virulence factor required for lysosomal escape, aids in metabolic adaptation, thereby promoting the survival of nonreplicating mycobacteria. Here, we sought to investigate the therapeutic potential of PknG against latent mycobacterium. We show that inhibition of PknG by AX20017 reduces mycobacterial survival in in vitro latency models such as hypoxia, persisters, and nutrient starvation. Targeting PknG enhances the bactericidal activity of the frontline anti-TB drugs in peritoneal macrophages. Deletion of pknG resulted in 5- to 15-fold-reduced survival of Mtb in chronically infected mice treated with anti-TB drugs. Importantly, in the Cornell mouse model of latent TB, the deletion of pknG drastically attenuated Mtb's ability to resuscitate after antibiotic treatment compared with wild-type and complemented strains. This is the first study to investigate the sterilizing activity of pknG deletion and inhibition for adjunct therapy against latent TB in a preclinical model. Collectively, these results suggest that PknG may be a promising drug target for adjunct therapy to shorten the treatment duration and reduce disease relapse.
Collapse
|
8
|
Pei JF, Qi N, Li YX, Wo J, Ye BC. RegX3-Mediated Regulation of Methylcitrate Cycle in Mycobacterium smegmatis. Front Microbiol 2021; 12:619387. [PMID: 33603724 PMCID: PMC7884335 DOI: 10.3389/fmicb.2021.619387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis is a global human pathogen that infects macrophages and can establish a latent infection. Emerging evidence has established the nutrients metabolism as a key point to study the pathogenesis of M. tuberculosis and host immunity. It was reported that fatty acids and cholesterol are the major nutrient sources of M. tuberculosis in the period of infection. However, the mechanism by which M. tuberculosis utilizes lipids for maintaining life activities in nutrient-deficiency macrophages is poorly understood. Mycobacterium smegmatis is fast-growing and generally used to study its pathogenic counterpart, M. tuberculosis. In this work, we found that the phosphate sensing regulator RegX3 of M. smegmatis is required for its growing on propionate and surviving in macrophages. We further demonstrated that the expression of prpR and related genes (prpDBC) in methylcitrate cycle could be enhanced by RegX3 in response to the phosphate-starvation condition. The binding sites of the promoter region of prpR for RegX3 and PrpR were investigated. In addition, cell morphology assay showed that RegX3 is responsible for cell morphological elongation, thus promoting the proliferation and survival of M. smegmatis in macrophages. Taken together, our findings revealed a novel transcriptional regulation mechanism of RegX3 on propionate metabolism, and uncovered that the nutrients-sensing regulatory system puts bacteria at metabolic steady state by altering cell morphology. More importantly, since we observed that M. tuberculosis RegX3 also binds to the prpR operon in vitro, the RegX3-mediated regulation might be general in M. tuberculosis and other mycobacteria for nutrient sensing and environmental adaptation.
Collapse
Affiliation(s)
- Jin-Feng Pei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Xin Li
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jing Wo
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Campaniço A, Harjivan SG, Warner DF, Moreira R, Lopes F. Addressing Latent Tuberculosis: New Advances in Mimicking the Disease, Discovering Key Targets, and Designing Hit Compounds. Int J Mol Sci 2020; 21:ijms21228854. [PMID: 33238468 PMCID: PMC7700174 DOI: 10.3390/ijms21228854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Despite being discovered and isolated more than one hundred years ago, tuberculosis (TB) remains a global public health concern arch. Our inability to eradicate this bacillus is strongly related with the growing resistance, low compliance to current drugs, and the capacity of the bacteria to coexist in a state of asymptomatic latency. This last state can be sustained for years or even decades, waiting for a breach in the immune system to become active again. Furthermore, most current therapies are not efficacious against this state, failing to completely clear the infection. Over the years, a series of experimental methods have been developed to mimic the latent state, currently used in drug discovery, both in vitro and in vivo. Most of these methods focus in one specific latency inducing factor, with only a few taking into consideration the complexity of the granuloma and the genomic and proteomic consequences of each physiological factor. A series of targets specifically involved in latency have been studied over the years with promising scaffolds being discovered and explored. Taking in account that solving the latency problem is one of the keys to eradicate the disease, herein we compile current therapies and diagnosis techniques, methods to mimic latency and new targets and compounds in the pipeline of drug discovery.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Shrika G. Harjivan
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Digby F. Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa;
- Department of Pathology, SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Welcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
- Correspondence:
| |
Collapse
|
10
|
Sharan R, Kaushal D. Vaccine strategies for the Mtb/HIV copandemic. NPJ Vaccines 2020; 5:95. [PMID: 33083030 PMCID: PMC7555484 DOI: 10.1038/s41541-020-00245-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
One-third of world’s population is predicted to be infected with tuberculosis (TB). The resurgence of this deadly disease has been inflamed by comorbidity with human immunodeficiency virus (HIV). The risk of TB in people living with HIV (PLWH) is 15–22 times higher than people without HIV. Development of a single vaccine to combat both diseases is an ardent but tenable ambition. Studies have focused on the induction of specific humoral and cellular immune responses against HIV-1 following recombinant BCG (rBCG) expressing HIV-1 antigens. Recent advances in the TB vaccines led to the development of promising candidates such as MTBVAC, the BCG revaccination approach, H4:IC31, H56:IC31, M72/AS01 and more recently, intravenous (IV) BCG. Modification of these vaccine candidates against TB/HIV coinfection could reveal key correlates of protection in a representative animal model. This review discusses the (i) potential TB vaccine candidates that can be exploited for use as a dual vaccine against TB/HIV copandemic (ii) progress made in the realm of TB/HIV dual vaccine candidates in small animal model, NHP model, and human clinical trials (iii) the failures and promising targets for a successful vaccine strategy while delineating the correlates of vaccine-induced protection.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227 USA
| | - Deepak Kaushal
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227 USA
| |
Collapse
|
11
|
Application of Mycobacterium smegmatis as a surrogate to evaluate drug leads against Mycobacterium tuberculosis. J Antibiot (Tokyo) 2020; 73:780-789. [PMID: 32472054 DOI: 10.1038/s41429-020-0320-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 01/09/2023]
Abstract
Discovery of new anti-tuberculosis (TB) drugs is a time-consuming process due to the slow-growing nature of Mycobacterium tuberculosis (Mtb). A requirement of biosafety level 3 (BSL-3) facility for performing research associated with Mtb is another limitation for the development of TB drug discovery. In our screening of BSL-1 Mycobacterium spp. against a battery of TB drugs, M. smegmatis (ATCC607) exhibits good agreement with its drug susceptibility against the TB drugs under a low-nutrient culture medium (0.5% Tween 80 in Middlebrook 7H9 broth). M. smegmatis (ATCC607) enters its dormant form in 14 days under a nutrient-deficient condition (a PBS buffer), and shows resistance to a majority of TB drugs, but shows susceptibility to amikacin, capreomycin, ethambutol, and rifampicin (with high concentrations) whose activities against non-replicating (or dormant) Mtb were previously validated.
Collapse
|
12
|
Lee BM, Harold LK, Almeida DV, Afriat-Jurnou L, Aung HL, Forde BM, Hards K, Pidot SJ, Ahmed FH, Mohamed AE, Taylor MC, West NP, Stinear TP, Greening C, Beatson SA, Nuermberger EL, Cook GM, Jackson CJ. Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS Pathog 2020; 16:e1008287. [PMID: 32032366 PMCID: PMC7032734 DOI: 10.1371/journal.ppat.1008287] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/20/2020] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resistance against the new antitubercular nitroimidazole prodrugs pretomanid and delamanid to emerge in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Deazaflavin-dependent nitroreductase (Ddn) is the only identified enzyme within M. tuberculosis that activates these prodrugs, via an F420H2-dependent reaction. We show that the native menaquinone-reductase activity of Ddn is essential for emergence from hypoxia, which suggests that for resistance to spread and pose a threat to human health, the native activity of Ddn must be at least partially retained. We tested 75 unique mutations, including all known sequence polymorphisms identified among ~15,000 sequenced M. tuberculosis genomes. Several mutations abolished pretomanid and delamanid activation in vitro, without causing complete loss of the native activity. We confirmed that a transmissible M. tuberculosis isolate from the hypervirulent Beijing family already possesses one such mutation and is resistant to pretomanid, before being exposed to the drug. Notably, delamanid was still effective against this strain, which is consistent with structural analysis that indicates delamanid and pretomanid bind to Ddn differently. We suggest that the mutations identified in this work be monitored for informed use of delamanid and pretomanid treatment and to slow the emergence of resistance.
Collapse
Affiliation(s)
- Brendon M. Lee
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Liam K. Harold
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Deepak V. Almeida
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Livnat Afriat-Jurnou
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- MIGAL, Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Htin Lin Aung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Brian M. Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - F. Hafna Ahmed
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - A. Elaaf Mohamed
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matthew C. Taylor
- Land and Water Flagship, The Commonwealth Scientific and Industrial Organisation, Canberra, Australian Capital Territory, Australia
| | - Nicholas P. West
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Chris Greening
- Land and Water Flagship, The Commonwealth Scientific and Industrial Organisation, Canberra, Australian Capital Territory, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Eric L. Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
13
|
Yeware A, Agrawal S, Sarkar D. A high content screening assay for identifying inhibitors against active and dormant state intracellular Mycobacterium tuberculosis. J Microbiol Methods 2019; 164:105687. [PMID: 31415793 DOI: 10.1016/j.mimet.2019.105687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/10/2019] [Accepted: 08/10/2019] [Indexed: 11/17/2022]
Abstract
The antitubercular drug development pipeline could start with an in vitro investigation of several compounds to examine their effect on active and dormant state Mycobacterium tuberculosis (Mtb). However, in vitro screening of dormant state bacilli cannot provide enough information on the simultaneous effect of a compound on the host. Therefore, we developed a live cell fluorescence based screening protocol by utilizing the high content system for determining the effect of inhibitors against active and dormant state intracellular mycobacteria. THP-1 macrophages infected with an actively growing and hypoxia derived dormant Mtb culture were standardized to develop the screening protocol. The signal to noise ratio and the Z' factor of this assay were found to be 7.5-29 and 0.6-0.8, respectively, which confirm the robustness of the protocol. The protocol was then validated with standard inhibitors. This newly developed drug screening assay offers an easy, safe, image based high content screening tool to search for novel antitubercular inhibitors against both active and dormant state intracellular mycobacteria. Therefore, this assay could fill in the gap between in vitro and in vivo latent tuberculosis drug screening programs.
Collapse
Affiliation(s)
- Amar Yeware
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Combi Chem-Bio Resource Center, Organic Chemistry Division, Dr. Homi Bhabha Road, National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Sonia Agrawal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Combi Chem-Bio Resource Center, Organic Chemistry Division, Dr. Homi Bhabha Road, National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Dhiman Sarkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Combi Chem-Bio Resource Center, Organic Chemistry Division, Dr. Homi Bhabha Road, National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
14
|
Modelling a Silent Epidemic: A Review of the In Vitro Models of Latent Tuberculosis. Pathogens 2018; 7:pathogens7040088. [PMID: 30445695 PMCID: PMC6313694 DOI: 10.3390/pathogens7040088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is the primary cause of death by a single infectious agent; responsible for around two million deaths in 2016. A major virulence factor of TB is the ability to enter a latent or Non-Replicating Persistent (NRP) state which is presumed untreatable. Approximately 1.7 billion people are latently infected with TB and on reactivation many of these infections are drug resistant. As the current treatment is ineffective and diagnosis remains poor, millions of people have the potential to reactivate into active TB disease. The immune system seeks to control the TB infection by containing the bacteria in a granuloma, where it is exposed to stressful anaerobic and nutrient deprived conditions. It is thought to be these environmental conditions that trigger the NRP state. A number of in vitro models have been developed that mimic conditions within the granuloma to a lesser or greater extent. These different models have all been utilised for the research of different characteristics of NRP Mycobacterium tuberculosis, however their disparity in approach and physiological relevance often results in inconsistencies and a lack of consensus between studies. This review provides a summation of the different NRP models and a critical analysis of their respective advantages and disadvantages relating to their physiological relevance.
Collapse
|
15
|
Yeware A, Sarkar D. Novel red fluorescence protein based microplate assay for drug screening against dormant Mycobacterium tuberculosis by using paraffin. Tuberculosis (Edinb) 2018; 110:15-19. [PMID: 29779767 DOI: 10.1016/j.tube.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 11/19/2022]
Abstract
The hypoxia model of dormancy is widely used in drug screening programs to identify novel inhibitors against latent Mycobacterium tuberculosis disease. In earlier reported microplate assays, hypoxia was maintained by either sealing the microplate or shifting in an anaerobic chamber to develop dormant phenotype. In these assays, inhibitors were added during inoculation, which mainly represents the active stage inhibitors instead of the dormant ones. Herein, the culture was covered with paraffin to develop hypoxia condition and consequently providing the advantage of adding compounds at any stage during incubation of 96-well plate. The stable expression of the red fluorescent protein in the bacilli under both actively growing as well as dormant conditions also facilitate the reliable estimation of growth and inhibition kinetics of bacilli in medium. Furthermore, S/N ratio and Z' factor of this assay were found to be > 27 and 0.91-0.94 respectively, which confirm the robustness of the protocol. This newly developed drug-screening assay offers an easy, inexpensive, safe and high throughput-screening tool to search novel antitubercular inhibitors against both active and dormant bacilli. The red fluorescent H37Ra strain is a suitable surrogate for the more virulent H37Rv strain, and thus this effort will help in combating latent tuberculosis.
Collapse
Affiliation(s)
- Amar Yeware
- Academy of Sciences and Innovative Research (AcSIR), CSIR-NCL Pune, India; Combi Chem Bio Resource Center, Organic Chemistry Division, Dr. Homi Bhabha Road, National Chemical Laboratory, Pune, 411008, Maharashtra, India.
| | - Dhiman Sarkar
- Academy of Sciences and Innovative Research (AcSIR), CSIR-NCL Pune, India; Combi Chem Bio Resource Center, Organic Chemistry Division, Dr. Homi Bhabha Road, National Chemical Laboratory, Pune, 411008, Maharashtra, India.
| |
Collapse
|
16
|
Veatch AV, Kaushal D. Opening Pandora's Box: Mechanisms of Mycobacterium tuberculosis Resuscitation. Trends Microbiol 2017; 26:145-157. [PMID: 28911979 DOI: 10.1016/j.tim.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) characteristically causes an asymptomatic infection. While this latent tuberculosis infection (LTBI) is not contagious, reactivation to active tuberculosis disease (TB) causes the patient to become infectious. A vaccine has existed for TB for a century, while drug treatments have been available for over 70 years; despite this, TB remains a major global health crisis. Understanding the factors which allow the bacillus to control responses to host stress and mechanisms leading to latency are critical for persistence. Similarly, molecular switches which respond to reactivation are important. Recently, research in the field has sought to focus on reactivation, employing system-wide approaches and animal models. Here, we describe the current work that has been done to elucidate the mechanisms of reactivation and stop reactivation in its tracks.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
17
|
Abstract
This article provides an overview of the animal models currently used in tuberculosis research, both for understanding the basic science of the disease process and also for practical issues such as testing new vaccine candidates and evaluating the activity of potential new drugs. Animals range in size, from zebrafish to cattle, and in degrees of similarity to the human disease from both an immunological and pathologic perspective. These models have provided a great wealth of information (impossible to obtain simply from observing infected humans), but we emphasize here that one must use care in interpreting or applying this information, and indeed the true art of animal modeling is in deciding what is pertinent information and what might not be. These ideas are discussed in the context of current approaches in vaccine and drug development, including a discussion of certain limitations the field is currently facing in such studies.
Collapse
|
18
|
Abstract
This article describes the nature of the host response to Mycobacterium tuberculosis in the mouse and guinea pig models of infection. It describes the great wealth of information obtained from the mouse model, reflecting the general availability of immunological reagents, as well as genetic manipulations of the mouse strains themselves. This has led to a good understanding of the nature of the T-cell response to the infection, as well as an appreciation of the complexity of the response involving multiple cytokine- and chemokine-mediated systems. As described here and elsewhere, we have a growing understanding of how multiple CD4-positive T-cell subsets are involved, including regulatory T cells, TH17 cells, as well as the subsequent emergence of effector and central memory T-cell subsets. While, in contrast, our understanding of the host response in the guinea pig model is less advanced, considerable strides have been made in the past decade in terms of defining the basis of the immune response, as well as a better understanding of the immunopathologic process. This model has long been the gold standard for vaccine testing, and more recently is being revisited as a model for testing new drug regimens (bedaquiline being the latest example).
Collapse
|
19
|
Zhan L, Tang J, Sun M, Qin C. Animal Models for Tuberculosis in Translational and Precision Medicine. Front Microbiol 2017; 8:717. [PMID: 28522990 PMCID: PMC5415616 DOI: 10.3389/fmicb.2017.00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.
Collapse
Affiliation(s)
- Lingjun Zhan
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Jun Tang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Mengmeng Sun
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| |
Collapse
|
20
|
Rifat D, Campodónico VL, Tao J, Miller JA, Alp A, Yao Y, Karakousis PC. In vitro and in vivo fitness costs associated with Mycobacterium tuberculosis RpoB mutation H526D. Future Microbiol 2017; 12:753-765. [PMID: 28343421 DOI: 10.2217/fmb-2017-0022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM There is controversy regarding the potential fitness costs of rifampicin (RIF) resistance-conferring mutations in the Mycobacterium tuberculosis (Mtb) rpoB gene. We characterized the pathogenicity of an Mtb RpoB H526D mutant. MATERIALS & METHODS A mutant containing the RpoB H526D mutation was isolated from wild-type Mtb grown on RIF-containing plates and complemented for determination of in vitro and in vivo fitness costs. RESULTS The RpoB H526D mutant showed reduced survival relative to control strains during progressive hypoxia and delayed growth following resuscitation from nutrient starvation (p < 0.05), which was associated with reduced expression of the resuscitation-promoting factor genes rpfB, rpfC and rpfE. Relative to the isogenic wild-type strain, the mutant showed significantly attenuated growth and long-term survival as well as reduced inflammation in mouse lungs. Conclusion & future perspective: Our data suggest that RpoB H526D mutation confers a fitness cost during growth-limiting conditions in vitro and in mouse lungs.
Collapse
Affiliation(s)
- Dalin Rifat
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Victoria L Campodónico
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Jing Tao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA.,Department of Microbiology & Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - James A Miller
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Alpaslan Alp
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA.,Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yufeng Yao
- Department of Microbiology & Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 21205, USA
| |
Collapse
|
21
|
Arena ET, Tinevez JY, Nigro G, Sansonetti PJ, Marteyn BS. The infectious hypoxia: occurrence and causes during Shigella infection. Microbes Infect 2016; 19:157-165. [PMID: 27884799 DOI: 10.1016/j.micinf.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022]
Abstract
Hypoxia is defined as a tissue oxygenation status below physiological needs. During Shigella infection, an infectious hypoxia is induced within foci of infection. In this review, we discuss how Shigella physiology and virulence are modulated and how the main recruited immune cells, the neutrophils, adapt to this environment.
Collapse
Affiliation(s)
- Ellen T Arena
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Citech, Imagopole, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Giulia Nigro
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; Collège de France, 11 Place Marcellin Berthelot, F-75231, Paris Cedex 05, France
| | - Benoit S Marteyn
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; Gustave Roussy Cancer Campus, Laboratoire de Thérapie Cellulaire, 114 Rue Edouard Vaillant, 94800 Villejuif, France.
| |
Collapse
|
22
|
Braverman J, Sogi KM, Benjamin D, Nomura DK, Stanley SA. HIF-1α Is an Essential Mediator of IFN-γ-Dependent Immunity to Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:1287-97. [PMID: 27430718 DOI: 10.4049/jimmunol.1600266] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022]
Abstract
The cytokine IFN-γ coordinates macrophage activation and is essential for control of pathogens, including Mycobacterium tuberculosis However, the mechanisms by which IFN-γ controls M. tuberculosis infection are only partially understood. In this study, we show that the transcription factor hypoxia-inducible factor-1α (HIF-1α) is an essential mediator of IFN-γ-dependent control of M. tuberculosis infection both in vitro and in vivo. M. tuberculosis infection of IFN-γ-activated macrophages results in a synergistic increase in HIF-1α protein levels. This increase in HIF-1α levels is functionally important, as macrophages lacking HIF-1α are defective for IFN-γ-dependent control of infection. RNA-sequencing demonstrates that HIF-1α regulates nearly one-half of all IFN-γ-inducible genes during infection of macrophages. In particular, HIF-1α regulates production of important immune effectors, including inflammatory cytokines and chemokines, eicosanoids, and NO. In addition, we find that during infection HIF-1α coordinates a metabolic shift to aerobic glycolysis in IFN-γ-activated macrophages. We find that this enhanced glycolytic flux is crucial for IFN-γ-dependent control of infection in macrophages. Furthermore, we identify a positive feedback loop between HIF-1α and aerobic glycolysis that amplifies macrophage activation. Finally, we demonstrate that HIF-1α is crucial for control of infection in vivo as mice lacking HIF-1α in the myeloid lineage are strikingly susceptible to infection and exhibit defective production of inflammatory cytokines and microbicidal effectors. In conclusion, we have identified HIF-1α as a novel regulator of IFN-γ-dependent immunity that coordinates an immunometabolic program essential for control of M. tuberculosis infection in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan Braverman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Kimberly M Sogi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720; Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720; and
| | - Daniel Benjamin
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel K Nomura
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Sarah A Stanley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720; Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720; and
| |
Collapse
|
23
|
Lipworth S, Hammond RJH, Baron VO, Hu Y, Coates A, Gillespie SH. Defining dormancy in mycobacterial disease. Tuberculosis (Edinb) 2016; 99:131-142. [PMID: 27450015 DOI: 10.1016/j.tube.2016.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/06/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022]
Abstract
Tuberculosis remains a threat to global health and recent attempts to shorten therapy have not succeeded mainly due to cases of clinical relapse. This has focussed attention on the importance of "dormancy" in tuberculosis. There are a number of different definitions of the term and a similar multiplicity of different in vitro and in vivo models. The danger with this is the implicit assumption of equivalence between the terms and models, which will make even more difficult to unravel this complex conundrum. In this review we summarise the main models and definitions and their impact on susceptibility of Mycobacterium tuberculosis. We also suggest a potential nomenclature for debate. Dormancy researchers agree that factors underpinning this phenomenon are complex and nuanced. If we are to make progress we must agree the terms to be used and be consistent in using them.
Collapse
Affiliation(s)
- S Lipworth
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - R J H Hammond
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - V O Baron
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - Yanmin Hu
- Institute for Infection and Immunity, St George's, University of London, London SW17 ORE, United Kingdom
| | - A Coates
- Institute for Infection and Immunity, St George's, University of London, London SW17 ORE, United Kingdom
| | - S H Gillespie
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom.
| |
Collapse
|
24
|
Imaging latent tuberculosis infection with radiolabeled nitroimidazoles. Clin Transl Imaging 2016; 4:157-159. [PMID: 27077070 PMCID: PMC4820494 DOI: 10.1007/s40336-016-0166-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
|
25
|
Dutta NK, He R, Pinn ML, He Y, Burrows F, Zhang ZY, Karakousis PC. Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen. ACS Infect Dis 2016; 2:231-239. [PMID: 27478867 DOI: 10.1021/acsinfecdis.5b00133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12-24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment.
Collapse
Affiliation(s)
- Noton K. Dutta
- Center for Tuberculosis
Research, Department of Medicine, Johns Hopkins University School of Medicine, 1551 East Jefferson Street, Baltimore, Maryland 21287, United States
| | - Rongjun He
- Department of Biochemistry and Molecular
Biology Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, Indiana 46202, United States
| | - Michael L. Pinn
- Center for Tuberculosis
Research, Department of Medicine, Johns Hopkins University School of Medicine, 1551 East Jefferson Street, Baltimore, Maryland 21287, United States
| | - Yantao He
- Department of Biochemistry and Molecular
Biology Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, Indiana 46202, United States
| | - Francis Burrows
- Aarden Pharmaceuticals, Inc., 351 West 10th Street, Suite 248, Indianapolis, Indiana 46202, United States
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular
Biology Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, Indiana 46202, United States
| | - Petros C. Karakousis
- Center for Tuberculosis
Research, Department of Medicine, Johns Hopkins University School of Medicine, 1551 East Jefferson Street, Baltimore, Maryland 21287, United States
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
26
|
Datta M, Via LE, Chen W, Baish JW, Xu L, Barry CE, Jain RK. Mathematical Model of Oxygen Transport in Tuberculosis Granulomas. Ann Biomed Eng 2015; 44:863-72. [PMID: 26253038 DOI: 10.1007/s10439-015-1415-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/01/2015] [Indexed: 11/26/2022]
Abstract
Pulmonary granulomas--the hallmark of Mycobacterium tuberculosis (MTB) infection--are dense cellular lesions that often feature regions of hypoxia and necrosis, partially due to limited transport of oxygen. Low oxygen in granulomas can impair the host immune response, while MTB are able to adapt and persist in hypoxic environments. Here, we used a physiologically based mathematical model of oxygen diffusion and consumption to calculate oxygen profiles within the granuloma, assuming Michaelis-Menten kinetics. An approximate analytical solution--using a priori and newly estimated parameters from experimental data in a rabbit model of tuberculosis--was able to predict the size of hypoxic and necrotic regions in agreement with experimental results from the animal model. Such quantitative understanding of transport limitations can inform future tuberculosis therapeutic strategies that may include adjunct host-directed therapies that facilitate oxygen and drug delivery for more effective treatment.
Collapse
Affiliation(s)
- Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Cox 7, 100 Blossom Street, Boston, MA, 02114, USA
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Wei Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Cox 7, 100 Blossom Street, Boston, MA, 02114, USA
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - James W Baish
- Departments of Biomedical and Mechanical Engineering, Bucknell University, Lewisburg, PA, 17837, USA
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Cox 7, 100 Blossom Street, Boston, MA, 02114, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Cox 7, 100 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
27
|
Alnimr AM. Dormancy models for Mycobacterium tuberculosis: A minireview. Braz J Microbiol 2015; 46:641-7. [PMID: 26413043 PMCID: PMC4568887 DOI: 10.1590/s1517-838246320140507] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 10/09/2014] [Indexed: 11/21/2022] Open
Abstract
Dormancy models for Mycobacterium tuberculosis play important roles
in understanding various aspects of tuberculosis pathogenesis and in the testing of
novel therapeutic regimens. By simulating the latent tuberculosis infection, in which
the bacteria exist in a non-replicative state, the models demonstrate reduced
susceptibility to antimycobacterial agents. This minireview outlines the models
available for simulating latent tuberculosis both in vitro and in
several animal species. Additionally, this minireview discusses the advantages and
disadvantages of these models for investigating the bacterial subpopulations and
susceptibilities to sterilization by various antituberculosis drugs.
Collapse
Affiliation(s)
- Amani M Alnimr
- King Fahad Hospital of the University, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| |
Collapse
|
28
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
29
|
Rifat D, Belchis DA, Karakousis PC. senX3-independent contribution of regX3 to Mycobacterium tuberculosis virulence. BMC Microbiol 2014; 14:265. [PMID: 25344463 PMCID: PMC4213456 DOI: 10.1186/s12866-014-0265-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/09/2014] [Indexed: 01/27/2023] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) must adapt to various stress conditions during host infection. The two-component regulatory system (2CRS) SenX3-RegX3 is required for Mtb virulence. We showed recently that the senX3-regX3 intergenic region contains promoter activity, driving senX3-independent regX3 expression. In the current study, we tested the hypothesis that RegX3 has a SenX3-independent role in Mtb virulence. The gene expression patterns, growth, and survival of mutants containing transposon insertions in senX3 (senX3::Tn) and regX3 (regX3::Tn) were compared to those of their respective complemented strains and the isogenic wild-type parent strain during axenic growth in nutrient-rich broth, phosphate depletion, nutrient starvation, and in the lungs of BALB/c mice. Results regX3 expression was reduced in senX3::Tn during phosphate depletion and nutrient starvation, and expression of the phosphate-specific transport gene pstC2 was reduced similarly in senX3::Tn and regX3::Tn during phosphate depletion. Although senX3 and regX3 were each dispensable for Mtb growth in nutrient-rich broth, disruption of senX3 or regX3 caused a similar growth defect during phosphate depletion. Interestingly, senX3::Tn, in which monocistronic regX3 expression is preserved, showed significantly higher survival relative to regX3::Tn after 7 days of nutrient starvation (p <0.01), and in mouse lungs at Day 31 (p < 0.01), Day 62 (p < 0.01), and Day 124 (p = 0.05) after aerosol infection. Conclusion Our data demonstrate the specificity of the senX3-regX3 2CRS for sensing and responding to low ambient phosphate, but also raise the possibility that RegX3 may function independently of its cognate sensor histidine kinase.
Collapse
|
30
|
Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection. Infect Immun 2014; 82:3177-85. [PMID: 24842925 DOI: 10.1128/iai.01540-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis.
Collapse
|
31
|
Dutta NK, Illei PB, Jain SK, Karakousis PC. Characterization of a novel necrotic granuloma model of latent tuberculosis infection and reactivation in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2045-55. [PMID: 24815353 DOI: 10.1016/j.ajpath.2014.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/20/2014] [Accepted: 03/18/2014] [Indexed: 01/09/2023]
Abstract
We sought to develop and characterize a novel paucibacillary model in mice, which develops necrotic lung granulomas after infection with Mycobacterium tuberculosis. Six weeks after aerosol immunization with recombinant Mycobacterium bovis bacillus Calmette-Guerin overexpressing the 30-kDa antigen, C3HeB/FeJ mice were aerosol infected with M. tuberculosis H37Rv. Six weeks later, mice were treated with one of three standard regimens for latent tuberculosis infection or tumor necrosis factor (TNF)-neutralizing antibody. Mouse lungs were analyzed by histological features, positron emission tomography/computed tomography, whole-genome microarrays, and RT-PCR. Lungs and sera were studied by multiplex enzyme-linked immunosorbent assays. Paucibacillary infection was established, recapitulating the sterilizing activities of human latent tuberculosis infection regimens. TNF neutralization led to increased lung bacillary load, disrupted granuloma architecture with expanded necrotic foci and reduced tissue hypoxia, and accelerated animal mortality. TNF-neutralized mouse lungs and sera showed significant up-regulation of interferon γ, IL-1β, IL-6, IL-10, chemokine ligands 2 and 3, and matrix metalloproteinase genes. Clinical and microbiological reactivation of paucibacillary infection by TNF neutralization was associated with reduced hypoxia in lung granulomas and induction of matrix metalloproteinases and proinflammatory cytokines. This model may be useful for screening the sterilizing activity of novel anti-tuberculosis drugs, and identifying mycobacterial regulatory and metabolic pathways required for bacillary growth restriction and reactivation.
Collapse
Affiliation(s)
- Noton K Dutta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter B Illei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanjay K Jain
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| |
Collapse
|
32
|
Systems biology-based identification of Mycobacterium tuberculosis persistence genes in mouse lungs. mBio 2014; 5:mBio.01066-13. [PMID: 24549847 PMCID: PMC3944818 DOI: 10.1128/mbio.01066-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the duration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobacterial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, genetically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Experimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating M. tuberculosis persistence genes. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has a genetic repertoire that permits it to persist in the face of host immune responses. Identification of such persistence genes could reveal novel drug targets and elucidate mechanisms by which the organism eludes the immune system and resists drugs. Genetic screens have identified a total of 31 persistence genes, but to date only 15% of the ~4,000 M. tuberculosis genes have been tested experimentally. In this paper, as an alternative to brute force experimental screens, we describe computational methods that predict new persistence genes by combining known examples with growing databases of biological networks. Experimental testing demonstrated that these predictions are highly accurate, validating the computational approach and providing new information about M. tuberculosis persistence in host tissues. Using the new experimental results as additional input highlights additional genes for testing. Our approach can be extended to other data types and target organisms to characterize host-pathogen interactions relevant to this and other infectious diseases.
Collapse
|
33
|
Kim WJ, Son WS, Ahn DH, Im H, Ahn HC, Lee BJ. Solution structure of Rv0569, potent hypoxic signal transduction protein, from Mycobacterium tuberculosis. Tuberculosis (Edinb) 2013; 94:43-50. [PMID: 24275361 DOI: 10.1016/j.tube.2013.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
The latent infection is unique characteristic of Mycobacterium tuberculosis to overcome human immune response for its survival. The M. tb develops adaptation to extreme stress conditions to increase the viability, thus easily acquires drug resistance than any other bacteria and maintains a long-term infection status without any symptoms. Rv0569 is a conserved hypothetical protein that overexpresses under dormant state induced by hypoxia, starvation, and medication. To study function and structure in detail, we determined the solution structure of Rv0569 by NMR. NOE and RDC restraints were used to calculate the structure, which was further refined with AMBER. Rv0569 is composed of five antiparallel β-sheets and one α-helix. Rv0569 shows structural similarity with its homolog Rv2302, yet there is a big difference in the orientation of C-terminal α-helix between Rv0569 and Rv2302. According to previous studies, Rv0569 might comprise a hypoxia induced operon with the Rv0570 which is located 29 bp downstream of the Rv0569 and Rv0570 plays an important role in the latent infection. From our structure and bioinformatics research, we suggest that Rv0569 contributes to signaling transduction in hypoxic condition by binding with DNA for upregulation of Rv0570 or supporting Rv0570 for binding ATP during dormancy of tuberculosis.
Collapse
Affiliation(s)
- Won-Je Kim
- College of Pharmacy, Seoul National University, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Woo Sung Son
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 487-010, Republic of Korea
| | - Do-Hwan Ahn
- College of Pharmacy, Seoul National University, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Hookang Im
- College of Pharmacy, Seoul National University, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Hee-Chul Ahn
- College of Pharmacy, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 410-820, Republic of Korea
| | - Bong-Jin Lee
- College of Pharmacy, Seoul National University, Gwanak-Gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
34
|
Carroll MW, Jeon D, Mountz JM, Lee JD, Jeong YJ, Zia N, Lee M, Lee J, Via LE, Lee S, Eum SY, Lee SJ, Goldfeder LC, Cai Y, Jin B, Kim Y, Oh T, Chen RY, Dodd LE, Gu W, Dartois V, Park SK, Kim CT, Barry CE, Cho SN. Efficacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis. Antimicrob Agents Chemother 2013; 57:3903-9. [PMID: 23733467 PMCID: PMC3719751 DOI: 10.1128/aac.00753-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/25/2013] [Indexed: 11/20/2022] Open
Abstract
Pulmonary lesions from active tuberculosis patients are thought to contain persistent, nonreplicating bacilli that arise from hypoxic stress. Metronidazole, approved for anaerobic infections, has antituberculosis activity against anoxic bacilli in vitro and in some animal models and may target persistent, nonreplicating bacilli. In this double-blind, placebo-controlled trial, pulmonary multidrug-resistant tuberculosis subjects were randomly assigned to receive metronidazole (500 mg thrice daily) or placebo for 8 weeks in addition to an individualized background regimen. Outcomes were measured radiologically (change on high-resolution computed tomography [HRCT]), microbiologically (time to sputum smear and culture conversion), and clinically (status 6 months after stopping therapy). Enrollment was stopped early due to excessive peripheral neuropathies in the metronidazole arm. Among 35 randomized subjects, 31 (15 metronidazole, 16 placebo) were included in the modified intent-to-treat analysis. There were no significant differences by arm in improvement of HRCT lesions from baseline to 2 or 6 months. More subjects in the metronidazole arm converted their sputum smear (P = 0.04) and liquid culture (P = 0.04) to negative at 1 month, but these differences were lost by 2 months. Overall, 81% showed clinical success 6 months after stopping therapy, with no differences by arm. However, 8/16 (50%) of subjects in the metronidazole group and 2/17 (12%) of those in the placebo group developed peripheral neuropathy. Subjects who received metronidazole were 4.3-fold (95% confidence interval [CI], 1.1 to 17.1) more likely to develop peripheral neuropathies than subjects who received placebo. Metronidazole may have increased early sputum smear and culture conversion but was too neurotoxic to use over the longer term. Newer nitroimidazoles with both aerobic and anaerobic activity, now in clinical trials, may increase the sterilizing potency of future treatment regimens.
Collapse
Affiliation(s)
- Matthew W. Carroll
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Doosoo Jeon
- National Masan Hospital, Changwon, South Korea
| | - James M. Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jong Doo Lee
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeon Joo Jeong
- Department of Diagnostic Radiology, Pusan National University School of Medicine, Busan, South Korea
| | - Nadeem Zia
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Myungsun Lee
- International Tuberculosis Research Center, Changwon, South Korea
| | - Jongseok Lee
- International Tuberculosis Research Center, Changwon, South Korea
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Soyoung Lee
- International Tuberculosis Research Center, Changwon, South Korea
| | - Seok-Yong Eum
- International Tuberculosis Research Center, Changwon, South Korea
| | - Sung-Joong Lee
- International Tuberculosis Research Center, Changwon, South Korea
| | - Lisa C. Goldfeder
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ying Cai
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Boyoung Jin
- International Tuberculosis Research Center, Changwon, South Korea
| | - Youngran Kim
- International Tuberculosis Research Center, Changwon, South Korea
| | - Taegwon Oh
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Ray Y. Chen
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lori E. Dodd
- Biostatistics Research Branch, NIAID, NIH, Bethesda, Maryland, USA
| | - Wenjuan Gu
- Support to Biostatistics Research Branch, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Veronique Dartois
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sang-Nae Cho
- International Tuberculosis Research Center, Changwon, South Korea
- Department of Microbiology and Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
35
|
Potent rifamycin-sparing regimen cures guinea pig tuberculosis as rapidly as the standard regimen. Antimicrob Agents Chemother 2013; 57:3910-6. [PMID: 23733473 DOI: 10.1128/aac.00761-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strategies involving new drug combinations, as well as new uses of existing drugs, are urgently needed to reduce the time required to cure patients with drug-sensitive or multidrug-resistant (MDR) tuberculosis (TB). We compared the sterilizing activity of the standard first-line antitubercular regimen, rifampin-isoniazid-pyrazinamide (RHZ), with that of the novel regimen PA-824-moxifloxacin-pyrazinamide (PaMZ), which is currently being studied in clinical trials (NCT01498419), in the guinea pig model of chronic TB infection, in which animals develop necrotic granulomas histologically resembling their human counterparts. Guinea pigs were aerosol infected with ~2 log10 bacilli of wild-type Mycobacterium tuberculosis H37Rv, and antibiotic treatment was initiated 6 weeks after infection. Separate groups of animals received RHZ, PaMZ, or single or two-drug components of the latter regimen administered at human-equivalent doses 5 days/week for a total of 8 weeks. Relapse rates were assessed 3 months after discontinuation of treatment to determine the sterilizing activity of each combination regimen. PaMZ given at human-equivalent doses was safe and well tolerated for the entire treatment period and rendered guinea pig lungs culture negative more rapidly than RHZ did. After 1 month of treatment, 80% and 50% of animals in the RHZ and PaMZ groups, respectively, had lung culture-positive relapse. Both combination regimens prevented microbiological relapse when administered for a total of 2 months. Our data support the use of PaMZ as a novel isoniazid- and rifamycin-sparing regimen suitable for treatment of both drug-sensitive TB and MDR-TB.
Collapse
|
36
|
Klinkenberg LG, Karakousis PC. Rv1894c is a novel hypoxia-induced nitronate monooxygenase required for Mycobacterium tuberculosis virulence. J Infect Dis 2013; 207:1525-34. [PMID: 23408846 DOI: 10.1093/infdis/jit049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis is difficult to cure, requiring a minimum of 6 months of treatment with multiple antibiotics. Small numbers of organisms are able to tolerate the antibiotics and persist in the lungs of infected humans, but they still require some metabolic activity to survive. We studied the role of the hypoxia-induced Rv1894c gene in Mycobacterium tuberculosis virulence in guinea pigs, which develop hypoxic, necrotic granulomas histologically resembling those in humans and found this gene to be necessary for full bacillary growth and survival. We characterized the function of the encoded enzyme as a nitronate monooxygenase, which is needed to prevent the buildup of toxic products during hypoxic metabolism and is negatively regulated by the transcriptional repressor KstR. Future studies will focus on developing small-molecule inhibitors that target Rv1894c and its homologs, with the goal of killing persistent bacteria, thereby shortening the time needed to treat tuberculosis.
Collapse
Affiliation(s)
- Lee G Klinkenberg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231-0001, USA.
| | | |
Collapse
|
37
|
Masiewicz P, Brzostek A, Wolański M, Dziadek J, Zakrzewska-Czerwińska J. A novel role of the PrpR as a transcription factor involved in the regulation of methylcitrate pathway in Mycobacterium tuberculosis. PLoS One 2012; 7:e43651. [PMID: 22916289 PMCID: PMC3420887 DOI: 10.1371/journal.pone.0043651] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/23/2012] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium tuberculosis, the pathogen that causes tuberculosis, presumably utilizes fatty acids as a major carbon source during infection within the host. Metabolism of even-chain-length fatty acids yields acetyl-CoA, whereas metabolism of odd-chain-length fatty acids additionally yields propionyl-CoA. Utilization of these compounds by tubercle bacilli requires functional glyoxylate and methylcitrate cycles, respectively. Enzymes involved in both pathways are essential for M. tuberculosis viability and persistence during growth on fatty acids. However, little is known about regulatory factors responsible for adjusting the expression of genes encoding these enzymes to particular growth conditions. Here, we characterized the novel role of PrpR as a transcription factor that is directly involved in regulating genes encoding the key enzymes of methylcitrate (methylcitrate dehydratase [PrpD] and methylcitrate synthase [PrpC]) and glyoxylate (isocitrate lyase [Icl1]) cycles. Using cell-free systems and intact cells, we demonstrated an interaction of PrpR protein with prpDC and icl1 promoter regions and identified a consensus sequence recognized by PrpR. Moreover, we showed that an M. tuberculosis prpR-deletion strain exhibits impaired growth in vitro on propionate as the sole carbon source. Real-time quantitative reverse transcription-polymerase chain reaction confirmed that PrpR acts as a transcriptional activator of prpDC and icl1 genes when propionate is the main carbon source. Similar results were also obtained for a non-pathogenic Mycobacterium smegmatis strain. Additionally, we found that ramB, a prpR paralog that controls the glyoxylate cycle, is negatively regulated by PrpR. Our data demonstrate that PrpR is essential for the utilization of odd-chain-length fatty acids by tubercle bacilli. Since PrpR also acts as a ramB repressor, our findings suggest that it plays a key role in regulating expression of enzymes involved in both glyoxylate and methylcitrate pathways.
Collapse
Affiliation(s)
- Paweł Masiewicz
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Brzostek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Marcin Wolański
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jarosław Dziadek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
- * E-mail:
| |
Collapse
|
38
|
Metronidazole validates drugs targeting hypoxic bacteria for improved treatment of tuberculosis. Proc Natl Acad Sci U S A 2012; 109:13890-1. [PMID: 22895789 DOI: 10.1073/pnas.1211081109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Sacksteder KA, Protopopova M, Barry CE, Andries K, Nacy CA. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol 2012; 7:823-37. [PMID: 22827305 PMCID: PMC3480206 DOI: 10.2217/fmb.12.56] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Existing drugs have limited efficacy against the rising threat of drug-resistant TB, have significant side effects, and must be given in combinations of four to six drugs for at least 6 months for drug-sensitive TB and up to 24 months for drug-resistant TB. The long treatment duration has led to increased patient noncompliance with therapy. This, in turn, drives the development of additional drug resistance in a spiral that has resulted in some forms of TB being currently untreatable by existing drugs. New antitubercular drugs in development, particularly those with mechanisms of action that are different from existing first- and second-line TB drugs, are anticipated to be effective against both drug-sensitive and drug-resistant TB. SQ109 is a new TB drug candidate with a novel mechanism of action that was safe and well tolerated in Phase I and early Phase II clinical trials. We describe herein the identification, development and characterization of SQ109 as a promising new antitubercular drug.
Collapse
Affiliation(s)
| | | | - Clifton E Barry
- Tuberculosis Research Section, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Koen Andries
- Antimicrobial Research, Janssen Infectious Diseases, Beerse, Belgium
| | | |
Collapse
|
40
|
Singh PP, Smith VL, Karakousis PC, Schorey JS. Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 189:777-85. [PMID: 22723519 DOI: 10.4049/jimmunol.1103638] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 2 billion people are infected with Mycobacterium. tuberculosis; however, only 5-10% of those infected will develop active disease. Recent data suggest that containment is controlled locally at the level of the granuloma and that granuloma architecture may differ even within a single infected individual. Formation of a granuloma likely requires exposure to mycobacterial components released from infected macrophages, but the mechanism of their release is still unclear. We hypothesize that exosomes, which are small membrane vesicles containing mycobacterial components released from infected macrophages, could promote cellular recruitment during granuloma formation. In support of this hypothesis, we found that C57BL/6 mouse-derived bone marrow macrophages treated with exosomes released from M. tuberculosis-infected RAW264.7 cells secrete significant levels of chemokines and can induce migration of CFSE-labeled macrophages and splenocytes. Exosomes isolated from the serum of M. bovis bacillus Calmette-Guérin-infected mice could also stimulate macrophage production of chemokines and cytokines ex vivo, but the level and type differed during the course of a 60-d infection. Of interest, the exosome concentration in serum correlated strongly with mouse bacterial load, suggesting some role in immune regulation. Finally, hollow fiber-based experiments indicated that macrophages treated with exosomes released from M. tuberculosis-infected cells could promote macrophage recruitment in vivo. Exosomes injected intranasally could also recruit CD11b(+) cells into the lung. Overall, our study suggests that exosomes may play an important role in recruiting and regulating host cells during an M. tuberculosis infection.
Collapse
Affiliation(s)
- Prachi P Singh
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
41
|
Rifapentine is not more active than rifampin against chronic tuberculosis in guinea pigs. Antimicrob Agents Chemother 2012; 56:3726-31. [PMID: 22547623 DOI: 10.1128/aac.00500-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rifamycins are key sterilizing drugs in the current treatment of active tuberculosis (TB). Daily dosing of rifapentine (P), a potent rifamycin with high intracellular accumulation, in place of rifampin (R) in the standard antitubercular regimen significantly shortens the duration of treatment needed to prevent relapse in a murine model of active TB. We undertook the current study to compare directly the activities of human-equivalent doses of P and R in a guinea pig model of chronic TB, in which bacilli are predominantly extracellular within human-like necrotic granulomas. Hartley strain guinea pigs were aerosol infected with ~200 bacilli of Mycobacterium tuberculosis H37Rv, and treatment given 5 days/week was initiated 6 weeks later. R at 100 mg/kg of body weight and P at 100 mg/kg were given orally alone or in combination with isoniazid (H) at 60 mg/kg and pyrazinamide (Z) at 300 mg/kg. Culture-positive relapse was assessed in subgroups of guinea pigs after completion of 1 and 2 months of treatment. Human-equivalent doses of R and P showed equivalent bactericidal activity when used alone and in combination therapy. In guinea pigs treated with rifampin, isoniazid, and pyrazinamide (RHZ) or PHZ, microbiological relapse occurred in the lungs of 8/10 animals treated for 1 month and in 0/10 animals treated for 2 months. Substitution of P for R in the standard antitubercular regimen did not shorten the time to cure in this guinea pig model of chronic TB. Data from ongoing clinical trials comparing the activity of these two drugs are awaited to determine the relevance of the guinea pig TB model in preclinical drug screening.
Collapse
|
42
|
Harper J, Skerry C, Davis SL, Tasneen R, Weir M, Kramnik I, Bishai WR, Pomper MG, Nuermberger EL, Jain SK. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis 2012; 205:595-602. [PMID: 22198962 PMCID: PMC3266133 DOI: 10.1093/infdis/jir786] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/23/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Preclinical evaluation of tuberculosis drugs is generally limited to mice. However, necrosis and hypoxia, key features of human tuberculosis lesions, are lacking in conventional mouse strains. METHODS We used C3HeB/FeJ mice, which develop necrotic lesions in response to Mycobacterium tuberculosis infection. Positron emission tomography in live infected animals, postmortem pimonidazole immunohistochemistry, and bacterial gene expression analyses were used to assess whether tuberculosis lesions in C3HeB/FeJ are hypoxic. Efficacy of combination drug treatment, including PA-824, active against M. tuberculosis under hypoxic conditions, was also evaluated. RESULTS Tuberculosis lesions in C3HeB/FeJ (but not BALB/c) were found to be hypoxic and associated with up-regulation of known hypoxia-associated bacterial genes (P < .001). Contrary to sustained activity reported elsewhere in BALB/c mice, moxifloxacin and pyrazinamide (MZ) combination was not bactericidal beyond 3 weeks in C3HeB/FeJ. Although PA-824 added significant activity, the novel combination of PA-824 and MZ was less effective than the standard first-line regimen in C3HeB/FeJ. CONCLUSIONS We demonstrate that tuberculosis lesions in C3HeB/FeJ are hypoxic. Activities of some key tuberculosis drug regimens in development are represented differently in C3HeB/FeJ versus BALB/c mice. Because C3HeB/FeJ display key features of human tuberculosis, this strain warrants evaluation as a more pathologically relevant model for preclinical studies.
Collapse
Affiliation(s)
- Jamie Harper
- Department of Medicine, Center for Infection and Inflammation Imaging Research
- Department of Medicine, Center for Tuberculosis Research
- Department of Pediatrics
| | - Ciaran Skerry
- Department of Medicine, Center for Tuberculosis Research
- Department of Pediatrics
| | - Stephanie L. Davis
- Department of Medicine, Center for Infection and Inflammation Imaging Research
- Department of Medicine, Center for Tuberculosis Research
- Department of Pediatrics
| | - Rokeya Tasneen
- Department of Medicine, Center for Tuberculosis Research
| | - Mariah Weir
- Department of Medicine, Center for Infection and Inflammation Imaging Research
- Department of Medicine, Center for Tuberculosis Research
- Department of Pediatrics
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Massachusetts
| | | | - Martin G. Pomper
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Sanjay K. Jain
- Department of Medicine, Center for Infection and Inflammation Imaging Research
- Department of Medicine, Center for Tuberculosis Research
- Department of Pediatrics
| |
Collapse
|
43
|
Shang S, Shanley CA, Caraway ML, Orme EA, Henao-Tamayo M, Hascall-Dove L, Ackart D, Orme IM, Ordway DJ, Basaraba RJ. Drug treatment combined with BCG vaccination reduces disease reactivation in guinea pigs infected with Mycobacterium tuberculosis. Vaccine 2012; 30:1572-82. [PMID: 22244979 DOI: 10.1016/j.vaccine.2011.12.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/14/2011] [Accepted: 12/24/2011] [Indexed: 11/30/2022]
Abstract
Bacillus-Calmette-Guerin (BCG), the only human tuberculosis vaccine, primes a partially protective immune response against Mycobacterium tuberculosis infection in humans and animals. In guinea pigs, BCG vaccination slows the progression of disease and reduces the severity of necrotic granulomas, which harbor a population of drug-tolerant bacilli. The objective of this study was to determine if reducing disease severity by BCG vaccination of guinea pigs prior to M. tuberculosis challenge enhanced the efficacy of combination drug therapy. At 20 days of infection, treatment of vaccinated and non-vaccinated animals with rifampin, isoniazid, and pyrizinamide (RHZ) was initiated for 4 or 8 weeks. On days 50, 80 and 190 of infection (10 weeks after drug were withdrawn), treatment efficacy was evaluated by quantifying clinical condition, bacterial loads, lesion severity, and dynamic changes in peripheral blood and lung leukocyte numbers by flow cytometry. In a separate, long-term survival study, treatment efficacy was evaluated by determining disease reactivation frequency post-mortem. BCG vaccination alone delayed pulmonary and extra-pulmonary disease progression, but failed to prevent dissemination of bacilli and the formation of necrotic granulomas. Drug therapy either alone or in combination with BCG, was more effective at lessening clinical disease and lesion severity compared to control animals or those receiving BCG alone. Fewer residual lesions in BCG vaccinated and drug treated animals, equated to a reduced frequency of reactivation disease and improvement in survival even out to 500 days of infection. The combining of BCG vaccination and drug therapy was more effective at resolving granulomas such that fewer animals had evidence of residual infection and thus less reactivation disease.
Collapse
Affiliation(s)
- Shaobin Shang
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thayil SM, Albini TA, Nazari H, Moshfeghi AA, Parel JMA, Rao NA, Karakousis PC. Local ischemia and increased expression of vascular endothelial growth factor following ocular dissemination of Mycobacterium tuberculosis. PLoS One 2011; 6:e28383. [PMID: 22162767 PMCID: PMC3230586 DOI: 10.1371/journal.pone.0028383] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/07/2011] [Indexed: 01/13/2023] Open
Abstract
The pathogenesis of intraocular tuberculosis remains poorly understood partly due to the lack of adequate animal models that accurately simulate human disease. Using a recently developed model of ocular tuberculosis following aerosol infection of guinea pigs with Mycobacterium tuberculosis, we studied the microbiological, histological, and clinical features of intraocular tuberculosis infection. Viable tubercle bacilli were cultivated from all eyes by Day 56 after aerosol delivery of ∼200 bacilli to guinea pig lungs. Choroidal tuberculous granulomas showed reduced oxygen tension, as evidenced by staining with the hypoxia-specific probe pimonidazole, and expression of vascular endothelial growth factor (VEGF) was detected in the retinal pigment epithelium (RPE) and photoreceptors. Fundoscopic examination of M. tuberculosis-infected guinea pig eyes revealed altered vascular architecture and chorioretinal hemorrhage by Day 56 after infection. This model may be useful in further elucidating the pathogenesis of ocular tuberculosis, as well as in developing tools for diagnosis and assessment of antituberculosis treatment responses in the eye.
Collapse
Affiliation(s)
- Seema M. Thayil
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States of America
| | - Hossein Nazari
- Doheny Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Andrew A. Moshfeghi
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States of America
| | - Jean-Marie A. Parel
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States of America
| | - Narsing A. Rao
- Doheny Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Petros C. Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
45
|
Thayil SM, Morrison N, Schechter N, Rubin H, Karakousis PC. The role of the novel exopolyphosphatase MT0516 in Mycobacterium tuberculosis drug tolerance and persistence. PLoS One 2011; 6:e28076. [PMID: 22132215 PMCID: PMC3221697 DOI: 10.1371/journal.pone.0028076] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/31/2011] [Indexed: 01/30/2023] Open
Abstract
Inorganic polyphosphate (poly P) has been postulated to play a regulatory role in the transition to bacterial persistence. In bacteria, poly P balance in the cell is maintained by the hydrolysis activity of the exopolyphosphatase PPX. However, the Mycobacterium tuberculosis PPX has not been characterized previously. Here we show that recombinant MT0516 hydrolyzes poly P, and an MT0516-deficient M. tuberculosis mutant exhibits elevated intracellular levels of poly P and increased expression of the genes mprB, sigE, and rel relative to the isogenic wild-type strain, indicating poly P-mediated signaling. Deficiency of MT0516 resulted in decelerated growth during logarithmic-phase in axenic cultures, and tolerance to the cell wall-active drug isoniazid. The MT0516-deficient mutant showed a significant survival defect in activated human macrophages and reduced persistence in the lungs of guinea pigs. We conclude that exopolyphosphatase is required for long-term survival of M. tuberculosis in necrotic lung lesions.
Collapse
Affiliation(s)
- Seema M. Thayil
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Norman Morrison
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Norman Schechter
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Harvey Rubin
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Petros C. Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
46
|
Reece ST, Kaufmann SHE. Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis? Curr Opin Microbiol 2011; 15:63-70. [PMID: 22074861 DOI: 10.1016/j.mib.2011.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022]
Abstract
The granuloma in tuberculosis (TB), referred to as the tubercle, is a lesion containing multiple cell types and is the one definite hallmark of this disease. A number of tubercle phenotypes are seen during infection yet how these contribute to development of TB remains unclear. Here we highlight recent results using diverse models of tubercle development as well as recent findings from studies of human TB in an attempt to illustrate the plasticity of the tubercle and to place it between the poles of pathology and protection. Such insights could lead to future interventions to address TB as a global health issue.
Collapse
Affiliation(s)
- Stephen T Reece
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany.
| | | |
Collapse
|
47
|
Mukherjee T, Boshoff H. Nitroimidazoles for the treatment of TB: past, present and future. Future Med Chem 2011; 3:1427-54. [PMID: 21879846 PMCID: PMC3225966 DOI: 10.4155/fmc.11.90] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis remains a leading cause of death resulting from an infectious agent, and the spread of multi- and extensively drug-resistant strains of Mycobacterium tuberculosis poses a threat to management of global health. New drugs that effectively shorten the duration of treatment and are active against drug-resistant strains of this pathogen are urgently required to develop effective chemotherapies to combat this disease. Two nitroimidazoles, PA-824 and OPC-67683, are currently in Phase II clinical trials for the treatment of TB and the outcome of these may determine the future directions of drug development for anti-tubercular nitroimidazoles. In this review we summarize the development of these nitroimidazoles and alternative analogs in these series that may offer attractive alternatives to PA-824 and OPC-67683 for further development in the drug-discovery pipeline. Lastly, the potential pitfalls in the development of nitroimidazoles as drugs for TB are discussed.
Collapse
Affiliation(s)
- Tathagata Mukherjee
- Tuberculosis Research Section, LCID, NIAID, NIH, Room 2W20G, Building 33, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Helena Boshoff
- Tuberculosis Research Section, LCID, NIAID, NIH, Room 2W20G, Building 33, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Abstract
Certain antimicrobial and anticancer drugs are only active following bioactivation within the target cell. Nitroimidazoles, nitrofurans and quinoxaline-di-N-oxides represent three chemical classes that are active as anti-tubercular drugs following intracellular bioreduction to reactive intermediates. Two nitroimidazoles are in clinical trials as new anti-tubercular drugs with significant bactericidal activity as well as activity on nonreplicating bacteria. Nitrofurans and quinoxaline-di-N-oxides, which are in preclinical development, also exhibit bactericidal activity and activity on nonreplicating bacteria. Current data indicate these drugs are bioreduced via distinct pathways that yield reactive free radical species. Since flux though each system would become saturated due to enzyme kinetics, cellular uptake or maximum drug concentration attainable in the host, one may propose that using three distinct systems simultaneously could produce a larger burst of free radicals to rapidly and efficiently kill bacteria and shorten the time to cure for tuberculosis. Arguments for the possible development of a novel combination therapy with maximized bacterial cell killing and the possibility of shortening the time to cure will be presented.
Collapse
|
49
|
Dorhoi A, Reece ST, Kaufmann SHE. For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol Rev 2011; 240:235-51. [PMID: 21349097 DOI: 10.1111/j.1600-065x.2010.00994.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is a complex disease, and the success of the bacterium as an intracellular pathogen is the outcome of its close and longstanding coevolution with the mammalian host. The dialogue between Mycobacterium tuberculosis and the host is becoming understandable at the molecular, cellular, and tissue level. This has led to the elucidation of the (i) interaction between pattern recognition receptors and pathogen-associated molecular patterns, (ii) cross-talk between immune cells, and (iii) mechanisms underlying granuloma development. Disease as an eventual but not a necessary consequence of infection results from a sensitive balance between protective immunity and destructive pathology. Early events, governed largely by conserved mechanisms of host recognition, impact not only on type and course of adaptive immunity but also on lung parenchymal function. New interpretations of how these responses shape the lung environment and direct granuloma development emphasize that the disease results from pathologic consequences of non-resolving inflammation. We review recent advances in TB research within the context of this ambitious view of TB.
Collapse
Affiliation(s)
- Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | |
Collapse
|
50
|
Orme IM. Development of new vaccines and drugs for TB: limitations and potential strategic errors. Future Microbiol 2011; 6:161-77. [PMID: 21366417 DOI: 10.2217/fmb.10.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The concomitant HIV and TB epidemics pose an enormous threat to humanity. After invading the host Mycobacterium tuberculosis initially behaves as an intracellular pathogen, which elicits the emergence of acquired specific resistance in the form of a T-helper-1 T-cell response, and involves the secretion of a myriad of cytokines and chemokines to drive protective immunity and granuloma formation. However, after that, a second phase of the disease process involves survival of bacilli in an extracellular state that is still poorly understood. This article briefly reviews the various strategies currently being used to improve both vaccination and drug therapy of TB, and attempts to make the argument that current viewpoints that dominate [both the field and the current literature] may be seriously flawed. This includes both the choice of new vaccine and drug candidates, and also the ways these are being tested in animal models, which in the opinion of the author run the risk of driving the field backwards rather than forward.
Collapse
Affiliation(s)
- Ian M Orme
- Department of Microbiology, Immunology & Pathology, Colorado State University, Colorado, CO 80523, USA.
| |
Collapse
|