1
|
Chiarenza AA, Cantalapiedra JL, Jones LA, Gamboa S, Galván S, Farnsworth AJ, Valdes PJ, Sotelo G, Varela S. Early Jurassic origin of avian endothermy and thermophysiological diversity in dinosaurs. Curr Biol 2024; 34:2517-2527.e4. [PMID: 38754424 DOI: 10.1016/j.cub.2024.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
A fundamental question in dinosaur evolution is how they adapted to long-term climatic shifts during the Mesozoic and when they developed environmentally independent, avian-style acclimatization, becoming endothermic.1,2 The ability of warm-blooded dinosaurs to flourish in harsher environments, including cold, high-latitude regions,3,4 raises intriguing questions about the origins of key innovations shared with modern birds,5,6 indicating that the development of homeothermy (keeping constant body temperature) and endothermy (generating body heat) played a crucial role in their ecological diversification.7 Despite substantial evidence across scientific disciplines (anatomy,8 reproduction,9 energetics,10 biomechanics,10 osteohistology,11 palaeobiogeography,12 geochemistry,13,14 and soft tissues15,16,17), a consensus on dinosaur thermophysiology remains elusive.1,12,15,17,18,19 Differential thermophysiological strategies among terrestrial tetrapods allow endotherms (birds and mammals) to expand their latitudinal range (from the tropics to polar regions), owing to their reduced reliance on environmental temperature.20 By contrast, most reptilian lineages (squamates, turtles, and crocodilians) and amphibians are predominantly constrained by temperature in regions closer to the tropics.21 Determining when this macroecological pattern emerged in the avian lineage relies heavily on identifying the origin of these key physiological traits. Combining fossils with macroevolutionary and palaeoclimatic models, we unveil distinct evolutionary pathways in the main dinosaur lineages: ornithischians and theropods diversified across broader climatic landscapes, trending toward cooler niches. An Early Jurassic shift to colder climates in Theropoda suggests an early adoption of endothermy. Conversely, sauropodomorphs exhibited prolonged climatic conservatism associated with higher thermal conditions, emphasizing temperature, rather than plant productivity, as the primary driver of this pattern, suggesting poikilothermy with a stronger dependence on higher temperatures in sauropods.
Collapse
Affiliation(s)
- Alfio Alessandro Chiarenza
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; Department of Earth Sciences, University College London, Gower Place, London WC1E 6BS, UK.
| | - Juan L Cantalapiedra
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain; GloCEE Global Change Ecology and Evolution Research Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28801 Alcalá de Henares, Spain; Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invdralidenstraße 43, 10115 Berlin, Germany
| | - Lewis A Jones
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sara Gamboa
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; Universidad Complutense de Madrid, Av. Séneca 2, 28040 Madrid, Spain
| | - Sofía Galván
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Alexander J Farnsworth
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Graciela Sotelo
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sara Varela
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
2
|
Laskar AH, Mohabey D, Bhattacharya SK, Liang MC. Variable thermoregulation of Late Cretaceous dinosaurs inferred by clumped isotope analysis of fossilized eggshell carbonates. Heliyon 2020; 6:e05265. [PMID: 33117899 PMCID: PMC7581925 DOI: 10.1016/j.heliyon.2020.e05265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 10/12/2020] [Indexed: 11/27/2022] Open
Abstract
The thermal physiology of non-avian dinosaurs, especially the endothermic/ectothermic nature of their metabolism, inferred indirectly using body mass, biophysical modelling, bone histology and growth rate, has long been a matter of debate. Clumped isotope thermometry, based on the thermodynamically driven preference of 13C-18O bond in carbonate minerals of fossilized eggshells, yields temperature of egg formation in the oviduct and can delineate the nature of thermoregulation of some extinct dinosaur taxa. In the present study, the clumped isotope thermometry was applied to the eggshells of a few species of modern birds and reptiles to show that it is possible to obtain the body temperatures of these species in most of the cases. We then used this method to the fossil eggshells of Late Cretaceous sauropods and theropods recovered from western and central India. The estimated body temperatures varied between 29 °C and 46 °C, with an overall average of 37 °C, significantly higher than the environmental temperature (about 25 °C) of this region during the Late Cretaceous. The results also show that the theropod species with low body masses (~800 kg) had high body temperature (~38 °C), while some gigantic (~20000 kg) sauropods had low body temperatures that were comparable to or slightly higher than the environmental temperature. Our analyses suggest that these Late Cretaceous giant species were endowed with a capacity of variable thermoregulation to control their body temperature.
Collapse
Affiliation(s)
- Amzad H Laskar
- Physical Research Laboratory Ahmedabad, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Dhananjay Mohabey
- Geological Survey of India (retired), Department of Geology, RTM Nagpur University, Law College Campus, Amravati Road, Nagpur 440001, India
| | - Sourendra K Bhattacharya
- Institute of Earth Sciences, Academia Sinica, Taiwan.,Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, West Bengal, India
| | | |
Collapse
|
3
|
Venditti C, Baker J, Benton MJ, Meade A, Humphries S. 150 million years of sustained increase in pterosaur flight efficiency. Nature 2020; 587:83-86. [PMID: 33116315 DOI: 10.1038/s41586-020-2858-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022]
Abstract
The long-term accumulation of biodiversity has been punctuated by remarkable evolutionary transitions that allowed organisms to exploit new ecological opportunities. Mesozoic flying reptiles (the pterosaurs), which dominated the skies for more than 150 million years, were the product of one such transition. The ancestors of pterosaurs were small and probably bipedal early archosaurs1, which were certainly well-adapted to terrestrial locomotion. Pterosaurs diverged from dinosaur ancestors in the Early Triassic epoch (around 245 million years ago); however, the first fossils of pterosaurs are dated to 25 million years later, in the Late Triassic epoch. Therefore, in the absence of proto-pterosaur fossils, it is difficult to study how flight first evolved in this group. Here we describe the evolutionary dynamics of the adaptation of pterosaurs to a new method of locomotion. The earliest known pterosaurs took flight and subsequently appear to have become capable and efficient flyers. However, it seems clear that transitioning between forms of locomotion2,3-from terrestrial to volant-challenged early pterosaurs by imposing a high energetic burden, thus requiring flight to provide some offsetting fitness benefits. Using phylogenetic statistical methods and biophysical models combined with information from the fossil record, we detect an evolutionary signal of natural selection that acted to increase flight efficiency over millions of years. Our results show that there was still considerable room for improvement in terms of efficiency after the appearance of flight. However, in the Azhdarchoidea4, a clade that exhibits gigantism, we test the hypothesis that there was a decreased reliance on flight5-7 and find evidence for reduced selection on flight efficiency in this clade. Our approach offers a blueprint to objectively study functional and energetic changes through geological time at a more nuanced level than has previously been possible.
Collapse
Affiliation(s)
- Chris Venditti
- School of Biological Sciences, University of Reading, Reading, UK.
| | - Joanna Baker
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Andrew Meade
- School of Biological Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
4
|
Myhrvold NP. Response to formal comment on Myhrvold (2016) submitted by Griebeler and Werner (2017). PLoS One 2018; 13:e0192912. [PMID: 29489880 PMCID: PMC5831047 DOI: 10.1371/journal.pone.0192912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/20/2018] [Indexed: 11/19/2022] Open
Abstract
Griebeler and Werner offer a formal comment on Myhrvold, 2016 defending the conclusions of Werner and Griebeler, 2014. Although the comment criticizes several aspects of methodology in Myhrvold, 2016, all three papers concur on a key conclusion: the metabolism of extant endotherms and ectotherms cannot be reliably classified using growth-rate allometry, because the growth rates of extant endotherms and ectotherms overlap. A key point of disagreement is that the 2014 paper concluded that despite this general case, one can nevertheless classify dinosaurs as ectotherms from their growth rate allometry. The 2014 conclusion is based on two factors: the assertion (made without any supporting arguments) that the comparison with dinosaurs must be restricted only to extant sauropsids, ignoring other vertebrate groups, and that extant sauropsid endotherm and ectotherm growth rates in a data set studied in the 2014 work do not overlap. The Griebeler and Werner formal comment presents their first arguments in support of the restriction proposition. In this response I show that this restriction is unsupported by established principles of phylogenetic comparison. In addition, I show that the data set studied in their 2014 work does show overlap, and that this is visible in one of its figures. I explain how either point effectively invalidates the conclusion of their 2014 paper. I also address the other methodological criticisms of Myhrvold 2016, and find them unsupported.
Collapse
|
5
|
How the Land Became the Locus of Major Evolutionary Innovations. Curr Biol 2017; 27:3178-3182.e1. [DOI: 10.1016/j.cub.2017.08.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/23/2022]
|
6
|
Ferrón HG. Regional endothermy as a trigger for gigantism in some extinct macropredatory sharks. PLoS One 2017; 12:e0185185. [PMID: 28938002 PMCID: PMC5609766 DOI: 10.1371/journal.pone.0185185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
Otodontids include some of the largest macropredatory sharks that ever lived, the most extreme case being Otodus (Megaselachus) megalodon. The reasons underlying their gigantism, distribution patterns and extinction have been classically linked with climatic factors and the evolution, radiation and migrations of cetaceans during the Paleogene. However, most of these previous proposals are based on the idea of otodontids as ectothermic sharks regardless of the ecological, energetic and body size constraints that this implies. Interestingly, a few recent studies have suggested the possible existence of endothermy in these sharks thus opening the door to a series of new interpretations. Accordingly, this work proposes that regional endothermy was present in otodontids and some closely related taxa (cretoxyrhinids), playing an important role in the evolution of gigantism and in allowing an active mode of live. The existence of regional endothermy in these groups is supported here by three different approaches including isotopic-based approximations, swimming speed inferences and the application of a novel methodology for assessing energetic budget and cost of swimming in extinct taxa. In addition, this finding has wider implications. It calls into question some previous paleotemperature estimates based partially on these taxa, suggests that the existing hypothesis about the evolution of regional endothermy in fishes requires modification, and provides key evidence for understanding the evolution of gigantism in active macropredators.
Collapse
Affiliation(s)
- Humberto G. Ferrón
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, University of Valencia, Burjassot, Spain
| |
Collapse
|
7
|
Davis ALV, Scholtz CH, Sole CL. Biogeographical and co-evolutionary origins of scarabaeine dung beetles: Mesozoic vicarianceversusCenozoic dispersal and dinosaurversusmammal dung. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adrian L. V. Davis
- Scarab Research Group; Department of Zoology & Entomology; University of Pretoria; P/B X20 Hatfield 0028 South Africa
| | - Clarke H. Scholtz
- Scarab Research Group; Department of Zoology & Entomology; University of Pretoria; P/B X20 Hatfield 0028 South Africa
| | - Catherine L. Sole
- Scarab Research Group; Department of Zoology & Entomology; University of Pretoria; P/B X20 Hatfield 0028 South Africa
| |
Collapse
|
8
|
Vermeij GJ. Gigantism and Its Implications for the History of Life. PLoS One 2016; 11:e0146092. [PMID: 26771527 PMCID: PMC4714876 DOI: 10.1371/journal.pone.0146092] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
Gigantism-very large body size-is an ecologically important trait associated with competitive superiority. Although it has been studied in particular cases, the general conditions for the evolution and maintenance of gigantism remain obscure. I compiled sizes and dates for the largest species in 3 terrestrial and 7 marine trophic and habitat categories of animals from throughout the Phanerozoic. The largest species (global giants) in all categories are of post-Paleozoic age. Gigantism at this level appeared tens to hundreds of millions of years after mass extinctions and long after the origins of clades in which it evolved. Marine gigantism correlates with high planktic or seafloor productivity, but on land the correspondence between productivity and gigantism is weak at best. All global giants are aerobically active animals, not gentle giants with low metabolic demands. Oxygen concentration in the atmosphere correlates with gigantism in the Paleozoic but not thereafter, likely because of the elaboration of efficient gas-exchange systems in clades containing giants. Although temperature and habitat size are important in the evolution of very large size in some cases, the most important (and rare) enabling circumstance is a highly developed ecological infrastructure in which essential resources are abundant and effectively recycled and reused, permitting activity levels to increase and setting the stage for gigantic animals to evolve. Gigantism as a hallmark of competitive superiority appears to have lost its luster on land after the Mesozoic in favor of alternative means of achieving dominance, especially including social organization and coordinated food-gathering.
Collapse
Affiliation(s)
- Geerat J. Vermeij
- Department of Earth and Planetary Sciences, University of California, One Shields Avenue, Davis, California, 95616, United States of America
| |
Collapse
|
9
|
Vermeij GJ. Paleophysiology: From Fossils to the Future. Trends Ecol Evol 2015; 30:601-608. [PMID: 26411617 DOI: 10.1016/j.tree.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
Future environments may resemble conditions that have not existed for millions of years. To assess the adaptive options available to organisms evolving under such circumstances, it is instructive to probe paleophysiology, the ways in which ancient life coped with its physical and chemical surroundings. To do this, we need reliable proxies that are based on fundamental principles, quantitatively verified in living species, and observable in fossil remains. Insights have already come from vertebrates and plants, and others will likely emerge for marine animals if promising proxies are validated. Many questions remain about the circumstances for the evolution of environmental tolerances, metabolic rates, biomineralization, and physiological responses to interacting species, and about how living organisms will perform under exceptional conditions.
Collapse
Affiliation(s)
- Geerat J Vermeij
- University of California, Department of Earth and Planetary Science, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Domingo L, Barroso-Barcenilla F, Cambra-Moo O. Seasonality and paleoecology of the late Cretaceous multi-taxa vertebrate assemblage of "Lo Hueco" (central eastern Spain). PLoS One 2015; 10:e0119968. [PMID: 25806819 PMCID: PMC4373905 DOI: 10.1371/journal.pone.0119968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 01/28/2015] [Indexed: 11/28/2022] Open
Abstract
Isotopic studies of multi-taxa terrestrial vertebrate assemblages allow determination of paleoclimatic and paleoecological aspects on account of the different information supplied by each taxon. The late Campanian-early Maastrichtian "Lo Hueco" Fossil-Lagerstätte (central eastern Spain), located at a subtropical paleolatitude of ~31°N, constitutes an ideal setting to carry out this task due to its abundant and diverse vertebrate assemblage. Local δ18OPO4 values estimated from δ18OPO4 values of theropods, sauropods, crocodyliforms, and turtles are close to δ18OH2O values observed at modern subtropical latitudes. Theropod δ18OH2O values are lower than those shown by crocodyliforms and turtles, indicating that terrestrial endothermic taxa record δ18OH2O values throughout the year, whereas semiaquatic ectothermic taxa δ18OH2O values represent local meteoric waters over a shorter time period when conditions are favorable for bioapatite synthesis (warm season). Temperatures calculated by combining theropod, crocodyliform, and turtle δ18OH2O values and gar δ18OPO4 have enabled us to estimate seasonal variability as the difference between mean annual temperature (MAT, yielded by theropods) and temperature of the warmest months (TWMs, provided by crocodyliforms and turtles). ΔTWMs-MAT value does not point to a significantly different seasonal thermal variability when compared to modern coastal subtropical meteorological stations and Late Cretaceous rudists from eastern Tethys. Bioapatite and bulk organic matter δ13C values point to a C3 environment in the "Lo Hueco" area. The estimated fractionation between sauropod enamel and diet is ~15‰. While waiting for paleoecological information yielded by the ongoing morphological study of the "Lo Hueco" crocodyliforms, δ13C and δ18OCO3 results point to incorporation of food items with brackish influence, but preferential ingestion of freshwater. "Lo Hueco" turtles showed the lowest δ13C and δ18OCO3 values of the vertebrate assemblage, likely indicating a diet based on a mixture of aquatic and terrestrial C3 vegetation and/or invertebrates and ingestion of freshwater.
Collapse
Affiliation(s)
- Laura Domingo
- Departamento de Geología Sedimentaria y Cambio Medioambiental, Instituto de Geociencias IGEO-CSIC-UCM, Madrid, Spain
- Departamento de Paleontología, Universidad Complutense de Madrid, Madrid, Spain
- Earth and Planetary Sciences Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Fernando Barroso-Barcenilla
- Departamento de Paleontología, Universidad Complutense de Madrid, Madrid, Spain
- Grupo de Investigación IberCreta, Departamento de Geología y Geografía, Universidad de Alcalá de Henares, Alcalá de Henares, Spain
| | - Oscar Cambra-Moo
- Laboratorio de Poblaciones del Pasado, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Rowland LA, Bal NC, Periasamy M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev Camb Philos Soc 2014; 90:1279-97. [PMID: 25424279 DOI: 10.1111/brv.12157] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 10/03/2014] [Accepted: 10/14/2014] [Indexed: 12/17/2022]
Abstract
Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non-shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT-centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle-based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT-mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in vertebrates.
Collapse
Affiliation(s)
- Leslie A Rowland
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Naresh C Bal
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
12
|
Codron D, Carbone C, Clauss M. Ecological interactions in dinosaur communities: influences of small offspring and complex ontogenetic life histories. PLoS One 2013; 8:e77110. [PMID: 24204749 PMCID: PMC3812983 DOI: 10.1371/journal.pone.0077110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 09/04/2013] [Indexed: 11/23/2022] Open
Abstract
Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs’ successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S) distribution of carnivorous dinosaurs (as found in the theropod fossil record), in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora). Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods), in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey exists in mammals larger than 21.5 kg, and it seems a similar minimum prey-size threshold could have affected dinosaurs as well.
Collapse
Affiliation(s)
- Daryl Codron
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Florisbad Quaternary Research, National Museum, Bloemfontein, South Africa
- School of Biological and Conservation Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Department of Anthropology, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * E-mail:
| | - Chris Carbone
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Sander PM. An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests. PLoS One 2013; 8:e78573. [PMID: 24205267 PMCID: PMC3812984 DOI: 10.1371/journal.pone.0078573] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/20/2013] [Indexed: 11/23/2022] Open
Abstract
Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism"). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.
Collapse
Affiliation(s)
- P. Martin Sander
- Steinmann Institute of Geology, Mineralogy and Paleontology, University of Bonn, Bonn, Germany
| |
Collapse
|