1
|
Cramberg M, Greer S, Young BA. The functional morphology of the postpulmonary septum of the American alligator (Alligator mississippiensis). Anat Rec (Hoboken) 2021; 305:3055-3074. [PMID: 34128345 DOI: 10.1002/ar.24692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 04/03/2021] [Indexed: 11/08/2022]
Abstract
The American alligator (Alligator mississippiensis) has a postpulmonary septum (PPS) that partitions the intracoelomic cavity. The PPS adheres to the capsule of the liver caudally and to the visceral pleura of the lung cranially; the ventrolateral portions of the PPS are invested with smooth muscle, the remainder is tendinous. Differential pressure transducers were used to record the intrathoracic (ITP) and intraperitoneal (IPP) pressures, and determine the transdiaphragmatic pressure (TDP). Each ventilatory pulse resulted in a pulse in ITP and a significantly lower pulse in IPP; meaning that a TDP was established, and that the pleural and peritoneal cavities were functionally isolated. The anesthetized alligators were tilted 30° head-up or head-down in order to displace the liver. Head-up rotations caused a significant increase in IPP, and a significant decrease in ITP (which became negative); head-down rotations produced the opposite effect. During these rotations, the PPS maintained opposite pressures (positive or negative) in the pleural and peritoneal cavities, and established TDPs greater than have been reported for some mammals. Two types of "breaths" were recorded during these experiments. The first was interpreted as a contraction of the diaphragmaticus muscle, which displaces the liver caudally; these breaths had the same effect as the head-up rotations. The second type of breath was interpreted as constriction of the thoracic and abdominal body walls; this type of breath produced pronounced, long-duration, roughly parallel, increases in ITP and IPP. The smooth muscle within the PPS is suggestive of higher-order adjustment or tuning of the PPS's tensile state.
Collapse
Affiliation(s)
- Michael Cramberg
- Department of Anatomy, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, Missouri, USA
| | - Skye Greer
- Department of Anatomy, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, Missouri, USA
| | - Bruce A Young
- Department of Anatomy, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, Missouri, USA
| |
Collapse
|
2
|
Schachner ER, Hedrick BP, Richbourg HA, Hutchinson JR, Farmer CG. Anatomy, ontogeny, and evolution of the archosaurian respiratory system: A case study on Alligator mississippiensis and Struthio camelus. J Anat 2020; 238:845-873. [PMID: 33345301 DOI: 10.1111/joa.13358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The avian lung is highly specialized and is both functionally and morphologically distinct from that of their closest extant relatives, the crocodilians. It is highly partitioned, with a unidirectionally ventilated and immobilized gas-exchanging lung, and functionally decoupled, compliant, poorly vascularized ventilatory air-sacs. To understand the evolutionary history of the archosaurian respiratory system, it is essential to determine which anatomical characteristics are shared between birds and crocodilians and the role these shared traits play in their respective respiratory biology. To begin to address this larger question, we examined the anatomy of the lung and bronchial tree of 10 American alligators (Alligator mississippiensis) and 11 ostriches (Struthio camelus) across an ontogenetic series using traditional and micro-computed tomography (µCT), three-dimensional (3D) digital models, and morphometry. Intraspecific variation and left to right asymmetry were present in certain aspects of the bronchial tree of both taxa but was particularly evident in the cardiac (medial) region of the lungs of alligators and the caudal aspect of the bronchial tree in both species. The cross-sectional area of the primary bronchus at the level of the major secondary airways and cross-sectional area of ostia scaled either isometrically or negatively allometrically in alligators and isometrically or positively allometrically in ostriches with respect to body mass. Of 15 lung metrics, five were significantly different between the alligator and ostrich, suggesting that these aspects of the lung are more interspecifically plastic in archosaurs. One metric, the distances between the carina and each of the major secondary airways, had minimal intraspecific or ontogenetic variation in both alligators and ostriches, and thus may be a conserved trait in both taxa. In contrast to previous descriptions, the 3D digital models and CT scan data demonstrate that the pulmonary diverticula pneumatize the axial skeleton of the ostrich directly from the gas-exchanging pulmonary tissues instead of the air sacs. Global and specific comparisons between the bronchial topography of the alligator and ostrich reveal multiple possible homologies, suggesting that certain structural aspects of the bronchial tree are likely conserved across Archosauria, and may have been present in the ancestral archosaurian lung.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Brandon P Hedrick
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Heather A Richbourg
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - John R Hutchinson
- Department of Comparative Biomedical Sciences, Structure & Motion Laboratory, Royal Veterinary College, University of London, Hatfield, UK
| | - C G Farmer
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Brocklehurst RJ, Schachner ER, Codd JR, Sellers WI. Respiratory evolution in archosaurs. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190140. [PMID: 31928195 PMCID: PMC7017431 DOI: 10.1098/rstb.2019.0140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Archosauria are a highly successful group of vertebrates, and their evolution is marked by the appearance of diverse respiratory and metabolic strategies. This review examines respiratory function in living and fossil archosaurs, focusing on the anatomy and biomechanics of the respiratory system, and their physiological consequences. The first archosaurs shared a heterogeneously partitioned parabronchial lung with unidirectional air flow; from this common ancestral lung morphology, we trace the diverging respiratory designs of bird- and crocodilian-line archosaurs. We review the latest evidence of osteological correlates for lung structure and the presence and distribution of accessory air sacs, with a focus on the evolution of the avian lung-air sac system and the functional separation of gas exchange and ventilation. In addition, we discuss the evolution of ventilation mechanics across archosaurs, citing new biomechanical data from extant taxa and how this informs our reconstructions of fossils. This improved understanding of respiratory form and function should help to reconstruct key physiological parameters in fossil taxa. We highlight key events in archosaur evolution where respiratory physiology likely played a major role, such as their radiation at a time of relative hypoxia following the Permo-Triassic mass extinction, and their evolution of elevated metabolic rates. This article is part of the theme issue ‘Vertebrate palaeophysiology’.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jonathan R Codd
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Cieri RL, Moritz S, Capano JG, Brainerd EL. Breathing with floating ribs: XROMM analysis of lung ventilation in savannah monitor lizards. ACTA ACUST UNITED AC 2018; 221:jeb.189449. [PMID: 30257921 DOI: 10.1242/jeb.189449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022]
Abstract
The structures and functions of the vertebrate lung and trunk are linked through the act of ventilation, but the connections between these structures and functions are poorly understood. We used X-ray reconstruction of moving morphology (XROMM) to measure rib kinematics during lung ventilation in three savannah monitor lizards (Varanus exanthematicus). All of the dorsal ribs, including the floating ribs, contributed to ventilation; the magnitude and kinematic pattern showed no detectable cranial-to-caudal gradient. The true ribs acted as two rigid bodies connected by flexible cartilage, with the vertebral rib and ventromedial shaft of each sternal rib remaining rigid and the cartilage between them forming a flexible intracostal joint. Rib rotations can be decomposed into bucket handle rotation around a dorsoventral axis, pump handle rotation around a mediolateral axis and caliper motion around a craniocaudal axis. Dorsal rib motion was dominated by roughly equal contributions of bucket and pump rotation in two individuals and by bucket rotation in the third individual. The recruitment of floating ribs during ventilation in monitor lizards is strikingly different from the situation in iguanas, where only the first few true ribs contribute to breathing. This difference may be related to the design of the pulmonary system and life history traits in these two species. Motion of the floating ribs may maximize ventilation of the caudally and ventrolaterally positioned compliant saccular chambers in the lungs of varanids, while restriction of ventilation to a few true ribs may maximize crypsis in iguanas.
Collapse
Affiliation(s)
- Robert L Cieri
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sabine Moritz
- Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
Wang X, O'Connor JK, Maina JN, Pan Y, Wang M, Wang Y, Zheng X, Zhou Z. Archaeorhynchus preserving significant soft tissue including probable fossilized lungs. Proc Natl Acad Sci U S A 2018; 115:11555-11560. [PMID: 30348768 PMCID: PMC6233124 DOI: 10.1073/pnas.1805803115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a specimen of the basal ornithuromorph Archaeorhynchus spathula from the Lower Cretaceous Jiufotang Formation with extensive soft tissue preservation. Although it is the fifth specimen to be described, unlike the others it preserves significant traces of the plumage, revealing a pintail morphology previously unrecognized among Mesozoic birds, but common in extant neornithines. In addition, this specimen preserves the probable remnants of the paired lungs, an identification supported by topographical and macro- and microscopic anatomical observations. The preserved morphology reveals a lung very similar to that of living birds. It indicates that pulmonary specializations such as exceedingly subdivided parenchyma that allow birds to achieve the oxygen acquisition capacity necessary to support powered flight were present in ornithuromorph birds 120 Mya. Among extant air breathing vertebrates, birds have structurally the most complex and functionally the most efficient respiratory system, which facilitates their highly energetically demanding form of locomotion, even in extremely oxygen-poor environments. Archaeorhynchus is commonly resolved as the most basal known ornithuromorph bird, capturing a stage of avian evolution in which skeletal indicators of respiration remain primitive yet the lung microstructure appears modern. This adds to growing evidence that many physiological modifications of soft tissue systems (e.g., digestive system and respiratory system) that characterize living birds and are key to their current success may have preceded the evolution of obvious skeletal adaptations traditionally tracked through the fossil record.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China
- Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Jingmai K O'Connor
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 10010 Beijing, China;
- CAS Center for Excellence in Life and Paleoenvironment, 10010 Beijing, China
| | - John N Maina
- Department of Zoology, University of Johannesburg, 2006 Johannesburg, South Africa
| | - Yanhong Pan
- Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 21008 Nanjing, China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 10010 Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, 10010 Beijing, China
| | - Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China
- Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China
- Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 10010 Beijing, China;
- CAS Center for Excellence in Life and Paleoenvironment, 10010 Beijing, China
| |
Collapse
|
7
|
Brocklehurst RJ, Schachner ER, Sellers WI. Vertebral morphometrics and lung structure in non-avian dinosaurs. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180983. [PMID: 30473845 PMCID: PMC6227937 DOI: 10.1098/rsos.180983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
The lung-air sac system of modern birds is unique among vertebrates. However, debate surrounds whether an avian-style lung is restricted to birds or first appeared in their dinosaurian ancestors, as common osteological correlates for the respiratory system offer limited information on the lungs themselves. Here, we shed light on these issues by using axial morphology as a direct osteological correlate of lung structure, and quantifying vertebral shape using geometric morphometrics in birds, crocodilians and a wide range of dinosaurian taxa. Although fully avian lungs were a rather late innovation, we quantitatively show that non-avian dinosaurs and basal dinosauriforms possessed bird-like costovertebral joints and a furrowed thoracic ceiling. This would have immobilized the lung's dorsal surface, a structural prerequisite for a thinned blood-gas barrier and increased gas exchange potential. This could have permitted high levels of aerobic and metabolic activity in dinosaurs, even in the hypoxic conditions of the Mesozoic, contributing to their successful radiation.
Collapse
Affiliation(s)
| | - Emma R. Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - William I. Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Wrenn SM, Griswold ED, Uhl FE, Uriarte JJ, Park HE, Coffey AL, Dearborn JS, Ahlers BA, Deng B, Lam YW, Huston DR, Lee PC, Wagner DE, Weiss DJ. Avian lungs: A novel scaffold for lung bioengineering. PLoS One 2018; 13:e0198956. [PMID: 29949597 PMCID: PMC6021073 DOI: 10.1371/journal.pone.0198956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Allogeneic lung transplant is limited both by the shortage of available donor lungs and by the lack of suitable long-term lung assist devices to bridge patients to lung transplantation. Avian lungs have different structure and mechanics resulting in more efficient gas exchange than mammalian lungs. Decellularized avian lungs, recellularized with human lung cells, could therefore provide a powerful novel gas exchange unit for potential use in pulmonary therapeutics. To initially assess this in both small and large avian lung models, chicken (Gallus gallus domesticus) and emu (Dromaius novaehollandiae) lungs were decellularized using modifications of a detergent-based protocol, previously utilized with mammalian lungs. Light and electron microscopy, vascular and airway resistance, quantitation and gel analyses of residual DNA, and immunohistochemical and mass spectrometric analyses of remaining extracellular matrix (ECM) proteins demonstrated maintenance of lung structure, minimal residual DNA, and retention of major ECM proteins in the decellularized scaffolds. Seeding with human bronchial epithelial cells, human pulmonary vascular endothelial cells, human mesenchymal stromal cells, and human lung fibroblasts demonstrated initial cell attachment on decellularized avian lungs and growth over a 7-day period. These initial studies demonstrate that decellularized avian lungs may be a feasible approach for generating functional lung tissue for clinical therapeutics.
Collapse
Affiliation(s)
- Sean M. Wrenn
- Department of Surgery, University of Vermont, Burlington, VT, United States of America
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Ethan D. Griswold
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Rochester Institute of Technology, Rochester, NY, United States of America
| | - Franziska E. Uhl
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Juan J. Uriarte
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Heon E. Park
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Amy L. Coffey
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Jacob S. Dearborn
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Bethany A. Ahlers
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Dryver R. Huston
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Patrick C. Lee
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Darcy E. Wagner
- Comprehensive Pneumology Center, Ludwig Maximilians University Munich, Munich, Germany
- Department of Experimental Medical Science, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- * E-mail:
| |
Collapse
|
9
|
Cardiogenic Airflow in the Lung Revealed Using Synchrotron-Based Dynamic Lung Imaging. Sci Rep 2018; 8:4930. [PMID: 29563588 PMCID: PMC5862895 DOI: 10.1038/s41598-018-23193-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/07/2018] [Indexed: 11/09/2022] Open
Abstract
The beating heart is known to produce pressure and airflow oscillations in the lungs of mammals. This phenomenon is often disregarded as detailed measurement of its effects in the lung have hitherto not been possible. Previous studies have attempted to measure the effect of these oscillations on gas mixing. However, the results have proven inconclusive, due to the lack of a direct measurement tool capable of flow measurement throughout the entire bronchial tree. Here we present the first detailed measurement of cardiogenic oscillations, using synchrotron-based dynamic lung imaging of live mechanically ventilated mice. The results demonstrate large flow oscillations and pendelluft in the airways due to the mechanical action of the beating heart. Using a virtual tracer modelling analysis we show that cardiogenic oscillations produced up to 4 times increased gas mixing, but only in the absence of tidal ventilation. The results highlight the importance of considering this often-disregarded phenomenon when investigating lung function, particularly in situations where tidal ventilation is reduced or absent.
Collapse
|
10
|
Vieira LG, Lima FC, Mendonôa SHST, Menezes LT, Hirano LQL, Santos ALQ. Ontogeny of the Postcranial Axial Skeleton of Melanosuchus niger (Crocodylia, Alligatoridae). Anat Rec (Hoboken) 2017; 301:607-623. [PMID: 29150983 DOI: 10.1002/ar.23722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 11/07/2022]
Abstract
This study proposes the description of the development of the postcranial axial skeleton, including vertebrae, gastralium, ribs, sternum, and interclavicle, in Melanosuchus niger. Six nests were marked and two eggs removed from each nest at 24-hr intervals until hatching. For posthatching evaluation, 30 hatchlings were kept in captivity and one exemplar was euthanized at three-day intervals. Samples were diaphanized using potassium hydroxide (KOH), alizarin red S, and Alcian blue. A routinely generally used method was applied for histological evaluation. It was difficult to define in which vertebrae the development of cartilaginous centers began, but it was possible to observe that this condensation advanced in the craniocaudal direction. The condensation started in the vertebral arches and was visibly stronger in the cervical and dorsal regions, advancing to the lumbar, sacral and, last, to the caudal region. The atlas showed a highly different morphology compared with the other cervical vertebrae, with a short intercenter, two neural arches, and a proatlas. The ossification process began in the body of cervical vertebrae III to VIII and alizarin retention decreased in the last vertebrae, indicating a craniocaudal direction in bone development, similar to cartilage formation. In the histological sections of gastralium and interclavicles of M. niger at several development stages, it was possible to observe that these elements showed intramembranous development. Anat Rec, 301:607-623, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LucéLia Gonçalves Vieira
- Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Pará 1720, Bloco 2B, Uberlândia, Minas Gerais CEP 38400-902 - CP 592, Brazil
| | - Fabiano Campos Lima
- Federal University of Goiás, Rodovia BR 364, Km 192. Setor Industrial, Jataí, Goiás CEP 75801615, Brazil
| | | | - Lorena Tannús Menezes
- Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Pará 1720, Bloco 2B, Uberlândia, Minas Gerais CEP 38400-902 - CP 592, Brazil
| | - Líria Queiroz Luz Hirano
- University Center of Triângulo, Av. Raulino Cotta Pacheco, 70, apto 201, Osvaldo Resende, Uberlândia, Minas Gerais CEP 38400-370, Brazil
| | - André Luiz Quagliatto Santos
- Laboratory for Teaching and Research on Wild Animals, Federal University of Uberlândia, Rua Piauí, s/n, 4S, Uberlândia, MG, 38400-902, Brazil
| |
Collapse
|
11
|
Unidirectional pulmonary airflow in vertebrates: a review of structure, function, and evolution. J Comp Physiol B 2016; 186:541-52. [DOI: 10.1007/s00360-016-0983-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 01/23/2023]
|
12
|
Farmer CG. Unidirectional flow in lizard lungs: a paradigm shift in our understanding of lung evolution in Diapsida. ZOOLOGY 2015; 118:299-301. [DOI: 10.1016/j.zool.2015.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/15/2023]
|
13
|
Farmer CG. Similarity of Crocodilian and Avian Lungs Indicates Unidirectional Flow Is Ancestral for Archosaurs. Integr Comp Biol 2015; 55:962-71. [PMID: 26141868 DOI: 10.1093/icb/icv078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Patterns of airflow and pulmonary anatomy were studied in the American alligator (Alligator mississippiensis), the black caiman (Melanosuchus niger), the spectacled caiman (Caiman crocodilus), the dwarf crocodile (Osteolaemus tetraspis), the saltwater crocodile (Crocodylus porosus), the Nile crocodile (Crocodylus niloticus), and Morelet's crocodile (Crocodylus moreletii). In addition, anatomy was studied in the Orinoco crocodile (Crocodylus intermedius). Airflow was measured using heated thermistor flow meters and visualized by endoscopy during insufflation of aerosolized propolene glycol and glycerol. Computed tomography and gross dissection were used to visualize the anatomy. In all species studied a bird-like pattern of unidirectional flow was present, in which air flowed caudad in the cervical ventral bronchus and its branches during both lung inflation and deflation and craniad in dorsobronchi and their branches. Tubular pathways connected the secondary bronchi to each other and allowed air to flow from the dorsobronchi into the ventrobronchi. No evidence for anatomical valves was found, suggesting that aerodynamic valves cause the unidirectional flow. In vivo data from the American alligator showed that unidirectional flow is present during periods of breath-holding (apnea) and is powered by the beating heart, suggesting that this pattern of flow harnesses the heart as a pump for air. Unidirectional flow may also facilitate washout of stale gases from the lung, reducing the cost of breathing, respiratory evaporative water loss, heat loss through the heat of vaporization, and facilitating crypsis. The similarity in structure and function of the bird lung with pulmonary anatomy of this broad range of crocodilian species indicates that a similar morphology and pattern of unidirectional flow were present in the lungs of the common ancestor of crocodilians and birds. These data suggest a paradigm shift is needed in our understanding of the evolution of this character. Although conventional wisdom is that unidirectional flow is important for the high activity and basal metabolic rates for which birds are renowned, the widespread occurrence of this pattern of flow in crocodilians indicates otherwise. Furthermore, these results show that air sacs are not requisite for unidirectional flow, and therefore raise questions about the function of avian air sacs.
Collapse
Affiliation(s)
- C G Farmer
- 257 S 1400 E, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Abstract
Conventional wisdom holds that the avian respiratory system is unique because air flows in the same direction through most of the gas-exchange tubules during both phases of ventilation. However, recent studies showing that unidirectional airflow also exists in crocodilians and lizards raise questions about the true phylogenetic distribution of unidirectional airflow, the selective drivers of the trait, the date of origin, and the functional consequences of this phenomenon. These discoveries suggest unidirectional flow was present in the common diapsid ancestor and are inconsistent with the traditional paradigm that unidirectional flow is an adaptation for supporting high rates of gas exchange. Instead, these discoveries suggest it may serve functions such as decreasing the work of breathing, decreasing evaporative respiratory water loss, reducing rates of heat loss, and facilitating crypsis. The divergence in the design of the respiratory system between unidirectionally ventilated lungs and tidally ventilated lungs, such as those found in mammals, is very old, with a minimum date for the divergence in the Permian Period. From this foundation, the avian and mammalian lineages evolved very different respiratory systems. I suggest the difference in design is due to the same selective pressure, expanded aerobic capacity, acting under different environmental conditions. High levels of atmospheric oxygen of the Permian Period relaxed selection for a thin blood-gas barrier and may have resulted in the homogeneous, broncho-alveolar design, whereas the reduced oxygen of the Mesozoic selected for a heterogeneous lung with an extremely thin blood-gas barrier. These differences in lung design may explain the puzzling pattern of ecomorphological diversification of Mesozoic mammals: all were small animals that did not occupy niches requiring a great aerobic capacity. The broncho-alveolar lung and the hypoxia of the Mesozoic may have restricted these mammals from exploiting niches of large body size, where cursorial locomotion can be advantageous, as well as other niches requiring great aerobic capacities, such as those using flapping flight. Furthermore, hypoxia may have exerted positive selection for a parasagittal posture, the diaphragm, and reduced erythrocyte size, innovations that enabled increased rates of ventilation and more rapid rates of diffusion in the lung.
Collapse
|
15
|
New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs. Proc Natl Acad Sci U S A 2014; 111:17218-23. [PMID: 25404314 DOI: 10.1073/pnas.1405088111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The generally accepted framework for the evolution of a key feature of the avian respiratory system, unidirectional airflow, is that it is an adaptation for efficiency of gas exchange and expanded aerobic capacities, and therefore it has historically been viewed as important to the ability of birds to fly and to maintain an endothermic metabolism. This pattern of flow has been presumed to arise from specific features of the respiratory system, such as an enclosed intrapulmonary bronchus and parabronchi. Here we show unidirectional airflow in the green iguana, a lizard with a strikingly different natural history from that of birds and lacking these anatomical features. This discovery indicates a paradigm shift is needed. The selective drivers of the trait, its date of origin, and the fundamental aerodynamic mechanisms by which unidirectional flow arises must be reassessed to be congruent with the natural history of this lineage. Unidirectional flow may serve functions other than expanded aerobic capacity; it may have been present in the ancestral diapsid; and it can occur in structurally simple lungs.
Collapse
|
16
|
Unidirectional pulmonary airflow patterns in the savannah monitor lizard. Nature 2013; 506:367-70. [DOI: 10.1038/nature12871] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/06/2013] [Indexed: 11/09/2022]
|
17
|
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 2013; 3:849-915. [PMID: 23720333 PMCID: PMC3926130 DOI: 10.1002/cphy.c120003] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
18
|
Schachner ER, Hutchinson JR, Farmer C. Pulmonary anatomy in the Nile crocodile and the evolution of unidirectional airflow in Archosauria. PeerJ 2013; 1:e60. [PMID: 23638399 PMCID: PMC3628916 DOI: 10.7717/peerj.60] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/10/2013] [Indexed: 11/20/2022] Open
Abstract
The lungs of birds have long been known to move air in only one direction during both inspiration and expiration through most of the tubular gas-exchanging bronchi (parabronchi). Recently a similar pattern of airflow has been observed in American alligators, a sister taxon to birds. The pattern of flow appears to be due to the arrangement of the primary and secondary bronchi, which, via their branching angles, generate inspiratory and expiratory aerodynamic valves. Both the anatomical similarity of the avian and alligator lung and the similarity in the patterns of airflow raise the possibility that these features are plesiomorphic for Archosauria and therefore did not evolve in response to selection for flapping flight or an endothermic metabolism, as has been generally assumed. To further test the hypothesis that unidirectional airflow is ancestral for Archosauria, we measured airflow in the lungs of the Nile crocodile (Crocodylus niloticus). As in birds and alligators, air flows cranially to caudally in the cervical ventral bronchus, and caudally to cranially in the dorsobronchi in the lungs of Nile crocodiles. We also visualized the gross anatomy of the primary, secondary and tertiary pulmonary bronchi of C. niloticus using computed tomography (CT) and microCT. The cervical ventral bronchus, cranial dorsobronchi and cranial medial bronchi display similar characteristics to their proposed homologues in the alligator, while there is considerable variation in the tertiary and caudal group bronchi. Our data indicate that the aspects of the crocodilian bronchial tree that maintain the aerodynamic valves and thus generate unidirectional airflow, are ancestral for Archosauria.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Biology, University of Utah , Salt Lake City, UT , USA
| | | | | |
Collapse
|
19
|
Sanders RK, Farmer C. The Pulmonary Anatomy of Alligator mississippiensis and Its Similarity to the Avian Respiratory System. Anat Rec (Hoboken) 2012; 295:699-714. [DOI: 10.1002/ar.22427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/20/2011] [Accepted: 12/29/2011] [Indexed: 11/10/2022]
|
20
|
Schachner ER, Farmer C, McDonald AT, Dodson P. Evolution of the Dinosauriform Respiratory Apparatus: New Evidence from the Postcranial Axial Skeleton. Anat Rec (Hoboken) 2011; 294:1532-47. [DOI: 10.1002/ar.21439] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 03/25/2011] [Indexed: 11/07/2022]
|