1
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Draghi JA. Bet-hedging via dispersal aids the evolution of plastic responses to unreliable cues. J Evol Biol 2023. [PMID: 37224140 DOI: 10.1111/jeb.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023]
Abstract
Adaptive plasticity is expected to evolve when informative cues predict environmental variation. However, plastic responses can be maladaptive even when those cues are informative, if prediction mistakes are shared across members of a generation. These fitness costs can constrain the evolution of plasticity when initial plastic mutants use of cues of only moderate reliability. Here, we model the barriers to the evolution of plasticity produced by these constraints and show that dispersal across a metapopulation can overcome them. Constraints are also lessened, though not eliminated, when plastic responses are free to evolve gradually and in concert with increased reliability. Each of these factors be viewed as a form of bet-hedging: by lessening correlations in the fates of relatives, dispersal acts as diversifying bet-hedging, while producing submaximal responses to a cue can be understood as a conservative bet-hedging strategy. While poor information may constrain the evolution of plasticity, the opportunity for bet-hedging may predict when that constraint can be overcome.
Collapse
Affiliation(s)
- Jeremy A Draghi
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Magierecka A, Aristeidou A, Papaevripidou M, Gibson JK, Sloman KA, Metcalfe NB. Timing of reproduction modifies transgenerational effects of chronic exposure to stressors in an annual vertebrate. Proc Biol Sci 2022; 289:20221462. [PMID: 36476008 PMCID: PMC9554732 DOI: 10.1098/rspb.2022.1462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stressful environmental conditions can shape both an individual's phenotype and that of its offspring. However, little is known about transgenerational effects of chronic (as opposed to acute) stressors, nor whether these vary across the breeding lifespan of the parent. We exposed adult female (F0 generation) three-spined sticklebacks (Gasterosteus aculeatus) to chronic environmental stressors and compared their reproductive allocation with that of non-exposed controls across early, middle and late clutches produced within the single breeding season of this annual population. There was a seasonal trend (but no treatment difference) in F0 reproductive allocation, with increases in egg mass and fry size in late clutches. We then tested for transgenerational effects in the non-exposed F1 and F2 generations. Exposure of F0 females to stressors resulted in phenotypic change in their offspring and grandoffspring that were produced late in their breeding lifespan: F1 offspring produced from the late-season clutches of stressor-exposed F0 females had higher early life survival, and subsequently produced heavier eggs and F2 fry that were larger at hatching. Changed maternal allocation due to a combination of seasonal factors and environmental stressors can thus have a transgenerational effect by influencing the reproductive allocation of daughters, especially those born late in life.
Collapse
Affiliation(s)
- Agnieszka Magierecka
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Antreas Aristeidou
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maria Papaevripidou
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - John K. Gibson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Katherine A. Sloman
- Institute for Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire G72 0LH, UK
| | - Neil B. Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Cossin-Sevrin N, Hsu BY, Marciau C, Viblanc VA, Ruuskanen S, Stier A. Effect of prenatal glucocorticoids and thyroid hormones on developmental plasticity of mitochondrial aerobic metabolism, growth and survival: an experimental test in wild great tits. J Exp Biol 2022; 225:jeb243414. [PMID: 35420125 PMCID: PMC10216743 DOI: 10.1242/jeb.243414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Developmental plasticity is partly mediated by transgenerational effects, including those mediated by the maternal endocrine system. Glucocorticoid and thyroid hormones may play central roles in developmental programming through their action on metabolism and growth. However, the mechanisms by which they affect growth and development remain understudied. One hypothesis is that maternal hormones directly affect the production and availability of energy-carrying molecules (e.g. ATP) by their action on mitochondrial function. To test this hypothesis, we experimentally increased glucocorticoid and thyroid hormones in wild great tit eggs (Parus major) to investigate their impact on offspring mitochondrial aerobic metabolism (measured in blood cells), and subsequent growth and survival. We show that prenatal glucocorticoid supplementation affected offspring cellular aerobic metabolism by decreasing mitochondrial density, maximal mitochondrial respiration and oxidative phosphorylation, while increasing the proportion of the maximum capacity being used under endogenous conditions. Prenatal glucocorticoid supplementation only had mild effects on offspring body mass, size and condition during the rearing period, but led to a sex-specific (females only) decrease in body mass a few months after fledging. Contrary to our expectations, thyroid hormone supplementation did not affect offspring growth or mitochondrial metabolism. Recapture probability as juveniles or adults was not significantly affected by prenatal hormonal treatment. Our results demonstrate that prenatal glucocorticoids can affect post-natal mitochondrial density and aerobic metabolism. The weak effects on growth and apparent survival suggest that nestlings were mostly able to compensate for the transient decrease in mitochondrial aerobic metabolism induced by prenatal glucocorticoids.
Collapse
Affiliation(s)
- Nina Cossin-Sevrin
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Coline Marciau
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, TAS 7004, Australia
| | - Vincent A. Viblanc
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Suvi Ruuskanen
- Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Antoine Stier
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
5
|
Gulyas L, Powell JR. Cold shock induces a terminal investment reproductive response in C. elegans. Sci Rep 2022; 12:1338. [PMID: 35079060 PMCID: PMC8789813 DOI: 10.1038/s41598-022-05340-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/08/2021] [Indexed: 12/04/2022] Open
Abstract
Challenges from environmental stressors have a profound impact on many life-history traits of an organism, including reproductive strategy. Examples across multiple taxa have demonstrated that maternal reproductive investment resulting from stress can improve offspring survival; a form of matricidal provisioning when death appears imminent is known as terminal investment. Here we report a reproductive response in the nematode Caenorhabditis elegans upon exposure to acute cold shock at 2 °C, whereby vitellogenic lipid movement from the soma to the germline appears to be massively upregulated at the expense of parental survival. This response is dependent on functional TAX-2; TAX-4 cGMP-gated channels that are part of canonical thermosensory mechanisms in worms and can be prevented in the presence of activated SKN-1/Nrf2, the master stress regulator. Increased maternal provisioning promotes improved embryonic cold shock survival, which is notably suppressed in animals with impaired vitellogenesis. These findings suggest that cold shock in C. elegans triggers terminal investment to promote progeny fitness at the expense of parental survival and may serve as a tractable model for future studies of stress-induced progeny plasticity.
Collapse
Affiliation(s)
- Leah Gulyas
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA.,Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94702, USA
| | - Jennifer R Powell
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA.
| |
Collapse
|
6
|
Kuijper B, Leimar O, Hammerstein P, McNamara JM, Dall SRX. The evolution of social learning as phenotypic cue integration. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200048. [PMID: 33993756 PMCID: PMC8126455 DOI: 10.1098/rstb.2020.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Most analyses of the origins of cultural evolution focus on when and where social learning prevails over individual learning, overlooking the fact that there are other developmental inputs that influence phenotypic fit to the selective environment. This raises the question of how the presence of other cue 'channels' affects the scope for social learning. Here, we present a model that considers the simultaneous evolution of (i) multiple forms of social learning (involving vertical or horizontal learning based on either prestige or conformity biases) within the broader context of other evolving inputs on phenotype determination, including (ii) heritable epigenetic factors, (iii) individual learning, (iv) environmental and cascading maternal effects, (v) conservative bet-hedging, and (vi) genetic cues. In fluctuating environments that are autocorrelated (and hence predictable), we find that social learning from members of the same generation (horizontal social learning) explains the large majority of phenotypic variation, whereas other cues are much less important. Moreover, social learning based on prestige biases typically prevails in positively autocorrelated environments, whereas conformity biases prevail in negatively autocorrelated environments. Only when environments are unpredictable or horizontal social learning is characterized by an intrinsically low information content, other cues such as conservative bet-hedging or vertical prestige biases prevail. This article is part of the theme issue 'Foundations of cultural evolution'.
Collapse
Affiliation(s)
- Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
- Institute for Data Science and Artificial Intelligence, University of Exeter, Exeter EX4 4SB, UK
| | - Olof Leimar
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Peter Hammerstein
- Institute for Theoretical Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - John M. McNamara
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK
| | - Sasha R. X. Dall
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
7
|
Kuijper B, Johnstone RA. Evolution of epigenetic transmission when selection acts on fecundity versus viability. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200128. [PMID: 33866808 DOI: 10.1098/rstb.2020.0128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Existing theory on the evolution of parental effects and the inheritance of non-genetic factors has mostly focused on the role of environmental change. By contrast, how differences in population demography and life history affect parental effects is poorly understood. To fill this gap, we develop an analytical model to explore how parental effects evolve when selection acts on fecundity versus viability in spatio-temporally fluctuating environments. We find that regimes of viability selection, but not fecundity selection, are most likely to favour parental effects. In the case of viability selection, locally adapted phenotypes have a higher survival than maladapted phenotypes and hence become enriched in the local environment. Hence, simply by being alive, a parental phenotype becomes correlated to its environment (and hence informative to offspring) during its lifetime, favouring the evolution of parental effects. By contrast, in regimes of fecundity selection, correlations between phenotype and environment develop more slowly: this is because locally adapted and maladapted parents survive at equal rates (no survival selection), so that parental phenotypes, by themselves, are uninformative about the local environment. However, because locally adapted parents are more fecund, they contribute more offspring to the local patch than maladapted parents. In case these offspring are also likely to inherit the adapted parents' phenotypes (requiring pre-existing inheritance), locally adapted offspring become enriched in the local environment, resulting in a correlation between phenotype and environment, but only in the offspring's generation. Because of this slower build-up of a correlation between phenotype and environment essential to parental effects, fecundity selection is more sensitive to any distortions owing to environmental change than viability selection. Hence, we conclude that viability selection is most conducive to the evolution of parental effects. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Bram Kuijper
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - Rufus A Johnstone
- Behaviour and Evolution Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
8
|
Vigne P, Gimond C, Ferrari C, Vielle A, Hallin J, Pino-Querido A, El Mouridi S, Mignerot L, Frøkjær-Jensen C, Boulin T, Teotónio H, Braendle C. A single-nucleotide change underlies the genetic assimilation of a plastic trait. SCIENCE ADVANCES 2021; 7:7/6/eabd9941. [PMID: 33536214 PMCID: PMC7857674 DOI: 10.1126/sciadv.abd9941] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/15/2020] [Indexed: 05/09/2023]
Abstract
Genetic assimilation-the evolutionary process by which an environmentally induced phenotype is made constitutive-represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation-by either genetic drift or selection-of an ancestrally plastic trait.
Collapse
Affiliation(s)
- Paul Vigne
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | | | | - Anne Vielle
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | - Johan Hallin
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, Québec, Canada
| | - Ania Pino-Querido
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Sonia El Mouridi
- Institut NeuroMyoGène, CNRS, Inserm, Université de Lyon, Lyon, France
| | | | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Thomas Boulin
- Institut NeuroMyoGène, CNRS, Inserm, Université de Lyon, Lyon, France
| | - Henrique Teotónio
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | | |
Collapse
|
9
|
López Sánchez A, Pascual-Pardo D, Furci L, Roberts MR, Ton J. Costs and Benefits of Transgenerational Induced Resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:644999. [PMID: 33719325 PMCID: PMC7952753 DOI: 10.3389/fpls.2021.644999] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 05/20/2023]
Abstract
Recent evidence suggests that stressed plants employ epigenetic mechanisms to transmit acquired resistance traits to their progeny. However, the evolutionary and ecological significance of transgenerational induced resistance (t-IR) is poorly understood because a clear understanding of how parents interpret environmental cues in relation to the effectiveness, stability, and anticipated ecological costs of t-IR is lacking. Here, we have used a full factorial design to study the specificity, costs, and transgenerational stability of t-IR following exposure of Arabidopsis thaliana to increasing stress intensities by a biotrophic pathogen, a necrotrophic pathogen, and salinity. We show that t-IR in response to infection by biotrophic or necrotrophic pathogens is effective against pathogens of the same lifestyle. This pathogen-mediated t-IR is associated with ecological costs, since progeny from biotroph-infected parents were more susceptible to both necrotrophic pathogens and salt stress, whereas progeny from necrotroph-infected parents were more susceptible to biotrophic pathogens. Hence, pathogen-mediated t-IR provides benefits when parents and progeny are in matched environments but is associated with costs that become apparent in mismatched environments. By contrast, soil salinity failed to mediate t-IR against salt stress in matched environments but caused non-specific t-IR against both biotrophic and necrotrophic pathogens in mismatched environments. However, the ecological relevance of this non-specific t-IR response remains questionable as its induction was offset by major reproductive costs arising from dramatically reduced seed production and viability. Finally, we show that the costs and transgenerational stability of pathogen-mediated t-IR are proportional to disease pressure experienced by the parents, suggesting that plants use disease severity as an environmental proxy to adjust investment in t-IR.
Collapse
Affiliation(s)
- Ana López Sánchez
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Ana López Sánchez,
| | - David Pascual-Pardo
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Leonardo Furci
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Michael R. Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Jurriaan Ton
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
- Jurriaan Ton,
| |
Collapse
|
10
|
Diaz F, Kuijper B, Hoyle RB, Talamantes N, Coleman JM, Matzkin LM. Environmental predictability drives adaptive within‐ and transgenerational plasticity of heat tolerance across life stages and climatic regions. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernando Diaz
- Department of Entomology University of Arizona Tucson AZ USA
| | - Bram Kuijper
- Center for Ecology and Conservation University of Exeter Penryn UK
| | - Rebecca B. Hoyle
- School of Mathematical Sciences University of Southampton Southampton UK
| | | | | | - Luciano M. Matzkin
- Department of Entomology University of Arizona Tucson AZ USA
- BIO5 InstituteUniversity of Arizona Tucson AZ USA
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
| |
Collapse
|
11
|
Baugh LR, Day T. Nongenetic inheritance and multigenerational plasticity in the nematode C. elegans. eLife 2020; 9:e58498. [PMID: 32840479 PMCID: PMC7447421 DOI: 10.7554/elife.58498] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
A rapidly growing body of literature in several organisms suggests that environmentally-induced adaptive changes in phenotype can be transmitted across multiple generations. Although within-generation plasticity has been well documented, multigenerational plasticity represents a significant departure from conventional evolutionary thought. Studies of C. elegans have been particularly influential because this species exhibits extensive phenotypic plasticity, it is often essentially isogenic, and it has well-documented molecular and cellular mechanisms through which nongenetic inheritance occurs. However, while experimentalists are eager to claim that nongenetic modes of inheritance characterized in this and other model systems enhance fitness, many biologists remain skeptical given the extraordinary nature of this claim. We establish three criteria to evaluate how compelling the evidence for adaptive multigenerational plasticity is, and we use these criteria to critically examine putative cases of it in C. elegans. We conclude by suggesting potentially fruitful avenues for future research.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomics and Computational Biology, Duke UniversityDurhamUnited States
| | - Troy Day
- Departments of Mathematics and Statistics, Department of Biology, Queens UniversityKingstonCanada
| |
Collapse
|
12
|
Vanden Broecke B, Bongers A, Mnyone L, Matthysen E, Leirs H. Nonlinear maternal effects on personality in a rodent species with fluctuating densities. Curr Zool 2020; 67:1-9. [PMID: 33654484 PMCID: PMC7901759 DOI: 10.1093/cz/zoaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Consistent among-individual variation in behavior, or animal personality, is present in a wide variety of species. This behavioral variation is maintained by both genetic and environmental factors. Parental effects are a special case of environmental variation and are expected to evolve in populations experiencing large fluctuations in their environment. They represent a non-genetic pathway by which parents can transmit information to their offspring, by modulating their personality. While it is expected that parental effects contribute to the observed personality variation, this has rarely been studied in wild populations. We used the multimammate mouse Mastomys natalensis as a model system to investigate the potential effects of maternal personality on offspring behavior. We did this by repeatedly recording the behavior of individually housed juveniles which were born and raised in the lab from wild caught females. A linear correlation, between mother and offspring in behavior, would be expected when the personality is only affected by additive genetic variation, while a more complex relationship would suggests the presence of maternal effects. We found that the personality of the mother predicted the behavior of their offspring in a non-linear pattern. Exploration behavior of mother and offspring was positively correlated, but only for slow and average exploring mothers, while this correlation became negative for fast exploring mothers. This may suggests that early maternal effects could affect personality in juvenile M. natalensis, potentially due to density-dependent and negative frequency-dependent mechanisms, and therefore contribute to the maintenance of personality variation.
Collapse
Affiliation(s)
- Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Aurelia Bongers
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ladslaus Mnyone
- Pest Management Centre, Sokoine University of Agriculture, P.O.Box 3110 Chuo Kikuu, Morogoro, Tanzania
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Torres G, Thomas DN, Whiteley NM, Wilcockson D, Giménez L. Maternal and cohort effects modulate offspring responses to multiple stressors. Proc Biol Sci 2020; 287:20200492. [PMID: 32546091 PMCID: PMC7329052 DOI: 10.1098/rspb.2020.0492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current concerns about climate change have led to intensive research attempting to understand how climate-driven stressors affect the performance of organisms, in particular the offspring of many invertebrates and fishes. Although stressors are likely to act on several stages of the life cycle, little is known about their action across life phases, for instance how multiple stressors experienced simultaneously in the maternal environment can modulate the responses to the same stressors operating in the offspring environment. Here, we study how performance of offspring of a marine invertebrate (shore crab Carcinus maenas) changes in response to two stressors (temperature and salinity) experienced during embryogenesis in brooding mothers from different seasons. On average, offspring responses were antagonistic: high temperature mitigated the negative effects of low salinity on survival. However, the magnitude of the response was modulated by the temperature and salinity conditions experienced by egg-carrying mothers. Performance also varied among cohorts, perhaps reflecting genetic variation, and/or maternal conditions prior to embryogenesis. This study contributes towards the understanding of how anthropogenic modification of the maternal environment drives offspring performance in brooders.
Collapse
Affiliation(s)
- Gabriela Torres
- Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Helgoland, Germany.,School of Ocean Sciences, College of Environmental Sciences and Engineering, Bangor University, Menai Bridge, UK
| | - David N Thomas
- School of Ocean Sciences, College of Environmental Sciences and Engineering, Bangor University, Menai Bridge, UK
| | - Nia M Whiteley
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK
| | - David Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Luis Giménez
- Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Helgoland, Germany.,School of Ocean Sciences, College of Environmental Sciences and Engineering, Bangor University, Menai Bridge, UK
| |
Collapse
|
14
|
Lind MI, Zwoinska MK, Andersson J, Carlsson H, Krieg T, Larva T, Maklakov AA. Environmental variation mediates the evolution of anticipatory parental effects. Evol Lett 2020; 4:371-381. [PMID: 32774885 PMCID: PMC7403678 DOI: 10.1002/evl3.177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 05/11/2020] [Indexed: 12/02/2022] Open
Abstract
Theory maintains that when future environment is predictable, parents should adjust the phenotype of their offspring to match the anticipated environment. The plausibility of positive anticipatory parental effects is hotly debated and the experimental evidence for the evolution of such effects is currently lacking. We experimentally investigated the evolution of anticipatory maternal effects in a range of environments that differ drastically in how predictable they are. Populations of the nematode Caenorhabditis remanei, adapted to 20°C, were exposed to a novel temperature (25°C) for 30 generations with either positive or zero correlation between parent and offspring environment. We found that populations evolving in novel environments that were predictable across generations evolved a positive anticipatory maternal effect, because they required maternal exposure to 25°C to achieve maximum reproduction in that temperature. In contrast, populations evolving under zero environmental correlation had lost this anticipatory maternal effect. Similar but weaker patterns were found if instead rate‐sensitive population growth was used as a fitness measure. These findings demonstrate that anticipatory parental effects evolve in response to environmental change so that ill‐fitting parental effects can be rapidly lost. Evolution of positive anticipatory parental effects can aid population viability in rapidly changing but predictable environments.
Collapse
Affiliation(s)
- Martin I Lind
- Animal Ecology, Department of Ecology and Genetics Uppsala University Uppsala 752 36 Sweden.,Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology (NTNU) Trondheim NO-7491 Norway
| | - Martyna K Zwoinska
- Animal Ecology, Department of Ecology and Genetics Uppsala University Uppsala 752 36 Sweden
| | - Johan Andersson
- Animal Ecology, Department of Ecology and Genetics Uppsala University Uppsala 752 36 Sweden
| | - Hanne Carlsson
- Animal Ecology, Department of Ecology and Genetics Uppsala University Uppsala 752 36 Sweden.,School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| | - Therese Krieg
- Animal Ecology, Department of Ecology and Genetics Uppsala University Uppsala 752 36 Sweden
| | - Tuuli Larva
- Animal Ecology, Department of Ecology and Genetics Uppsala University Uppsala 752 36 Sweden
| | - Alexei A Maklakov
- Animal Ecology, Department of Ecology and Genetics Uppsala University Uppsala 752 36 Sweden.,School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| |
Collapse
|
15
|
Pei Y, Forstmeier W, Kempenaers B. Offspring performance is well buffered against stress experienced by ancestors. Evolution 2020; 74:1525-1539. [PMID: 32463119 DOI: 10.1111/evo.14026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 11/27/2022]
Abstract
Evolution should render individuals resistant to stress and particularly to stress experienced by ancestors. However, many studies report negative effects of stress experienced by one generation on the performance of subsequent generations. To assess the strength of such transgenerational effects we propose a strategy aimed at overcoming the problem of type I errors when testing multiple proxies of stress in multiple ancestors against multiple offspring performance traits, and we apply it to a large observational dataset on captive zebra finches (Taeniopygia guttata). We combine clear one-tailed hypotheses with steps of validation, meta-analytic summary of mean effect sizes, and independent confirmatory testing. We find that drastic differences in early growth conditions (nestling body mass 8 days after hatching varied sevenfold between 1.7 and 12.4 g) had only moderate direct effects on adult morphology (95% confidence interval [CI]: r = 0.19-0.27) and small direct effects on adult fitness traits (r = 0.02-0.12). In contrast, we found no indirect effects of parental or grandparental condition (r = -0.017 to 0.002; meta-analytic summary of 138 effect sizes), and mixed evidence for small benefits of matching environments between parents and offspring, as the latter was not robust to confirmatory testing in independent datasets. This study shows that evolution has led to a remarkable robustness of zebra finches against undernourishment. Our study suggests that transgenerational effects are absent in this species, because CIs exclude all biologically relevant effect sizes.
Collapse
Affiliation(s)
- Yifan Pei
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| |
Collapse
|
16
|
Colicchio JM, Herman J. Empirical patterns of environmental variation favor adaptive transgenerational plasticity. Ecol Evol 2020; 10:1648-1665. [PMID: 32076541 PMCID: PMC7029079 DOI: 10.1002/ece3.6022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Effects of parental environment on offspring traits have been well known for decades. Interest in this transgenerational form of phenotypic plasticity has recently surged due to advances in our understanding of its mechanistic basis. Theoretical research has simultaneously advanced by predicting the environmental conditions that should favor the adaptive evolution of transgenerational plasticity. Yet whether such conditions actually exist in nature remains largely unexplored. Here, using long-term climate data, we modeled optimal levels of transgenerational plasticity for an organism with a one-year life cycle at a spatial resolution of 4 km2 across the continental United States. Both annual temperature and precipitation levels were often autocorrelated, but the strength and direction of these autocorrelations varied considerably even among nearby sites. When present, such environmental autocorrelations render offspring environments statistically predictable based on the parental environment, a key condition for the adaptive evolution of transgenerational plasticity. Results of our optimality models were consistent with this prediction: High levels of transgenerational plasticity were favored at sites with strong environmental autocorrelations, and little-to-no transgenerational plasticity was favored at sites with weak or nonexistent autocorrelations. These results are among the first to show that natural patterns of environmental variation favor the evolution of adaptive transgenerational plasticity. Furthermore, these findings suggest that transgenerational plasticity is likely variable in nature, depending on site-specific patterns of environmental variation.
Collapse
Affiliation(s)
- Jack M. Colicchio
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCAUSA
| | - Jacob Herman
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| |
Collapse
|
17
|
|
18
|
Proulx SR, Dey S, Guzella T, Teotónio H. How differing modes of non-genetic inheritance affect population viability in fluctuating environments. Ecol Lett 2019; 22:1767-1775. [PMID: 31436016 DOI: 10.1111/ele.13355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
Different modes of non-genetic inheritance are expected to affect population persistence in fluctuating environments. We here analyse Caenorhabditis elegans density-independent per capita growth rate time series on 36 populations experiencing six controlled sequences of challenging oxygen level fluctuations across 60 generations, and parameterise competing models of non-genetic inheritance in order to explain observed dynamics. Our analysis shows that phenotypic plasticity and anticipatory maternal effects are sufficient to explain growth rate dynamics, but that a carryover model where 'epigenetic' memory is imperfectly transmitted and might be reset at each generation is a better fit to the data. We further find that this epigenetic memory is asymmetric since it is kept for longer when populations are exposed to the more challenging environment. Our analysis suggests that population persistence in fluctuating environments depends on the non-genetic inheritance of phenotypes whose expression is regulated across multiple generations.
Collapse
Affiliation(s)
- Stephen R Proulx
- Department of Ecology, Evolution, and Marine Biology, UC Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Snigdhadip Dey
- Institut de Biologie de L'École Normale Suṕerieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| | - Thiago Guzella
- Institut de Biologie de L'École Normale Suṕerieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| | - Henrique Teotónio
- Institut de Biologie de L'École Normale Suṕerieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| |
Collapse
|
19
|
Bell AM, Hellmann JK. An Integrative Framework for Understanding the Mechanisms and Multigenerational Consequences of Transgenerational Plasticity. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019; 50:97-118. [PMID: 36046014 PMCID: PMC9427003 DOI: 10.1146/annurev-ecolsys-110218-024613] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Transgenerational plasticity (TGP) occurs when the environment experienced by a parent influences the development of their offspring. In this article, we develop a framework for understanding the mechanisms and multi-generational consequences of TGP. First, we conceptualize the mechanisms of TGP in the context of communication between parents (senders) and offspring (receivers) by dissecting the steps between an environmental cue received by a parent and its resulting effects on the phenotype of one or more future generations. Breaking down the problem in this way highlights the diversity of mechanisms likely to be involved in the process. Second, we review the literature on multigenerational effects and find that the documented patterns across generations are diverse. We categorize different multigenerational patterns and explore the proximate and ultimate mechanisms that can generate them. Throughout, we highlight opportunities for future work in this dynamic and integrative area of study.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Program in Neuroscience and Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
20
|
Gulyas L, Powell JR. Predicting the Future: Parental Progeny Investment in Response to Environmental Stress Cues. Front Cell Dev Biol 2019; 7:115. [PMID: 31275936 PMCID: PMC6593227 DOI: 10.3389/fcell.2019.00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/05/2019] [Indexed: 01/13/2023] Open
Abstract
Environmental stressors can severely limit the ability of an organism to reproduce as lifespan is decreased and resources are shifted away from reproduction to survival. Although this is often detrimental to the organism's reproductive fitness, certain other reproductive stress responses may mitigate this effect by increasing the likelihood of progeny survival in the F1 and subsequent generations. Here we review three means by which these progeny may be conferred a competitive edge as a result of stress encountered in the parental generation: heritable epigenetic modifications to nucleotides and histones, simple maternal investments of cytosolic components, and the partially overlapping phenomenon of terminal investment, which can entail extreme parental investment strategies in either cytosolic components or gamete production. We examine instances of these categories and their ability to subsequently impact offspring fitness and reproduction. Ultimately, without impacting nucleotide sequence, these more labile alterations may shape development, evolution, ecology and even human health, necessitating further understanding and research into the specific mechanisms by which environmental stressors are sensed and elicit a corresponding response in the parental germline.
Collapse
Affiliation(s)
- Leah Gulyas
- Department of Biology, Gettysburg College, Gettysburg, PA, United States
| | - Jennifer R Powell
- Department of Biology, Gettysburg College, Gettysburg, PA, United States
| |
Collapse
|
21
|
Sheriff MJ, Dantzer B, Love OP, Orrock JL. Error management theory and the adaptive significance of transgenerational maternal-stress effects on offspring phenotype. Ecol Evol 2018; 8:6473-6482. [PMID: 30038749 PMCID: PMC6053571 DOI: 10.1002/ece3.4074] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/22/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
It is well established that circulating maternal stress hormones (glucocorticoids, GCs) can alter offspring phenotype. There is also a growing body of empirical work, within ecology and evolution, indicating that maternal GCs link the environment experienced by the mother during gestation with changes in offspring phenotype. These changes are considered to be adaptive if the maternal environment matches the offspring's environment and maladaptive if it does not. While these ideas are conceptually sound, we lack a testable framework that can be used to investigate the fitness costs and benefits of altered offspring phenotypes across relevant future environments. We present error management theory as the foundation for a framework that can be used to assess the adaptive potential of maternal stress hormones on offspring phenotype across relevant postnatal scenarios. To encourage rigorous testing of our framework, we provide field-testable hypotheses regarding the potential adaptive role of maternal stress across a diverse array of taxa and life histories, as well as suggestions regarding how our framework might provide insight into past, present, and future research. This perspective provides an informed lens through which to design and interpret experiments on the effects of maternal stress, provides a framework for predicting and testing variation in maternal stress across and within taxa, and also highlights how rapid environmental change that induces maternal stress may lead to evolutionary traps.
Collapse
Affiliation(s)
- Michael J. Sheriff
- Department of Ecosystem Science and ManagementHuck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvania
| | - Ben Dantzer
- Departments of Psychology, Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan
| | - Oliver P. Love
- Department of Biological SciencesUniversity of WindsorWindsorONCanada
| | - John L. Orrock
- Department of Integrative BiologyUniversity of WisconsinMadisonWisconsin
| |
Collapse
|
22
|
Langenhof MR, Komdeur J. Why and how the early-life environment affects development of coping behaviours. Behav Ecol Sociobiol 2018; 72:34. [PMID: 29449757 PMCID: PMC5805793 DOI: 10.1007/s00265-018-2452-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 01/02/2023]
Abstract
Understanding the ways in which individuals cope with threats, respond to challenges, make use of opportunities and mediate the harmful effects of their surroundings is important for predicting their ability to function in a rapidly changing world. Perhaps one of the most essential drivers of coping behaviour of adults is the environment experienced during their early-life development. Although the study of coping, defined as behaviours displayed in response to environmental challenges, has a long and rich research history in biology, recent literature has repeatedly pointed out that the processes through which coping behaviours develop in individuals are still largely unknown. In this review, we make a move towards integrating ultimate and proximate lines of coping behaviour research. After broadly defining coping behaviours (1), we review why, from an evolutionary perspective, the development of coping has become tightly linked to the early-life environment (2), which relevant developmental processes are most important in creating coping behaviours adjusted to the early-life environment (3), which influences have been shown to impact those developmental processes (4) and what the adaptive significance of intergenerational transmission of coping behaviours is, in the context of behavioural adaptations to a fast changing world (5). Important concepts such as effects of parents, habitat, nutrition, social group and stress are discussed using examples from empirical studies on mammals, fish, birds and other animals. In the discussion, we address important problems that arise when studying the development of coping behaviours and suggest solutions.
Collapse
Affiliation(s)
- M. Rohaa Langenhof
- Behavioural Physiology and Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jan Komdeur
- Behavioural Physiology and Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Lea AJ, Tung J, Archie EA, Alberts SC. Developmental plasticity: Bridging research in evolution and human health. Evol Med Public Health 2018; 2017:162-175. [PMID: 29424834 PMCID: PMC5798083 DOI: 10.1093/emph/eox019] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/19/2017] [Indexed: 02/06/2023] Open
Abstract
Early life experiences can have profound and persistent effects on traits expressed throughout the life course, with consequences for later life behavior, disease risk, and mortality rates. The shaping of later life traits by early life environments, known as 'developmental plasticity', has been well-documented in humans and non-human animals, and has consequently captured the attention of both evolutionary biologists and researchers studying human health. Importantly, the parallel significance of developmental plasticity across multiple fields presents a timely opportunity to build a comprehensive understanding of this phenomenon. We aim to facilitate this goal by highlighting key outstanding questions shared by both evolutionary and health researchers, and by identifying theory and empirical work from both research traditions that is designed to address these questions. Specifically, we focus on: (i) evolutionary explanations for developmental plasticity, (ii) the genetics of developmental plasticity and (iii) the molecular mechanisms that mediate developmental plasticity. In each section, we emphasize the conceptual gains in human health and evolutionary biology that would follow from filling current knowledge gaps using interdisciplinary approaches. We encourage researchers interested in developmental plasticity to evaluate their own work in light of research from diverse fields, with the ultimate goal of establishing a cross-disciplinary understanding of developmental plasticity.
Collapse
Affiliation(s)
- Amanda J Lea
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Duke University Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Elizabeth A Archie
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Duke University Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
24
|
Kuijper B, Johnstone RA. Maternal effects and parent-offspring conflict. Evolution 2017; 72:220-233. [PMID: 29210448 DOI: 10.1111/evo.13403] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/16/2017] [Indexed: 01/03/2023]
Abstract
Maternal effects can provide offspring with reliable information about the environment they are likely to experience, but also offer scope for maternal manipulation of young when interests diverge between parents and offspring. To predict the impact of parent-offspring conflict, we model the evolution of maternal effects on local adaptation of young. We find that parent-offspring conflict strongly influences the stability of maternal effects; moreover, the nature of the disagreement between parents and young predicts how conflict is resolved: when mothers favor less extreme mixtures of phenotypes relative to offspring (i.e., when mothers stand to gain by hedging their bets), mothers win the conflict by providing offspring with limited amounts of information. When offspring favor overproduction of one and the same phenotype across all environments compared to mothers (e.g., when offspring favor a larger body size), neither side wins the conflict and signaling breaks down. Only when offspring favor less extreme mixtures relative to their mothers (something no current model predicts), offspring win the conflict and obtain full information about the environment. We conclude that a partial or complete breakdown of informative maternal effects will be the norm rather than the exception in the presence of parent-offspring conflict.
Collapse
Affiliation(s)
- Bram Kuijper
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, United Kingdom
| | - Rufus A Johnstone
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
25
|
Bonduriansky R, Crean AJ. What are parental condition‐transfer effects and how can they be detected? Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12848] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences University of New South Wales Australia Sydney NSW Australia
| | - Angela J. Crean
- Animal Reproduction Group School of Life and Environmental Sciences Faculty of Veterinary Science University of Sydney Sydney NSW Australia
| |
Collapse
|
26
|
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental Evolution with Caenorhabditis Nematodes. Genetics 2017; 206:691-716. [PMID: 28592504 PMCID: PMC5499180 DOI: 10.1534/genetics.115.186288] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative.
Collapse
Affiliation(s)
- Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre Nationnal de la Recherche Scientifique Unité Mixte de Recherche 8197, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Suzanne Estes
- Department of Biology, Portland State University, Oregon 97201
| | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, Oregon 97403, and
| | - Charles F Baer
- Department of Biology, and
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|