1
|
James I, Jain R, Wade G, Stevenson PC, Koulman A, Simcox J, Furse S. Systemic analysis shows that cold exposure modulates triglyceride accumulation and phospholipid distribution in mice. PLoS One 2024; 19:e0313205. [PMID: 39509438 PMCID: PMC11542792 DOI: 10.1371/journal.pone.0313205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Environmental exposure to cold is increasingly being associated with changes in metabolism. We developed and tested the hypothesis that exposure to cold drives systemic effects in lipid metabolism. Specifically, (i) that energy storage and provision adapts to the cold by altering triglyceride distribution and (ii) that membranes adapt to cold conditions by becoming more unsaturated. These hypotheses were designed to identify the underlying mechanisms that govern the response of mammalian systems to cold. To test these hypotheses, we used a metabolic network analysis. An established model of cold exposure was used, from which lipidomics data that represents the system was collected. The network analysis showed that triglyceride metabolism is altered on exposure to cold, with several smaller effects that are not straightforward, such as changes to the abundance and distribution of odd chain fatty acids. The range and profile of phosphatidylcholine and phosphatidylinositol were modified, but there was little change in phosphatidylethanolamine or sphingomyelin. These results support the hypothesis, and show that exposure to cold is a system-wide phenomenon that requires or drives changes across a range of metabolic pathways.
Collapse
Affiliation(s)
- Isabella James
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Raghav Jain
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gina Wade
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Philip C. Stevenson
- Biological Chemistry Group, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Judith Simcox
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Samuel Furse
- Biological Chemistry Group, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Hedin KA, Zhang H, Kruse V, Rees VE, Bäckhed F, Greiner TU, Vazquez-Uribe R, Sommer MOA. Cold Exposure and Oral Delivery of GLP-1R Agonists by an Engineered Probiotic Yeast Strain Have Antiobesity Effects in Mice. ACS Synth Biol 2023; 12:3433-3442. [PMID: 37827516 PMCID: PMC10661039 DOI: 10.1021/acssynbio.3c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 10/14/2023]
Abstract
Advanced microbiome therapeutics (AMTs) holds promise in utilizing engineered microbes such as bacteria or yeasts for innovative therapeutic applications, including the in situ delivery of therapeutic peptides. Glucagon-like peptide-1 receptor agonists, such as Exendin-4, have emerged as potential treatments for type 2 diabetes and obesity. However, current administration methods face challenges with patient adherence and low oral bioavailability. To address these limitations, researchers are exploring improved oral delivery methods for Exendin-4, including utilizing AMTs. This study engineered the probiotic yeast Saccharomyces boulardii to produce Exendin-4 (Sb-Exe4) in the gastrointestinal tract of male C57BL/6 mice to combat diet-induced obesity. The biological efficiency of Exendin-4 secreted by S. boulardii was analyzed ex vivo on isolated pancreatic islets, demonstrating induced insulin secretion. The in vivo characterization of Sb-Exe4 revealed that when combined with cold exposure (8 °C), the Sb-Exe4 yeast strain successfully suppressed appetite by 25% and promoted a 4-fold higher weight loss. This proof of concept highlights the potential of AMTs to genetically modify S. boulardii for delivering active therapeutic peptides in a precise and targeted manner. Although challenges in efficacy and regulatory approval persist, AMTs may provide a transformative platform for personalized medicine. Further research in AMTs, particularly focusing on probiotic yeasts such as S. boulardii, holds great potential for novel therapeutic possibilities and enhancing treatment outcomes in diverse metabolic disorders.
Collapse
Affiliation(s)
- Karl Alex Hedin
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Hongbin Zhang
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vibeke Kruse
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vanessa Emily Rees
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Fredrik Bäckhed
- The
Wallenberg Laboratory, Department of Molecular and Clinical Medicine,
Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department
of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Basic Metabolic Research, Faculty of
Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas U. Greiner
- The
Wallenberg Laboratory, Department of Molecular and Clinical Medicine,
Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Ruben Vazquez-Uribe
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten Otto Alexander Sommer
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Zhou B, Huang Y, Nie J, Ding L, Sun C, Chen B. Modification and verification of the PMV model to improve thermal comfort prediction at low pressure. J Therm Biol 2023; 117:103722. [PMID: 37832334 DOI: 10.1016/j.jtherbio.2023.103722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
The human body's thermal physiology changes due to atmospheric pressure, which significantly impacts the perception of thermal comfort. To quantify this effect, an improved version of the Predicted Mean Vote model (PMVp), was developed in this study to predict human thermal sensation under low atmospheric pressure conditions. The study employed environmental conditions of 0km/26°C, 3km/26°C, 4km/26°C, and 4km/21°C. Thirteen subjects were continuously monitored for exhaled CO2, inhaled O2, ambient temperature (ta), relative humidity (RH), air velocity (V), black globe temperature (tg), and altitude (H). The predictive performance of PMVp was evaluated by comparing the experimental results from this study with previous experiments. The findings demonstrate that PMVp exhibits lower root-mean-square errors (RMSE) than the original PMV model. Under the four experimental conditions, the RMSE values for PMVp were 0.311, 0.408, 0.123, and 0.375, while those for PMV were 1.251, 1.367, 1.106, and 1.716, respectively. Specifically, at a temperature range of 21∼27°C (altitude: 941m), the RMSE of PMVp (0.354) was smaller than PMV's. Furthermore, the study analyzed the sensitivity of PMVp to input parameters at an altitude of 4 km. PMVp exhibited considerable sensitivity to the metabolic rate (M) and thermal insulation of clothing (ICL). Consequently, a simple sensitivity scale was established: M>ICL>Ta≈V>Tr>H≈RH, indicating the relative importance of these parameters in influencing PMVp's response. The research findings provide comprehensive knowledge and a useful reference for developing a standard to design and evaluate indoor thermal environments in the plateau region.
Collapse
Affiliation(s)
- Biyun Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yuran Huang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jiachen Nie
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Li Ding
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Chao Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Bo Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
4
|
Li M, Gao M, Jia M, Lu Y, Zhai Y, Lu H. ISRIB alleviates aging-associated brown fat UCP1 translational repression and thermogenic deficiency. Biochem Biophys Res Commun 2023; 673:179-186. [PMID: 37393756 DOI: 10.1016/j.bbrc.2023.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
Upon cold exposure, aged people with lower metabolic rate cannot rapidly increase the higher levels of heat production, and are seriously threatened by the hypothermia, extensive cold stress responses and risk of mortality. Here, we show that brown fat thermogenic activity is obviously deficient in aged mice, associating with reduction of UCP1 expression and inhibition of its mRNA translation. As we considered, aging aggravates brown fat oxidative stress and activates the integrated stress response (ISR), inducing the phosphorylation of eIF2α to block the global mRNA translation. Therefore, small-molecule ISR inhibitor (ISRIB) treatment attenuates the higher level of eIF2α phosphorylation, restores the repression of Ucp1 mRNA translation and improves UCP1-mediated thermogenic function to defend cold stress in aged mice. Furthermore, ISRIB treatment increases the relative lower metabolic rates, and alleviates glucose intolerance and insulin resistance in aged mice. Thus, we have uncovered a promising drug that reverses the aged-related the deficiency of UCP1-mediated thermogenesis to combat cold stress and associated metabolic diseases.
Collapse
Affiliation(s)
- Muze Li
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China; National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mengjie Gao
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Meiqi Jia
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yifan Lu
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yue Zhai
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, China.
| | - Huanyu Lu
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Ha H, Xu Y. An ecological study on the spatially varying association between adult obesity rates and altitude in the United States: using geographically weighted regression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1030-1042. [PMID: 32940052 DOI: 10.1080/09603123.2020.1821875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
In this research, we evaluated the relationship between obesity rates and altitude using a cross-county study design. We applied a geographically weighted regression (GWR) to examine the spatially varying association between adult obesity rates and altitude after adjusting for four predictor variables including physical activity. A significant negative relationship between altitude and adult obesity rates were found in the GWR model. Our GWR model fitted the data better than OLS regression (R2 = 0.583), as indicated by an improved R2 (average R2 = 0.670; range: 0.26-0.77) and a lower Akaike Information Criteria (AIC) value (14,736.88 vs. 15,386.59 in the OLS model). These approaches, evidencing spatial varying associations, proved very useful to refine interpretations of the statistical output on adult obesity. This study underscored the geographic variation in relationships between adult obesity rates and mean county altitude in the United States. Our study confirmed a varying overall negative relationship between county-level adult obesity rates and mean county altitude after taking other confounding factors into account.
Collapse
Affiliation(s)
- Hoehun Ha
- Department of Biology and Environmental Science, Auburn University at Montgomery, Montgomery, AL, USA
| | - Yanqing Xu
- Department of Geography and Planning, University of Toledo, Toledo, OH, USA
| |
Collapse
|
6
|
Kosaruk W, Brown JL, Plangsangmas T, Towiboon P, Punyapornwithaya V, Silva-Fletcher A, Thitaram C, Khonmee J, Edwards KL, Somgird C. Effect of Tourist Activities on Fecal and Salivary Glucocorticoids and Immunoglobulin A in Female Captive Asian Elephants in Thailand. Animals (Basel) 2020; 10:ani10101928. [PMID: 33096598 PMCID: PMC7589861 DOI: 10.3390/ani10101928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary How tourist camp activities affect individual elephant welfare is an important and highly debated topic. Saliva and fecal samples were collected monthly for 1 year from 44 female Asian elephants that participated in three programs (saddle-, bareback-, or no-riding), and analyzed for glucocorticoids (GC) and immunoglobulin A (IgA). The hypothesis was that better welfare would be associated with low GC and high IgA concentrations. Both biomarkers showed significant variation with respect to camp size, riding activities, tourist-to-elephant ratios and seasonality, but not always consistently between feces and saliva, and not always in the predicted direction. However, there was no clear indication that riding per se negatively affected these two biomarkers. The lack of consistent responses highlights the difficulty in interpreting physiological data in relation to management factors, and suggests more work is needed to differentiate between potential chronic (feces) and acute (saliva) responses. Abstract Asian elephants have been an important part of wildlife ecotourism in Thailand for over two decades. Elephants in tourist camps are exposed to a variety of management styles and daily activities that can potentially affect health and welfare. This study investigated relationships between a novel welfare biomarker, immunoglobulin A (IgA), and daily camp activities, and compared results to glucocorticoid (GC) measures. Often no-riding camps are portrayed as providing better welfare than camps that offer riding. Therefore, we predicted that elephants at no-riding camps would have lower GC and higher IgA concentrations, and a low GC/IgA ratio. Forty-four female elephants from six elephant camps were divided into three groups based on riding activities: saddle-riding, bareback-riding, and no-riding. Fecal and salivary samples were collected monthly for 1 year along with evaluations of body condition, foot health, and wounding. Camp environment and management varied among camps, although the major difference was in riding activities. Concentrations of GCs and IgA varied among the working groups, but not always consistently between sample matrices. Overall fecal glucocorticoid metabolite concentrations were lowest in the saddle-riding group. Only in one bareback-riding camp did the elephants exhibit a potentially positive welfare response with a low GC/IgA ratio over time. Other results varied between the two biomarkers, with considerable variability across camps, suggesting there is more to good welfare than whether elephants participate in riding or not. Several other human-induced stressors, like chaining, ankus use, and limited social opportunities are likely to be impacting well-being and should be considered to ensure management practices meet physical and psychological welfare needs.
Collapse
Affiliation(s)
- Worapong Kosaruk
- Master’s Degree Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (P.T.); (C.T.); (J.K.)
| | - Janine L. Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA; (J.L.B.); (K.L.E.)
| | - Tithipong Plangsangmas
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (P.T.); (C.T.); (J.K.)
- Faculty of VeterinaryMedicine and Applied Zoology, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Lak Si, Bangkok 10210, Thailand
| | - Patcharapa Towiboon
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (P.T.); (C.T.); (J.K.)
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Veterinary Public Health Centre and Food Safety for Asia Pacific (VPHCAP), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Ayona Silva-Fletcher
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, Hertfordshire AL9 7TA, UK;
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (P.T.); (C.T.); (J.K.)
- Department of Companion Animal and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Jaruwan Khonmee
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (P.T.); (C.T.); (J.K.)
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Katie L. Edwards
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA; (J.L.B.); (K.L.E.)
- North of England Zoological Society, Chester Zoo, Upton-by-Chester, Chester CH2 1LH, UK
| | - Chaleamchat Somgird
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (P.T.); (C.T.); (J.K.)
- Department of Companion Animal and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: ; Tel.: +66-53948-015
| |
Collapse
|
7
|
Andrew JR, Garland T, Chappell MA, Zhao M, Saltzman W. Effects of short- and long-term cold acclimation on morphology, physiology, and exercise performance of California mice (Peromyscus californicus): potential modulation by fatherhood. J Comp Physiol B 2019; 189:471-487. [PMID: 31073767 PMCID: PMC6667301 DOI: 10.1007/s00360-019-01219-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/27/2019] [Accepted: 04/22/2019] [Indexed: 01/23/2023]
Abstract
California mice (Peromyscus californicus) differ from most other mammals in that they are biparental, genetically monogamous, and (compared with other Peromyscus) relatively large. We evaluated effects of cold acclimation on metabolic rate, exercise performance, and morphology of pair-housed male California mice, as well as modulation of these effects by fatherhood. In Experiment 1, virgin males housed at 5° or 10 °C for approximately 25 days were compared with virgins housed at standard vivarium temperature of 22 °C. Measures included resting metabolic rate (RMR), maximal oxygen consumption ([Formula: see text]max), grip strength, and sprint speed. In Experiment 2, virgin males housed at 22 °C were compared with three groups of males housed at 10 °C: virgins, breeding males (housed with a female and their pups), and non-breeding males (housed with an ovariectomized, estrogen- and progesterone-treated female) after long-term acclimation (mean 243 days). Measures in this experiment included basal metabolic rate (BMR), [Formula: see text]max, maximal thermogenic capacity ([Formula: see text]sum), and morphological traits. In Experiment 1, virgin males housed at 5° and 10 °C had higher RMR and [Formula: see text]max than those at 22 °C. In Experiment 2, 10 °C-acclimated groups had shorter bodies; increased body, fat, and lean masses; higher BMR and [Formula: see text]sum, and generally greater morphometric measures and organ masses than virgin males at 22 °C. Among the groups housed at 10 °C, breeding males had higher BMR and lower [Formula: see text]max than non-breeding and/or virgin males. Overall, we found that effects of fatherhood during cold acclimation were inconsistent, and that several aspects of cold acclimation differ substantially between California mice and other small mammals.
Collapse
Affiliation(s)
- Jacob R Andrew
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Mark A Chappell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
Rached MT, Millership SJ, Pedroni SMA, Choudhury AI, Costa ASH, Hardy DG, Glegola JA, Irvine EE, Selman C, Woodberry MC, Yadav VK, Khadayate S, Vidal-Puig A, Virtue S, Frezza C, Withers DJ. Deletion of myeloid IRS2 enhances adipose tissue sympathetic nerve function and limits obesity. Mol Metab 2019; 20:38-50. [PMID: 30553769 PMCID: PMC6358539 DOI: 10.1016/j.molmet.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Sympathetic nervous system and immune cell interactions play key roles in the regulation of metabolism. For example, recent convergent studies have shown that macrophages regulate obesity through brown adipose tissue (BAT) activation and beiging of white adipose tissue (WAT) via effects upon local catecholamine availability. However, these studies have raised issues about the underlying mechanisms involved including questions regarding the production of catecholamines by macrophages, the role of macrophage polarization state and the underlying intracellular signaling pathways in macrophages that might mediate these effects. METHODS To address such issues we generated mice lacking Irs2, which mediates the effects of insulin and interleukin 4, specifically in LyzM expressing cells (Irs2LyzM-/- mice). RESULTS These animals displayed obesity resistance and preservation of glucose homeostasis on high fat diet feeding due to increased energy expenditure via enhanced BAT activity and WAT beiging. Macrophages per se did not produce catecholamines but Irs2LyzM-/- mice displayed increased sympathetic nerve density and catecholamine availability in adipose tissue. Irs2-deficient macrophages displayed an anti-inflammatory transcriptional profile and alterations in genes involved in scavenging catecholamines and supporting increased sympathetic innervation. CONCLUSIONS Our studies identify a critical macrophage signaling pathway involved in the regulation of adipose tissue sympathetic nerve function that, in turn, mediates key neuroimmune effects upon systemic metabolism. The insights gained may open therapeutic opportunities for the treatment of obesity.
Collapse
Affiliation(s)
- Marie-Therese Rached
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Silvia M A Pedroni
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | | | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Darran G Hardy
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Justyna A Glegola
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Elaine E Irvine
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Megan C Woodberry
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Vijay K Yadav
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK; Department of Genetics and Development, Columbia University, New York, 10032, USA
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK; University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Samuel Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
9
|
Jothery AHA, Vaanholt LM, Mody N, Arnous A, Lykkesfeldt J, Bünger L, Hill WG, Mitchell SE, Allison DB, Speakman JR. Oxidative costs of reproduction in mouse strains selected for different levels of food intake and which differ in reproductive performance. Sci Rep 2016; 6:36353. [PMID: 27841266 PMCID: PMC5107891 DOI: 10.1038/srep36353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
Oxidative damage caused by reactive oxygen species has been hypothesised to underpin the trade-off between reproduction and somatic maintenance, i.e., the life-history-oxidative stress theory. Previous tests of this hypothesis have proved equivocal, and it has been suggested that the variation in responses may be related to the tissues measured. Here, we measured oxidative damage (protein carbonyls, 8-OHdG) and antioxidant protection (enzymatic antioxidant activity and serum antioxidant capacity) in multiple tissues of reproductive (R) and non-reproductive (N) mice from two mouse strains selectively bred for high (H) or low (L) food intake, which differ in their reproductive performance, i.e., H mice have increased milk energy output (MEO) and wean larger pups. Levels of oxidative damage were unchanged (liver) or reduced (brain and serum) in R versus N mice, and no differences in multiple measures of oxidative protection were found between H and L mice in liver (except for Glutathione Peroxidase), brain or mammary glands. Also, there were no associations between an individual’s energetic investment (e.g., MEO) and most of the oxidative stress measures detected in various tissues. These data are inconsistent with the oxidative stress theory, but were more supportive of, but not completely consistent, with the ‘oxidative shielding’ hypothesis.
Collapse
Affiliation(s)
- Aqeel H Al Jothery
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.,Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Karbala, Karbala, Iraq
| | - Lobke M Vaanholt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Nimesh Mody
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Foresterhill Health Campus, Aberdeen, United Kingdom
| | - Anis Arnous
- Section of Experimental Animal Models, Faculty of Health &Medical Sciences,University of Copenhagen, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Faculty of Health &Medical Sciences,University of Copenhagen, Denmark
| | - Lutz Bünger
- Animal and Veterinary Science Group, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK
| | - William G Hill
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - David B Allison
- School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.,Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Jia R, Luo XQ, Wang G, Lin CX, Qiao H, Wang N, Yao T, Barclay JL, Whitehead JP, Luo X, Yan JQ. Characterization of cold-induced remodelling reveals depot-specific differences across and within brown and white adipose tissues in mice. Acta Physiol (Oxf) 2016; 217:311-24. [PMID: 27064138 DOI: 10.1111/apha.12688] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 04/08/2016] [Indexed: 12/11/2022]
Abstract
AIM Brown and beige adipose tissues dissipate energy in the form of heat via mitochondrial uncoupling protein 1, defending against hypothermia and potentially obesity. The latter has prompted renewed interest in understanding the processes involved in browning to realize the potential therapeutic benefits. To characterize the temporal profile of cold-induced changes and browning of brown and white adipose tissues in mice. METHODS Male C57BL/6J mice were singly housed in conventional cages under cold exposure (4 °C) for 1, 2, 3, 4, 5 and 7 days. Food intake and body weight were measured daily. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous (sWAT) and epididymal white adipose tissue (eWAT) were harvested for histological, immunohistochemical, gene and protein expression analysis. RESULTS Upon cold exposure, food intake increased, whilst body weight and adipocyte size were found to be transiently reduced. iBAT mass was found to be increased, whilst sWAT and eWAT were found to be transiently decreased. A combination of morphological, genetic (Ucp-1, Pgc-1α and Elov13) and biochemical (UCP-1, PPARγ and aP2) analyses demonstrated the depot-specific remodelling in response to cold exposure. CONCLUSION Our results demonstrate the differential responses to cold-induced changes across discrete BAT and WAT depots and support the notion that the effects of short-term cold exposure are achieved by expansion, activation and increasing thermogenic capacity of iBAT, as well as browning of sWAT and, to a lesser extent, eWAT.
Collapse
Affiliation(s)
- R. Jia
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
- Department of Prosthodontics; College of Stomatology, Stomatological Hospital; Xi'an Jiaotong University; Xi'an China
| | - X.-Q. Luo
- Department of Medicine; School of Public Health; Xi'an Jiaotong University Health Science Center; Xi'an China
| | - G. Wang
- Department of Biology; Boston University; Boston MA USA
| | - C.-X. Lin
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| | - H. Qiao
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| | - N. Wang
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| | - T. Yao
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| | - J. L. Barclay
- Mater Research Institute; University of Queensland; Brisbane QLD Australia
- Translational Research Institute; Brisbane QLD Australia
| | - J. P. Whitehead
- Mater Research Institute; University of Queensland; Brisbane QLD Australia
- Translational Research Institute; Brisbane QLD Australia
| | - X. Luo
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| | - J.-Q. Yan
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
11
|
Lin Y, Li X, Zhang L, Zhang Y, Zhu H, Zhang Y, Xi Z, Yang D. Inhaled SiO 2 nanoparticles blunt cold-exposure-induced WAT-browning and metabolism activation in white and brown adipose tissue. Toxicol Res (Camb) 2016; 5:1106-1114. [PMID: 30090416 DOI: 10.1039/c6tx00015k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/24/2016] [Indexed: 11/21/2022] Open
Abstract
Concern has been growing over the potential hazard of nanoparticles to human health because of increasing ambient particulate air pollution. Much research has been performed on the toxicology of nanoparticles to organs. Meanwhile, particles floating in air, particularly in winter, are more serious. Thus, the purpose of this study was to evaluate the effect of nanoparticles and cold on human health. There is little research on the effects of nanoparticles on energy metabolism. The composition of particulate matter is complicated; however, silicon in particles accounts for a significant proportion. Adipose tissue is the main organ that produces heat and maintains the body temperature in a cold environment. White adipose tissue (WAT) stores energy in the form of triacylglycerol, whereas brown adipose tissue (BAT) dissipates energy in the form of heat to maintain the body temperature. This article presents the effect of air ultra-particles and cold on the WAT and BAT. In vivo, Sprague-Dawley rats were divided into four groups: exposed to the same deposited doses of silicon dioxide (SiO2) nanoparticles (NPs) by intratracheal instillation or/and cold exposure at 4 °C, 4 h per day for four weeks. Cold exposure induced weight loss and WAT browning, as indicated by pathology, transmission electron microscopy (TEM), upregulated mRNA levels of BAT and WAT specific genes and molecular switches. Intratracheal instillation of nano-SiO2 induced a slowdown in metabolism, weight gain and inhibited WAT browning, as indicated by the downregulated mRNA levels of BAT and WAT marker genes and molecular switches. This study provided direct evidence that SiO2 NPs might inhibit the effect of cold-induced white/brown adipose tissue changes in plasticity and metabolism.
Collapse
Affiliation(s)
- Yangsheng Lin
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Xi Li
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Li Zhang
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Yongqiang Zhang
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Huili Zhu
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Ying Zhang
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Zhuge Xi
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Danfeng Yang
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| |
Collapse
|
12
|
Le Couteur DG, Solon-Biet S, Cogger VC, Mitchell SJ, Senior A, de Cabo R, Raubenheimer D, Simpson SJ. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell Mol Life Sci 2016; 73:1237-52. [PMID: 26718486 PMCID: PMC11108352 DOI: 10.1007/s00018-015-2120-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Most research on nutritional effects on aging has focussed on the impact of manipulating single dietary factors such as total calorie intake or each of the macronutrients individually. More recent studies using a nutritional geometric approach called the Geometric Framework have facilitated an understanding of how aging is influenced across a landscape of diets that vary orthogonally in macronutrient and total energy content. Such studies have been performed using ad libitum feeding regimes, thus taking into account compensatory feeding responses that are inevitable in a non-constrained environment. Geometric Framework studies on insects and mice have revealed that diets low in protein and high in carbohydrates generate longest lifespans in ad libitum-fed animals while low total energy intake (caloric restriction by dietary dilution) has minimal effect. These conclusions are supported indirectly by observational studies in humans and a heterogeneous group of other types of interventional studies in insects and rodents. Due to compensatory feeding for protein dilution, low-protein, high-carbohydrate diets are often associated with increased food intake and body fat, a phenomenon called protein leverage. This could potentially be mitigated by supplementing these diets with interventions that influence body weight through physical activity and ambient temperature.
Collapse
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia.
- Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Concord, 2139, Australia.
| | - Samantha Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
- Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Concord, 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
- Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Concord, 2139, Australia
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute ON Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Alistair Senior
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Rafael de Cabo
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
- School of Biological Sciences, University of Sydney, Sydney, 2006, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia.
- School of Biological Sciences, University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
13
|
Zhao XY, Zhang JY, Cao J, Zhao ZJ. Oxidative Damage Does Not Occur in Striped Hamsters Raising Natural and Experimentally Increased Litter Size. PLoS One 2015; 10:e0141604. [PMID: 26505889 PMCID: PMC4624642 DOI: 10.1371/journal.pone.0141604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022] Open
Abstract
Life-history theory assumes that animals can balance the allocation of limited energy or resources to the competing demands of growth, reproduction and somatic maintenance, while consequently maximizing their fitness. However, somatic damage caused by oxidative stress in reproductive female animals is species-specific or is tissue dependent. In the present study, several markers of oxidative stress (hydrogen peroxide, H2O2 and malonadialdehyde, MDA) and antioxidant (catalase, CAT and total antioxidant capacity, T-AOC) were examined in striped hamsters during different stages of reproduction with experimentally manipulated litter size. Energy intake, resting metabolic rate (RMR), and mRNA expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and UCP3 in skeletal muscle were also examined. H2O2 and MDA levels did not change in BAT and liver, although they significantly decreased in skeletal muscle in the lactating hamsters compared to the non-reproductive group. However, H2O2 levels in the brain were significantly higher in lactating hamsters than non-reproductive controls. Experimentally increasing litter size did not cause oxidative stress in BAT, liver and skeletal muscle, but significantly elevated H2O2 levels in the brain. CAT activity of liver decreased, but CAT and T-AOC activity of BAT, skeletal muscle and the brain did not change in lactating hamsters compared to non-reproductive controls. Both antioxidants did not change with the experimentally increasing litter size. RMR significantly increased, but BAT UCP1 mRNA expression decreased with the experimentally increased litter size, suggesting that it was against simple positive links between metabolic rate, UCP1 expression and free radicals levels. It may suggest that the cost of reproduction has negligible effect on oxidative stress or even attenuates oxidative stress in some active tissues in an extensive range of animal species. But the increasing reproductive effort may cause oxidative stress in the brain, indicating that oxidative stress in response to reproduction is tissue dependent. These findings provide partial support for the life-history theory.
Collapse
Affiliation(s)
- Xiao-Ya Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ji-Ying Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- * E-mail:
| |
Collapse
|
14
|
Boudoulas KD, Borer JS, Boudoulas H. Heart Rate, Life Expectancy and the Cardiovascular System: Therapeutic Considerations. Cardiology 2015; 132:199-212. [PMID: 26305771 DOI: 10.1159/000435947] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022]
Abstract
It has long been known that life span is inversely related to resting heart rate in most organisms. This association between heart rate and survival has been attributed to the metabolic rate, which is greater in smaller animals and is directly associated with heart rate. Studies have shown that heart rate is related to survival in apparently healthy individuals and in patients with different underlying cardiovascular diseases. A decrease in heart rate due to therapeutic interventions may result in an increase in survival. However, there are many factors regulating heart rate, and it is quite plausible that these may independently affect life expectancy. Nonetheless, a fast heart rate itself affects the cardiovascular system in multiple ways (it increases ventricular work, myocardial oxygen consumption, endothelial stress, aortic/arterial stiffness, decreases myocardial oxygen supply, other) which, in turn, may affect survival. In this brief review, the effects of heart rate on the heart, arterial system and survival will be discussed.
Collapse
|
15
|
Hou C, Amunugama K. On the complex relationship between energy expenditure and longevity: Reconciling the contradictory empirical results with a simple theoretical model. Mech Ageing Dev 2015; 149:50-64. [DOI: 10.1016/j.mad.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/06/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
|
16
|
Cortés PA, Petit M, Lewden A, Milbergue M, Vézina F. Individual inconsistencies in basal and summit metabolic rate highlight flexibility of metabolic performance in a wintering passerine. ACTA ACUST UNITED AC 2015; 323:179-90. [DOI: 10.1002/jez.1908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Pablo Andrés Cortés
- Instituto de Ciencias Ambientales y; Facultad de Ciencias; Universidad Austral de Chile Campus Isla Teja; Valdivia Chile
| | - Magali Petit
- Département de biologie; chimie et géographie; Université du Québec à Rimouski; Rimouski Canada
- Groupe de recherche sur les environnements nordiques BORÉAS; Rimouski Canada
- Centre d'Etudes Nordiques; Québec Canada
- Centre de la Science de la Biodiversité du Québec; Montréal Canada
| | - Agnès Lewden
- Département de biologie; chimie et géographie; Université du Québec à Rimouski; Rimouski Canada
- Groupe de recherche sur les environnements nordiques BORÉAS; Rimouski Canada
| | - Myriam Milbergue
- Département de biologie; chimie et géographie; Université du Québec à Rimouski; Rimouski Canada
- Groupe de recherche sur les environnements nordiques BORÉAS; Rimouski Canada
- Centre d'Etudes Nordiques; Québec Canada
- Centre de la Science de la Biodiversité du Québec; Montréal Canada
| | - François Vézina
- Département de biologie; chimie et géographie; Université du Québec à Rimouski; Rimouski Canada
- Groupe de recherche sur les environnements nordiques BORÉAS; Rimouski Canada
- Centre d'Etudes Nordiques; Québec Canada
- Centre de la Science de la Biodiversité du Québec; Montréal Canada
| |
Collapse
|
17
|
|
18
|
Yoo HS, Qiao L, Bosco C, Leong LH, Lytle N, Feng GS, Chi NW, Shao J. Intermittent cold exposure enhances fat accumulation in mice. PLoS One 2014; 9:e96432. [PMID: 24789228 PMCID: PMC4008632 DOI: 10.1371/journal.pone.0096432] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/06/2014] [Indexed: 11/19/2022] Open
Abstract
Due to its high energy consuming characteristics, brown adipose tissue (BAT) has been suggested as a key player in energy metabolism. Cold exposure is a physiological activator of BAT. Intermittent cold exposure (ICE), unlike persistent exposure, is clinically feasible. The main objective of this study was to investigate whether ICE reduces adiposity in C57BL/6 mice. Surprisingly, we found that ICE actually increased adiposity despite enhancing Ucp1 expression in BAT and inducing beige adipocytes in subcutaneous white adipose tissue. ICE did not alter basal systemic insulin sensitivity, but it increased liver triglyceride content and secretion rate as well as blood triglyceride levels. Gene profiling further demonstrated that ICE, despite suppressing lipogenic gene expression in white adipose tissue and liver during cold exposure, enhanced lipogenesis between the exposure periods. Together, our results indicate that despite enhancing BAT recruitment, ICE in mice increases fat accumulation by stimulating de novo lipogenesis.
Collapse
Affiliation(s)
- Hyung sun Yoo
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Liping Qiao
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Chris Bosco
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Lok-Hei Leong
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Nikki Lytle
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Gen-Sheng Feng
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Nai-Wen Chi
- Veterans Affairs San Diego Healthcare system, and Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jianhua Shao
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Speakman JR, Garratt M. Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model. Bioessays 2013; 36:93-106. [DOI: 10.1002/bies.201300108] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- John R. Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- Institute of Biological and Environmental sciences; University of Aberdeen; Aberdeen Scotland UK
| | - Michael Garratt
- Evolution and Ecology Research Group and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| |
Collapse
|
20
|
Stier A, Bize P, Habold C, Bouillaud F, Massemin S, Criscuolo F. Mitochondrial uncoupling prevents cold-induced oxidative stress: a case study using UCP1 knockout mice. ACTA ACUST UNITED AC 2013; 217:624-30. [PMID: 24265420 DOI: 10.1242/jeb.092700] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The relationship between metabolism and reactive oxygen species (ROS) production by the mitochondria has often been (wrongly) viewed as straightforward, with increased metabolism leading to higher generation of pro-oxidants. Insights into mitochondrial functioning show that oxygen consumption is principally coupled with either energy conversion as ATP or as heat, depending on whether the ATP-synthase or the mitochondrial uncoupling protein 1 (UCP1) is driving respiration. However, these two processes might greatly differ in terms of oxidative costs. We used a cold challenge to investigate the oxidative stress consequences of an increased metabolism achieved either by the activation of an uncoupled mechanism (i.e. UCP1 activity) in the brown adipose tissue (BAT) of wild-type mice or by ATP-dependent muscular shivering thermogenesis in mice deficient for UCP1. Although both mouse strains increased their metabolism by more than twofold when acclimatised for 4 weeks to moderate cold (12°C), only mice deficient for UCP1 suffered from elevated levels of oxidative stress. When exposed to cold, mice deficient for UCP1 showed an increase of 20.2% in plasmatic reactive oxygen metabolites, 81.8% in muscular oxidized glutathione and 47.1% in muscular protein carbonyls. In contrast, there was no evidence of elevated levels of oxidative stress in the plasma, muscles or BAT of wild-type mice exposed to cold despite a drastic increase in BAT activity. Our study demonstrates differing oxidative costs linked to the functioning of two highly metabolically active organs during thermogenesis, and advises careful consideration of mitochondrial functioning when investigating the links between metabolism and oxidative stress.
Collapse
Affiliation(s)
- Antoine Stier
- University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, Strasbourg 67037, France
| | | | | | | | | | | |
Collapse
|
21
|
Association of elevation, urbanization and ambient temperature with obesity prevalence in the United States. Int J Obes (Lond) 2013; 37:1407-12. [PMID: 23357956 DOI: 10.1038/ijo.2013.5] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/10/2012] [Accepted: 12/19/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND The macrogeographic distribution of obesity in the United States, including the association between elevation and body mass index (BMI), is largely unexplained. This study examines the relationship between obesity and elevation, ambient temperature and urbanization. METHODS AND FINDINGS Data from a cross-sectional, nationally representative sample of 422603 US adults containing BMI, behavioral (diet, physical activity, smoking) and demographic (age, sex, race/ethnicity, education, employment, income) variables from the 2011 Behavioral Risk Factor Surveillance System were merged with elevation and temperature data from WorldClim and with urbanization data from the US Department of Agriculture. There was an approximately parabolic relationship between mean annual temperature and obesity, with maximum prevalence in counties with average temperatures near 18 °C. Urbanization and obesity prevalence exhibited an inverse relationship (30.9% in rural or nonmetro counties, 29.2% in metro counties with <250000 people, 28.1% in counties with population from 250000 to 1 million and 26.2% in counties with >1 million). After controlling for urbanization, temperature category and behavioral and demographic factors, male and female Americans living <500 m above sea level had 5.1 (95% confidence interval (CI) 2.7-9.5) and 3.9 (95% CI 1.6-9.3) times the odds of obesity, respectively, as compared with counterparts living ≥ 3000 m above sea level. CONCLUSIONS Obesity prevalence in the United States is inversely associated with elevation and urbanization, after adjusting for temperature, diet, physical activity, smoking and demographic factors.
Collapse
|
22
|
Niitepõld K, Hanski I. A long life in the fast lane: positive association between peak metabolic rate and lifespan in a butterfly. ACTA ACUST UNITED AC 2012; 216:1388-97. [PMID: 23264490 DOI: 10.1242/jeb.080739] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High peak metabolic rates may provide a performance advantage, but it may also entail a physiological cost. A long-held assumption is that high mass-specific energy expenditure is associated with short lifespan. To examine the relationship between energy expenditure and lifespan we asked two questions. First, do individuals have a consistent rate of metabolism throughout their life? Second, is metabolic rate correlated with lifespan? We analysed the repeatability of measurements of resting (RMR) and peak flight metabolic rate (MR(peak)) throughout the life of the Glanville fritillary butterfly (Melitaea cinxia). Measurements of MR(peak) showed significant repeatability. Senescence occurred only shortly before death. RMR showed a U-shaped relationship with age and very low repeatability. Intraspecific association between metabolic rates and lifespan was tested under three conditions: in the laboratory, under field conditions and in a laboratory experiment with repeated flight treatments. There was a significant correlation between MR(peak) and lifespan in all three experiments, but the correlation was positive, not negative. RMR was not correlated with lifespan. Both MR(peak) and lifespan may reflect physiological condition and therefore be positively correlated. Individuals with a large resource pool may be able to invest in mechanisms that slow down ageing. Individuals with high metabolic capacity may also possess adaptations against ageing. Molecular polymorphism in the gene phosphoglucose isomerase (Pgi) was significantly associated with both MR(peak) and lifespan, and may have coevolved with defence mechanisms against senescence. Generalisations such as 'live fast, die young' may be too simple to explain the complex processes affecting ageing and lifespan.
Collapse
Affiliation(s)
- Kristjan Niitepõld
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland.
| | | |
Collapse
|
23
|
The influence of shc proteins and aging on whole body energy expenditure and substrate utilization in mice. PLoS One 2012; 7:e48790. [PMID: 23144971 PMCID: PMC3492242 DOI: 10.1371/journal.pone.0048790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
While it has been proposed that Shc family of adaptor proteins may influence aging by regulating insulin signaling and energy metabolism, the overall impact of Shc proteins on whole body energy metabolism has yet to be elucidated. Thus, the purpose of this study was to determine the influence of Shc proteins and aging on whole body energy metabolism in a mouse model under ambient conditions (22°C) and acute cold exposure (12°C for 24 hours). Using indirect respiration calorimetry, we investigated the impact of Shc proteins and aging on EE and substrate utilization (RQ) in p66 Shc−/− (ShcKO) and wild-type (WT) mice. Calorimetry measurements were completed in 3, 15, and 27 mo mice at 22°C and 12°C. At both temperatures and when analyzed across all age groups, ShcKO mice demonstrated lower 24 h total EE values than that of WT mice when EE data was expressed as either kJ per mouse, or adjusted by body weight or crude organ mass (ORGAN) (P≤0.01 for all). The ShcKO mice also had higher (P<0.05) fed state RQ values than WT animals at 22°C, consistent with an increase in glucose utilization. However, Shc proteins did not influence age-related changes in energy expenditure or RQ. Age had a significant impact on EE at 22°C, regardless of how EE data was expressed (P<0.05), demonstrating a pattern of increase in EE from age 3 to 15 mo, followed by a decrease in EE at 27 mo. These results indicate a decline in whole body EE with advanced age in mice, independent of changes in body weight (BW) or fat free mass (FFM). The results of this study indicate that both Shc proteins and aging should be considered as factors that influence energy expenditure in mice.
Collapse
|
24
|
Brzęk P, Książek A, Dobrzyń A, Konarzewski M. Effect of dietary restriction on metabolic, anatomic and molecular traits in mice depends on the initial level of basal metabolic rate (BMR). J Exp Biol 2012; 215:3191-9. [DOI: 10.1242/jeb.065318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Dietary restriction (DR)-related delay of ageing is hypothesized to be mediated by the reduction of the metabolic rate (MR). However, studies on the effect of DR on MR have produced equivocal results. We demonstrated that this lack of congruency can be due to a variation in the initial level of MR within a given pool of experimental subjects. We subjected laboratory mice from two line-types divergently selected for basal MR (BMR) to 30% DR lasting 6 months, to test whether the effect of DR depends on the initial variation in BMR and peak MR. BMR and peak MR were independently affected by DR. The effect of DR was stronger in line-types with higher initial levels of MR. Line-type specific changes in the proportions of body components explained contrasting effects of DR on the mass-corrected BMR, which decreased in the high, and did not change in the low BMR line-type. We conclude that the initial variation in MR can significantly affect response to DR. However, we found no association between the level of MR and mechanisms underlying susceptibility to or protection against oxidative stress.
Collapse
|
25
|
Turbill C, Smith S, Deimel C, Ruf T. Daily torpor is associated with telomere length change over winter in Djungarian hamsters. Biol Lett 2011; 8:304-7. [PMID: 21920955 DOI: 10.1098/rsbl.2011.0758] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ageing can progress at different rates according to an individual's physiological state. Natural hypothermia, including torpor and hibernation, is a common adaptation of small mammals to survive intermittent or seasonal declines in environmental conditions. In addition to allowing energy savings, hypothermia and torpor have been associated with retarded ageing and increased longevity. We tested the hypothesis that torpor use slows ageing by measuring changes in the relative telomere length (RTL) of Djungarian hamsters, Phodopus sungorus, a highly seasonal rodent using spontaneous daily torpor, over 180 days of exposure to a short-day photoperiod and warm (approx. 20°C) or cold (approx. 9°C) air temperatures. Multi-model inference showed that change in RTL within individuals was best explained by positive effects of frequency of torpor use, particularly at low body temperatures, as well as the change in body mass and initial RTL. Telomere dynamics have been linked to future survival and proposed as an index of rates of biological ageing. Our results therefore support the hypothesis that daily torpor is associated with physiological changes that increase somatic maintenance and slow the processes of ageing.
Collapse
Affiliation(s)
- Christopher Turbill
- Department of Integrative Biology and Ecology, Research Institute for Wildlife Ecology, University of Veterinary Medicine, Vienna 1160, Austria.
| | | | | | | |
Collapse
|
26
|
Gebczyński AK, Konarzewski M. Effects of oxygen availability on maximum aerobic performance in Mus musculus selected for basal metabolic rate or aerobic capacity. ACTA ACUST UNITED AC 2011; 214:1714-20. [PMID: 21525318 DOI: 10.1242/jeb.051680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Maximum aerobic metabolism cannot increase indefinitely in response to demands for ATP production and, therefore, must be constrained by one (or many) of the steps of the oxygen transport and utilization pathways. To elucidate those constraints we compared peak metabolic rate elicited by running (V(.)(O₂,run)) in hypoxia (14% O₂), normoxia (21% O₂) and hyperoxia (30% O₂) of laboratory mice divergently selected for low and high basal metabolic rate (L-BMR and H-BMR, respectively), mice selected for maximum metabolic rate elicited by swimming (V(.)(O₂,swim)) and mice from unselected lines. In all line types (V(.)(O₂,run)) was lowest in hypoxia, intermediate in normoxia and highest in hyperoxia, which suggests a 'central' limitation of oxygen uptake or delivery instead of a limit set by cellular oxidative capacity. However, the existence of a common central limitation is not in agreement with our earlier studies showing that selection on high V(.)(O₂,swim) (in contrast to selection on high BMR) resulted in considerably higher oxygen consumption during cold exposure in a He-O₂ atmosphere than V(.)(O₂,run). Likewise, between-line-type differences in heart mass and blood parameters are inconsistent with the notion of central limitation. Although responses of V(.)(O₂,run) to hypoxia were similar across different selection regimens, the selection lines showed contrasting responses under hyperoxic conditions. V(.)(O₂,run) in the H-BMR line type was highest, suggesting that selection on high BMR led to increased cellular oxidative capacity. Overall, between-line-type differences in the effect of the oxygen partial pressure on V(.)(O₂,run) and in the components of O₂ flux pathways are incompatible with the notion of symmorphosis. Our results suggest that constraints on V(.)(O₂,max) are context dependent and determined by interactions between the central and peripheral organs and tissues involved in O₂ delivery.
Collapse
Affiliation(s)
- Andrzej K Gebczyński
- Institute of Biology, University of Białystok, Swierkowa 20B, Białystok 15-950, Poland.
| | | |
Collapse
|
27
|
Piersma T. Why marathon migrants get away with high metabolic ceilings: towards an ecology of physiological restraint. ACTA ACUST UNITED AC 2011; 214:295-302. [PMID: 21177949 DOI: 10.1242/jeb.046748] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animals usually are not willing to perform at levels, or for lengths of time, of which they should be maximally capable. In stating this, exercise performance and inferred capacity are gauged with respect to body size and the duration of particular levels of energy expenditure. In such relative terms, the long-term metabolic ceiling of ca. 7 times basal metabolic rate in challenged but energy-balanced individuals may be real and general, because greater performance over long periods requires larger metabolic machinery that is ever more expensive to maintain. Avian marathon migrants relying on stored fuel (and therefore not in energy balance) that work for 9 consecutive days at levels of 9-10 times basal metabolic rate are exceptional performers in terms of the 'relative expenditure' on 'duration of a particular activity' curve nevertheless. Here I argue that metabolic ceilings in all situations (energy balanced or not) have their origin in the fitness costs of high performance levels due to subsequently reduced survival, which then precludes the possibility of future reproduction. The limits to performance should therefore be studied relative to ecological context (which includes aspects such as pathogen pressure and risk of overheating), which determines the severity of the survival punishment of over-exertion. I conclude that many dimensions of ecology have determined at which performance levels (accounting for time) individual animals, including human athletes, begin to show physiological restraint. Using modern molecular techniques to assay wear and tear, in combination with manipulated work levels in different ecological contexts, might enable experimental verification of these ideas.
Collapse
Affiliation(s)
- Theunis Piersma
- Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands.
| |
Collapse
|
28
|
Cannon B, Nedergaard J. Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes (Lond) 2011; 34 Suppl 1:S7-16. [PMID: 20935668 DOI: 10.1038/ijo.2010.177] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Only with the development of the uncoupling protein 1 (UCP1)-ablated mouse has it become possible to strictly delineate the physiological significance of the thermogenic capacity of brown adipose tissue. Considering the presence of active brown adipose tissue in adult humans, these insights may have direct human implications. In addition to classical nonshivering thermogenesis, all adaptive adrenergic thermogeneses, including diet-induced thermogenesis, is fully dependent on brown adipocyte activity. Any weight-reducing effect of β(3)-adrenergic agonists is fully dependent on UCP1 activity, as is any weight-reducing effect of leptin (in excess of its effect on reduction of food intake). Consequently, in the absence of the thermogenic activity of brown adipose tissue, obesity develops spontaneously. The ability of brown adipose tissue to contribute to glucose disposal is also mainly related to thermogenic activity. However, basal metabolic rate, cold-induced thermogenesis, acute cold tolerance, fevers, nonadaptive adrenergic thermogenesis and processes such as angiogenesis in brown adipose tissue itself are not dependent on UCP1 activity. Whereas it is likely that these conclusions are also qualitatively valid for adult humans, the quantitative significance of brown adipose tissue for human metabolism--and the metabolic consequences for a single individual possessing more or less brown adipose tissue--awaits clarification.
Collapse
Affiliation(s)
- B Cannon
- Department of Physiology, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
29
|
Speakman JR, Selman C. The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays 2011; 33:255-9. [DOI: 10.1002/bies.201000132] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Carrillo AE, Flouris AD. Caloric restriction and longevity: effects of reduced body temperature. Ageing Res Rev 2011; 10:153-62. [PMID: 20969980 DOI: 10.1016/j.arr.2010.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/27/2010] [Accepted: 10/01/2010] [Indexed: 01/22/2023]
Abstract
Caloric restriction (CR) causes a reduction in body temperature (T(b)) which is suggested to contribute to changes that increase lifespan. Moreover, low T(b) has been shown to improve health and longevity independent of CR. In this review we examine the connections between CR, T(b) and mechanisms that influence longevity and ageing. Recent findings regarding the overlapping mechanisms of CR and T(b) that benefit longevity are discussed, including changes in body composition, hormone regulation, and gene expression, as well as reductions in low-level inflammation and reactive oxygen species-induced molecular damage. This information is summarized in a model describing how CR and low T(b), both synergistically and independently, increase lifespan. Moreover, the nascent notion that the rate of ageing may be pre-programmed in response to environmental influences at critical periods of early development is also considered. Based on current evidence, it is concluded that low T(b) plays an integral role in mediating the effects of CR on health and longevity, and that low T(b) may exert independent biological changes that increase lifespan. Our understanding of the overlap between CR- and T(b)-mediated longevity remains incomplete and should be explored in future research.
Collapse
|
31
|
Mattsson CL, Csikasz RI, Shabalina IG, Nedergaard J, Cannon B. Caveolin-1-ablated mice survive in cold by nonshivering thermogenesis despite desensitized adrenergic responsiveness. Am J Physiol Endocrinol Metab 2010; 299:E374-83. [PMID: 20530737 DOI: 10.1152/ajpendo.00071.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caveolin-1 (Cav1)-ablated mice display impaired lipolysis in white adipose tissue. They also seem to have an impairment in brown adipose tissue function, implying that Cav1-ablated mice could encounter problems in surviving longer periods in cold temperatures. To investigate this, Cav1-ablated mice and wild-type mice were transferred to cold temperatures for extended periods of time, and parameters related to metabolism and thermogenesis were investigated. Unexpectedly, the Cav1-ablated mice survived in the cold. There were no differences between Cav1-ablated and wild-type mice with regard to food intake, in behavior related to shivering, or in body temperature. The Cav1-ablated mice had a halved total fat content independently of acclimation temperature. There was no difference in brown adipose tissue uncoupling protein-1 (UCP1) protein amount, and isolated brown fat mitochondria were thermogenically competent but displayed 30% higher thermogenic capacity. However, the beta(3)-adrenergic receptor amount was reduced by about one-third in the Cav1-ablated mice at all acclimation temperatures. Principally in accordance with this, a higher than standard dose of norepinephrine was needed to obtain full norepinephrine-induced thermogenesis in the Cav1-ablated mice; the higher dose was also needed for the Cav1-ablated mice to be able to utilize fat as a substrate for thermogenesis. In conclusion, the ablation of Cav1 impairs brown adipose tissue function by a desensitization of the adrenergic response; however, the desensitization is not evident in the animal as it is overcome physiologically, and Cav1-ablated mice can therefore survive in prolonged cold by nonshivering thermogenesis.
Collapse
|
32
|
Costantini D, Rowe M, Butler MW, McGraw KJ. From molecules to living systems: historical and contemporary issues in oxidative stress and antioxidant ecology. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01746.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Mookerjee SA, Divakaruni AS, Jastroch M, Brand MD. Mitochondrial uncoupling and lifespan. Mech Ageing Dev 2010; 131:463-72. [PMID: 20363244 PMCID: PMC2924931 DOI: 10.1016/j.mad.2010.03.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 03/17/2010] [Accepted: 03/29/2010] [Indexed: 12/21/2022]
Abstract
The quest to understand why we age has given rise to numerous lines of investigation that have gradually converged to include metabolic control by mitochondrial activity as a major player. That is, the ideal balance between nutrient uptake, its transduction into usable energy, and the mitigation of damaging byproducts can be regulated by mitochondrial respiration and output (ATP, reactive oxygen species (ROS), and heat). Mitochondrial inefficiency through proton leak, which uncouples substrate oxidation from ADP phosphorylation, can comprise as much as 30% of the basal metabolic rate. This uncoupling is hypothesized to protect cells from conditions that favor ROS production. Uncoupling can also occur through pharmacological induction of proton leak and activity of the uncoupling proteins. Mitochondrial uncoupling is implicated in lifespan extension through its effects on metabolic rate and ROS production. However, evidence to date does not suggest a consistent role for uncoupling in lifespan. The purpose of this review is to discuss recent work examining how mitochondrial uncoupling impacts lifespan.
Collapse
|
34
|
|
35
|
Vaanholt L, Daan S, Garland Jr. T, Visser G. Exercising for Life? Energy Metabolism, Body Composition, and Longevity in Mice Exercising at Different Intensities. Physiol Biochem Zool 2010; 83:239-51. [DOI: 10.1086/648434] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|