1
|
Sturm A, Sun P, Avila-Pacheco J, Clatworthy AE, Bloom-Ackermann Z, Wuo MG, Gomez JE, Jin S, Clish CB, Kiessling LL, Hung DT. Genetic factors affecting storage and utilization of lipids during dormancy in Mycobacterium tuberculosis. mBio 2024; 15:e0320823. [PMID: 38236034 PMCID: PMC10865790 DOI: 10.1128/mbio.03208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) can adopt a non-growing dormant state during infection that may be critical to both active and latent tuberculosis. During dormancy, Mtb is widely tolerant toward antibiotics, a significant obstacle in current anti-tubercular drug regimens, and retains the ability to persist in its environment. We aimed to identify novel mechanisms that permit Mtb to survive dormancy in an in vitro carbon starvation model using transposon insertion sequencing and gene expression analysis. We identified a previously uncharacterized component of the lipid transport machinery, omamC, which was upregulated and required for survival during carbon starvation. We show that OmamC plays a role both in increasing fatty acid stores during growth in rich media and enhancing fatty acid utilization during starvation. Besides its involvement in lipid metabolism, OmamC levels affected the expression of the anti-anti-sigma factor rv0516c and other genes to improve Mtb survival during carbon starvation and increase its tolerance toward rifampicin, a first-line drug effective against non-growing Mtb. Importantly, we show that Mtb can be eradicated during carbon starvation, in an OmamC-dependent manner, by inhibiting lipid metabolism with the lipase inhibitor tetrahydrolipstatin. This work casts new light into the survival processes of non-replicating, drug-tolerant Mtb by identifying new proteins involved in lipid metabolism required for the survival of dormant bacteria and exposing a potential vulnerability that could be exploited for antibiotic discovery.IMPORTANCETuberculosis is a global threat, with ~10 million yearly active cases. Many more people, however, live with "latent" infection, where Mycobacterium tuberculosis survives in a non-replicative form. When latent bacteria activate and regrow, they elicit immune responses and result in significant host damage. Replicating and non-growing bacilli can co-exist; however, non-growing bacteria are considerably less sensitive to antibiotics, thus complicating treatment by necessitating long treatment durations. Here, we sought to identify genes important for bacterial survival in this non-growing state using a carbon starvation model. We found that a previously uncharacterized gene, omamC, is involved in storing and utilizing fatty acids as bacteria transition between these two states. Importantly, inhibiting lipid metabolism using a lipase inhibitor eradicates non-growing bacteria. Thus, targeting lipid metabolism may be a viable strategy for treating the non-growing population in strategies to shorten treatment durations of tuberculosis.
Collapse
Affiliation(s)
- Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Penny Sun
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Anne E. Clatworthy
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zohar Bloom-Ackermann
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael G. Wuo
- Department of Chemistry, MIT, Cambridge, Massachusetts, USA
| | - James E. Gomez
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Soomin Jin
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Clary B. Clish
- Metabolomics Platform, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Deborah T. Hung
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Böhme J, Martinez N, Li S, Lee A, Marzuki M, Tizazu AM, Ackart D, Frenkel JH, Todd A, Lachmandas E, Lum J, Shihui F, Ng TP, Lee B, Larbi A, Netea MG, Basaraba R, van Crevel R, Newell E, Kornfeld H, Singhal A. Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nat Commun 2020; 11:5225. [PMID: 33067434 PMCID: PMC7567856 DOI: 10.1038/s41467-020-19095-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with type 2 diabetes (T2D) have a lower risk of Mycobacterium tuberculosis infection, progression from infection to tuberculosis (TB) disease, TB morality and TB recurrence, when being treated with metformin. However, a detailed mechanistic understanding of these protective effects is lacking. Here, we use mass cytometry to show that metformin treatment expands a population of memory-like antigen-inexperienced CD8+CXCR3+ T cells in naive mice, and in healthy individuals and patients with T2D. Metformin-educated CD8+ T cells have increased (i) mitochondrial mass, oxidative phosphorylation, and fatty acid oxidation; (ii) survival capacity; and (iii) anti-mycobacterial properties. CD8+ T cells from Cxcr3-/- mice do not exhibit this metformin-mediated metabolic programming. In BCG-vaccinated mice and guinea pigs, metformin enhances immunogenicity and protective efficacy against M. tuberculosis challenge. Collectively, these results demonstrate an important function of CD8+ T cells in metformin-derived host metabolic-fitness towards M. tuberculosis infection.
Collapse
Affiliation(s)
- Julia Böhme
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Shamin Li
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Andrea Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Mardiana Marzuki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Anteneh Mehari Tizazu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - David Ackart
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Jessica Haugen Frenkel
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Alexandra Todd
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Ekta Lachmandas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Foo Shihui
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Tze Pin Ng
- Gerontology Research Programme, Yong Loo Lin School of Medicine, Department of Psychological Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Randall Basaraba
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Evan Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Amit Singhal
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
- Infectious Disease Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore.
| |
Collapse
|
3
|
Huante MB, Saito TB, Nusbaum RJ, Naqvi KF, Chauhan S, Hunter RL, Actor JK, Rudra JS, Endsley MA, Lisinicchia JG, Gelman BB, Endsley JJ. Small Animal Model of Post-chemotherapy Tuberculosis Relapse in the Setting of HIV Co-infection. Front Cell Infect Microbiol 2020; 10:150. [PMID: 32373548 PMCID: PMC7176873 DOI: 10.3389/fcimb.2020.00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/23/2020] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis relapse following drug treatment of active disease is an important global public health problem due to the poorer clinical outcomes and increased risk of drug resistance development. Concurrent infection with HIV, including in those receiving anti-retroviral therapy (ART), is an important risk factor for relapse and expansion of drug resistant Mycobacterium tuberculosis (Mtb) isolates. A greater understanding of the HIV-associated factors driving TB relapse is important for development of interventions that support immune containment and complement drug therapy. We employed the humanized mouse to develop a new model of post-chemotherapy TB relapse in the setting of HIV infection. Paucibacillary TB infection was observed following treatment with Rifampin and Isoniazid and subsequent infection with HIV-1 was associated with increased Mtb burden in the post-drug phase. Organized granulomas were observed during development of acute TB and appeared to resolve following TB drug therapy. At relapse, granulomatous pathology in the lung was infrequent and mycobacteria were most often observed in the interstitium and at sites of diffuse inflammation. Compared to animals with HIV mono-infection, higher viral replication was observed in the lung and liver, but not in the periphery, of animals with post-drug TB relapse. The results demonstrate a potential role for the humanized mouse as an experimental model of TB relapse in the setting of HIV. Long term, the model could facilitate discovery of disease mechanisms and development of clinical interventions.
Collapse
Affiliation(s)
- Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rebecca J Nusbaum
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Kubra F Naqvi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Joshua G Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
4
|
Hemati Z, Derakhshandeh A, Haghkhah M, Chaubey KK, Gupta S, Singh M, Singh SV, Dhama K. Mammalian cell entry operons; novel and major subset candidates for diagnostics with special reference to Mycobacterium avium subspecies paratuberculosis infection. Vet Q 2020; 39:65-75. [PMID: 31282842 PMCID: PMC6830979 DOI: 10.1080/01652176.2019.1641764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian cell entry (mce) genes are the components of the mce operon and play a vital role in the entry of Mycobacteria into the mammalian cell and their survival within phagocytes and epithelial cells. Mce operons are present in the DNA of Mycobacteria and translate proteins associated with the invasion and long-term existence of these pathogens in macrophages. The exact mechanism of action of mce genes and their functions are not clear yet. However, with the loss of these genes Mycobacteria lose their pathogenicity. Mycobacterium avium subspecies paratuberculosis (MAP), the etiological agent of Johne’s disease, is the cause of chronic enteritis of animals and significantly affects economic impact on the livestock industry. Since MAP is not inactivated during pasteurization, human population is continuously at the risk of getting exposed to MAP infection through consumption of dairy products. There is need for new candidate genes and/or proteins for developing improved diagnostic assays for the diagnosis of MAP infection and for the control of disease. Increasing evidences showed that expression of mce genes is important for the virulence of MAP. Whole-genome DNA microarray representing MAP revealed that there are 14 large sequence polymorphisms with LSPP12 being the most widely conserved MAP-specific region that included a cluster of six homologs of mce-family involved in lipid metabolism. On the other hand, LSP11 comprising part of mce2 operon was absent in MAP isolates. This review summarizes the advancement of research on mce genes of Mycobacteria with special reference to the MAP infection.
Collapse
Affiliation(s)
- Zahra Hemati
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Masoud Haghkhah
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Kundan Kumar Chaubey
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Manju Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Shoorvir V Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Kuldeep Dhama
- Department of Pathology, Indian Veterinary Research Institute , Bareilly , India
| |
Collapse
|
5
|
Yan S, Zhen J, Li Y, Zhang C, Stojkoska A, Lambert N, Li Q, Li P, Xie J. Mce-associated protein Rv0177 alters the cell wall structure of Mycobacterium smegmatis and promotes macrophage apoptosis via regulating the cytokines. Int Immunopharmacol 2019; 66:205-214. [DOI: 10.1016/j.intimp.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
6
|
Veatch AV, Kaushal D. Opening Pandora's Box: Mechanisms of Mycobacterium tuberculosis Resuscitation. Trends Microbiol 2017; 26:145-157. [PMID: 28911979 DOI: 10.1016/j.tim.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) characteristically causes an asymptomatic infection. While this latent tuberculosis infection (LTBI) is not contagious, reactivation to active tuberculosis disease (TB) causes the patient to become infectious. A vaccine has existed for TB for a century, while drug treatments have been available for over 70 years; despite this, TB remains a major global health crisis. Understanding the factors which allow the bacillus to control responses to host stress and mechanisms leading to latency are critical for persistence. Similarly, molecular switches which respond to reactivation are important. Recently, research in the field has sought to focus on reactivation, employing system-wide approaches and animal models. Here, we describe the current work that has been done to elucidate the mechanisms of reactivation and stop reactivation in its tracks.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
7
|
Majeed S, Radotra BD, Sharma S. Adjunctive role of MMP-9 inhibition along with conventional anti-tubercular drugs against experimental tuberculous meningitis. Int J Exp Pathol 2016; 97:230-7. [PMID: 27385155 DOI: 10.1111/iep.12191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/20/2016] [Indexed: 12/25/2022] Open
Abstract
Tuberculous meningitis (TBM) is an outcome of neuroinflammatory degeneration caused due to Mycobacterium tuberculosis infection and leads to death or neurological disabilities in the affected individuals. It causes the highest morbidity and mortality amongst all forms of tuberculosis. Matrix metalloproteinase-9 levels increase and cause inflammatory destruction during progression of the disease. Although corticosteroids are usually given as an adjuvant therapy to overcome these complications, treatment outcome is contradictory. This study was designed to evaluate whether specific inhibition of MMP-9 can be beneficial in management of the disease. MMP-9 levels were inhibited using SB-3CT or dexamethasone along with conventional drugs for treatment of tuberculous meningitis. Both SB-3CT and dexamethasone decreased the elevated levels of MMP-9 in sera and tissues of the infected mice. However, dexamethasone administration had an inhibitory effect on bacillary clearance, while SB-3CT potentiated the bacillary clearance, suggesting that MMP-9, if specifically inhibited, can be beneficial in the management of TBM.
Collapse
Affiliation(s)
- Shahnawaz Majeed
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Bishan D Radotra
- Department of Histopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
8
|
Garhyan J, Bhuyan S, Pulu I, Kalita D, Das B, Bhatnagar R. Preclinical and Clinical Evidence of Mycobacterium tuberculosis Persistence in the Hypoxic Niche of Bone Marrow Mesenchymal Stem Cells after Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1924-34. [PMID: 26066709 DOI: 10.1016/j.ajpath.2015.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 01/23/2023]
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of pulmonary tuberculosis, is difficult to eliminate by antibiotic therapy. We recently identified CD271(+) bone marrow-mesenchymal stem cells (BM-MSCs) as a potential site of MTB persistence after therapy. Herein, we have characterized the potential hypoxic localization of the post-therapy MTB-infected CD271(+) BM-MSCs in both mice and human subjects. We first demonstrate that in a Cornell model of MTB persistence in mice, green fluorescent protein-labeled virulent MTB-strain H37Rv was localized to pimonidazole (an in vivo hypoxia marker) positive CD271(+) BM-MSCs after 90 days of isoniazid and pyrazinamide therapy that rendered animal's lung noninfectious. The recovered CD271(+) BM-MSCs from post-therapy mice, when injected into healthy mice, caused active tuberculosis infection in the animal's lung. Moreover, MTB infection significantly increased the hypoxic phenotype of CD271(+) BM-MSCs. Next, in human subjects, previously treated for pulmonary tuberculosis, the MTB-containing CD271(+) BM-MSCs exhibited high expression of hypoxia-inducible factor 1α and low expression of CD146, a hypoxia down-regulated cell surface marker of human BM-MSCs. These data collectively demonstrate the potential localization of MTB harboring CD271(+) BM-MSCs in the hypoxic niche, a critical microenvironmental factor that is well known to induce the MTB dormancy phenotype.
Collapse
Affiliation(s)
- Jaishree Garhyan
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Seema Bhuyan
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Ista Pulu
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Deepjyoti Kalita
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Bikul Das
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Immunity and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts.
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
9
|
Thakur RS, Desingu A, Basavaraju S, Subramanya S, Rao DN, Nagaraju G. Mycobacterium tuberculosis DinG is a structure-specific helicase that unwinds G4 DNA: implications for targeting G4 DNA as a novel therapeutic approach. J Biol Chem 2014; 289:25112-36. [PMID: 25059658 DOI: 10.1074/jbc.m114.563569] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The significance of G-quadruplexes and the helicases that resolve G4 structures in prokaryotes is poorly understood. The Mycobacterium tuberculosis genome is GC-rich and contains >10,000 sequences that have the potential to form G4 structures. In Escherichia coli, RecQ helicase unwinds G4 structures. However, RecQ is absent in M. tuberculosis, and the helicase that participates in G4 resolution in M. tuberculosis is obscure. Here, we show that M. tuberculosis DinG (MtDinG) exhibits high affinity for ssDNA and ssDNA translocation with a 5' → 3' polarity. Interestingly, MtDinG unwinds overhangs, flap structures, and forked duplexes but fails to unwind linear duplex DNA. Our data with DNase I footprinting provide mechanistic insights and suggest that MtDinG is a 5' → 3' polarity helicase. Notably, in contrast to E. coli DinG, MtDinG catalyzes unwinding of replication fork and Holliday junction structures. Strikingly, we find that MtDinG resolves intermolecular G4 structures. These data suggest that MtDinG is a multifunctional structure-specific helicase that unwinds model structures of DNA replication, repair, and recombination as well as G4 structures. We finally demonstrate that promoter sequences of M. tuberculosis PE_PGRS2, mce1R, and moeB1 genes contain G4 structures, implying that G4 structures may regulate gene expression in M. tuberculosis. We discuss these data and implicate targeting G4 structures and DinG helicase in M. tuberculosis could be a novel therapeutic strategy for culminating the infection with this pathogen.
Collapse
Affiliation(s)
- Roshan Singh Thakur
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ambika Desingu
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shivakumar Basavaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Desirazu N Rao
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ganesh Nagaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Goodridge A, Zhang T, Miyata T, Lu S, Riley LW. Antiphospholipid IgM antibody response in acute and chronic Mycobacterium tuberculosis mouse infection model. CLINICAL RESPIRATORY JOURNAL 2013; 8:137-44. [PMID: 23910993 DOI: 10.1111/crj.12049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/24/2013] [Accepted: 07/25/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS The clinical management of tuberculosis (TB) could be greatly improved by an affordable biomarker test to monitor treatment response. Here, we examined changes in immunoglobulin M (IgM) antibody response to lipids as a potential biomarker for monitoring TB treatment in an experimental mouse model. METHODS We performed enzyme-linked immunosorbent assay to investigate changes in IgM antibody response against cardiolipin (CL), phosphatidylcholine (PTC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and sphingolipid (SL) in BALB/c mice that were treated after being infected with Mycobacterium tuberculosis for 4 weeks (acute infection) and 20 weeks (chronic infection). Cytokine levels [interleukin (IL)-5, IL-10, interferon-gamma (IFN-γ), monocyte chemoattractant protein-1 (MCP-1)] in lung and spleen homogenates as well as in blood were also compared. RESULTS In both acutely and chronically infected mice, lungs were sterilised of M. tuberculosis infection after 8 weeks of treatment. The IgM response to CL, PTC, PE, PI and SL were consistently elevated throughout the course of infection in chronically infected mice compared with acutely infected mice. In acutely infected mice, the IgM antibody response against CL significantly decreased after 8 weeks of treatment, but not against other lipids. In chronically infected mice, the IgM response showed no significant changes against any of the lipids after 8 weeks of treatment. Of the cytokines examined, only MCP-1 levels in lungs decreased significantly after treatment. CONCLUSION These findings demonstrate that antilipid IgM antibody can remain elevated in chronically infected mice, but with treatment, only anti-CL IgM antibody levels decreased together with M. tuberculosis bacterial burden in acutely infected mice. Treatment did not affect antilipid IgM levels in chronically infected mice.
Collapse
Affiliation(s)
- Amador Goodridge
- Institute of Scientific Research and High Technology Services (INDICASAT-AIP), City of Knowledge, Panama, Panama; Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
11
|
Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2012; 4:3-66. [PMID: 23076359 PMCID: PMC3544749 DOI: 10.4161/viru.22329] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world.
Collapse
|
12
|
Zeng J, Cui T, He ZG. A genome-wide regulator-DNA interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. J Proteome Res 2012; 11:4682-92. [PMID: 22808930 DOI: 10.1021/pr3006233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription regulation translates static genome information to dynamic cell behaviors, making it central to understand how cells interact with and adapt to their environment. However, only a limited number of transcription regulators and their target genes have been identified in the pathogen Mycobacterium tuberculosis , which has greatly impeded our understanding of its pathogenesis and virulence. In this study, we constructed a genome-wide transcription regulatory network of M. tuberculosis H37Rv using a high-throughput bacterial one-hybrid technique. A transcription factor skeleton network was derived on the basis of the identification of more than 5400 protein-DNA interactions. Our findings further highlight the regulatory mechanism of the mammalian cell entry 1 (mce1) module, which includes mce1R and the mce1 operon. Mce1R was linked to global negative regulation of cell growth, but was found to be positively regulated by the dormancy response regulator DevR. Expression of the mce1 operon was shown to be negatively regulated by the virulence regulator PhoP. These findings provide important new insights into the molecular mechanisms of several mce1 module-related hypervirulence phenotypes of the pathogen. Furthermore, a model of mce1 module-centered signal circuit for dormancy regulation in M. tuberculosis is proposed and discussed.
Collapse
Affiliation(s)
- Jumei Zeng
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
13
|
Castellanos E, Aranaz A, de Juan L, Dominguez L, Linedale R, Bull TJ. A 16 kb naturally occurring genomic deletion including mce and PPE genes in Mycobacterium avium subspecies paratuberculosis isolates from goats with Johne's disease. Vet Microbiol 2012; 159:60-8. [PMID: 22472702 DOI: 10.1016/j.vetmic.2012.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/23/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
In this study we characterise the genomic and transcriptomic variability of a natural deletion strain of Mycobacterium avium subspecies paratuberculosis (MAP) prevalent in Spanish Guadarrama goats. Using a pan-genome microarray including MAP and M. avium subspecies hominissuis 104 genomes (MAPAC) we demonstrate the genotype to be MAP Type II with a single deletion of 19 contiguous ORFs (16 kb) including a complete mammalian cell entry (mce7_1) operon and adjacent proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) genes. A deletion specific PCR test was developed and a subsequent screening identified four goat herds infected with the variant strain. Each was located in central Spain and showed epidemiological links suggestive of transmission between herds. A majority of animals infected with the variant manifested a paucibacillary form of the disease. Comparisons between virulent complete genome compliment strains isolated from multibacillary diseased goats and the MAP variant strain during entry into activated macrophages demonstrated an increased sensitivity in the variant to intracellular killing in human and ovine macrophages. As PPE and mce genes are associated with mycobacterial virulence and pathogenesis we investigated the interplay of these gene sets during cell entry using the MAPAC array. This showed significant differential transcriptome profiles compared to full genome complement MAP controls that included changes in other undeleted mce operons and PE/PPE genes, esx-like signalling operons and stress response/fatty acid metabolism pathways. This strain represents the first report of a MAP Type II genotype with significant natural genomic deletions which remains able to cause disease and is transmissible in goats.
Collapse
Affiliation(s)
- Elena Castellanos
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET) and Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Miyata T, Cheigh CI, Casali N, Goodridge A, Marjanovic O, Kendall LV, Riley LW. An adjunctive therapeutic vaccine against reactivation and post-treatment relapse tuberculosis. Vaccine 2011; 30:459-65. [PMID: 22079078 DOI: 10.1016/j.vaccine.2011.10.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/17/2011] [Accepted: 10/22/2011] [Indexed: 11/16/2022]
Abstract
Preventing latently infected or inadequately treated individuals from progressing to active disease could make a major impact on tuberculosis (TB) control worldwide. The purpose of this study was to evaluate a new approach to prevent reactivation and TB relapse that combines drug treatment and vaccination. Mycobacterium tuberculosis harbors a gene called mce1R that, in vivo, negatively regulates a 13-gene cluster called the mce1 operon. In a Cornell mouse model, BALB/c mice infected with M. tuberculosis H37Rv disrupted in mce1R consistently develop latent infection and reactivation disease. We used this new mouse model to test a recombinant M. tuberculosis cell wall protein (Mce1A), encoded by a gene in the mce1 operon, for its ability to prevent post-treatment TB. At 32 weeks of follow-up, a complete sterilizing protection was observed in lungs of the vaccinated mice. Mce1A but not phosphate-buffered saline administered intraperitoneally during the period of latent infection prevented disease progression and proliferation of M. tuberculosis mce1R mutant. The only visible lung lesions in vaccinated mice included small clusters of lymphocytes, while the unvaccinated mice showed progressively enlarging granulomas comprised of foamy macrophages surrounded by lymphocytes. The combination of anti-TB drugs and a vaccine may serve as a powerful treatment modality against TB reactivation and relapse.
Collapse
Affiliation(s)
- Toshiko Miyata
- Division of Infectious Diseases and Vaccinology, 201 Hildebrand Hall, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Obregón-Henao A, Shanley C, Bianco MV, Cataldi AA, Basaraba RJ, Orme IM, Bigi F. Vaccination of guinea pigs using mce operon mutants of Mycobacterium tuberculosis. Vaccine 2011; 29:4302-7. [PMID: 21515327 DOI: 10.1016/j.vaccine.2011.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/31/2011] [Accepted: 04/07/2011] [Indexed: 12/11/2022]
Abstract
The limited efficacy of the BCG vaccine for tuberculosis, coupled with emerging information suggesting that it is poorly protective against newly emerging strains of Mycobacterium tuberculosis such as the W-Beijing isolates, makes it paramount to search for more potent alternatives. One such class of candidates is attenuated mutants derived from M. tuberculosis itself. We demonstrate here, in an initial short term assay, that mutants derived from disruption of the mce genes of the bacillus were highly protective in guinea pigs exposed by low dose aerosol infection with the virulent W-Beijing isolate SA161. This protection was demonstrated by a significant reduction in the numbers of bacilli harvested from the lungs, and dramatic improvements in lung histopathology.
Collapse
Affiliation(s)
- Andrés Obregón-Henao
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mammalian cell entry gene family of Mycobacterium tuberculosis. Mol Cell Biochem 2011; 352:1-10. [PMID: 21258845 DOI: 10.1007/s11010-011-0733-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/10/2011] [Indexed: 01/21/2023]
Abstract
Knowledge of virulence factors is important to understand the microbial pathogenesis and find better antibiotics. Mammalian cell entry (mce) is a crucial protein family for the virulence of Mycobacterium tuberculosis (M. tuberculosis). This review summarized the advances on mce genes. The genomic organization, characteristics of mce genes, phylogeny of this family, and their roles in M. tuberculosis virulence are emphasized in this review.
Collapse
|