1
|
Zeidler T, Ros A, Roch S, Jacobs A, Geist J, Brinker A. Non-random mating behaviour between diverging littoral and pelagic three-spined sticklebacks in an invasive population from Upper Lake Constance. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241252. [PMID: 39816745 PMCID: PMC11732402 DOI: 10.1098/rsos.241252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Adaptive divergence and increased genetic differentiation among populations can lead to reproductive isolation. In Lake Constance, Germany, a population of invasive three-spined stickleback (Gasterosteus aculeatus) is currently diverging into littoral and pelagic ecotypes, which both nest in the littoral zone. We hypothesized that assortative mating behaviour contributes to reproductive isolation between these ecotypes and performed a behavioural experiment in which females could choose between two nest-guarding males. Behaviour was recorded, and data on traits relevant to mate choice were collected. Both females of the same and different ecotypes were courted with equal vigour. However, there was a significant interaction effect of male and female ecotypes on the level of aggression in females. Littoral females were more aggressive towards pelagic males, and pelagic females were more aggressive towards littoral males. This indicates rejection of males of different ecotypes in spite of the fact that littoral males were larger, more intensely red-coloured and more aggressive than the pelagic males-all mating traits female sticklebacks generally select for. This study documents the emergence of behavioural barriers during early divergence in an invasive and rapidly diversifying stickleback population and discusses their putative role in facilitating reproductive isolation and adaptive radiation within this species.
Collapse
Affiliation(s)
- Tobias Zeidler
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Albert Ros
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Samuel Roch
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Arne Jacobs
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, GlasgowG12 8QQ, UK
| | - Juergen Geist
- Department of Life Science Systems, Aquatic Systems Biology Unit, Technical University of Munich, TUM School of Life Sciences, Mühlenweg 22, 85354 Freising, Germany
| | - Alexander Brinker
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
- University of Constance, Institute for Limnology, Mainaustraße 252, 78464 Konstanz, Germany
| |
Collapse
|
2
|
Gross CP, Stachowicz JJ. Extending trait dispersion across trophic levels: Predator assemblages act as top-down filters on prey communities. Ecology 2024; 105:e4320. [PMID: 38768562 DOI: 10.1002/ecy.4320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 05/22/2024]
Abstract
Studies of community assembly typically focus on the effects of abiotic environmental filters and stabilizing competition on functional trait dispersion within single trophic levels. Predation is a well-known driver of community diversity and composition, yet the role of functionally diverse predator communities in filtering prey community traits has received less attention. We examined functionally diverse communities of predators (fishes) and prey (epifaunal crustaceans) in eelgrass (Zostera marina) beds in two northern California estuaries to evaluate the filtering effects of predator traits on community assembly and how filters acting on predators influence their ability to mediate prey community assembly. Fish traits related to bottom orientation were correlated with more clustered epifauna communities, and epifauna were generally overdispersed while fishes were clustered, suggesting prey may be pushed to disparate areas of trait space to avoid capture by benthic sit-and-wait predators. We also found correlations between the trait dispersions of predator and prey communities that strengthened after accounting for the effects of habitat filters on predator dispersion, suggesting that habitat filtering effects on predator species pools may hinder their ability to affect prey community assembly. Our results present compelling observational evidence that specific predator traits have measurable impacts on the community assembly of prey, inviting experimental tests of predator trait means on community assembly and explicit comparisons of how the relative effects of habitat filters and intraguild competition on predators impact their ability to affect prey community assembly. Integrating our understanding of traits at multiple trophic levels can help us better predict the impacts of community composition on food web dynamics as regional species pools shift with climate change and anthropogenic introductions.
Collapse
Affiliation(s)
- Collin P Gross
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
3
|
Moosmann M, Greenway R, Oester R, Matthews B. The role of fish predators and their foraging traits in shaping zooplankton community structure. Ecol Lett 2024; 27:e14382. [PMID: 38361474 DOI: 10.1111/ele.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Differentiation of foraging traits among predator populations may help explain observed variation in the structure of prey communities. However, few studies have investigated the phenotypic effects of predators on their prey in natural communities. Here, we use a comparative analysis of 78 Greenlandic lakes to examine how foraging trait variation among threespine stickleback populations can help explain variation in zooplankton community composition among lakes. We find that landscape-scale variation in zooplankton composition was jointly explained by lake properties, such as size and water chemistry, and the presence and absence of both stickleback and arctic char. Additional variation in zooplankton community structure can be explained by stickleback jaw protrusion, a trait with known utility for foraging on zooplankton, but only in lakes where stickleback co-occur with arctic char. Overall, our results illustrate how trait variation of predators, alongside other ecosystem properties, can influence the composition of prey communities in nature.
Collapse
Affiliation(s)
- Marvin Moosmann
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Ryan Greenway
- Department of Biology, University of Constance, Constance, Germany
| | - Rebecca Oester
- Department of Aquatic Ecology, EAWAG, Kastanienbaum, Dübendorf, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| |
Collapse
|
4
|
Hudson CM, Cuenca Cambronero M, Moosmann M, Narwani A, Spaak P, Seehausen O, Matthews B. Environmentally independent selection for hybrids between divergent freshwater stickleback lineages in semi-natural ponds. J Evol Biol 2023; 36:1166-1184. [PMID: 37394735 DOI: 10.1111/jeb.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Hybridization following secondary contact of genetically divergent populations can influence the range expansion of invasive species, though specific outcomes depend on the environmental dependence of hybrid fitness. Here, using two genetically and ecologically divergent threespine stickleback lineages that differ in their history of freshwater colonization, we estimate fitness variation of parental lineages and hybrids in semi-natural freshwater ponds with contrasting histories of nutrient loading. In our experiment, we found that fish from the older freshwater lineage (Lake Geneva) and hybrids outperformed fish from the younger freshwater lineage (Lake Constance) in terms of both growth and survival, regardless of the environmental context of our ponds. Across all ponds, hybrids exhibited the highest survival. Although wild-caught adult populations differed in their functional and defence morphology, it is unclear which of these traits underlie the fitness differences observed among juveniles in our experiment. Overall, our work suggests that when hybrid fitness is insensitive to environmental conditions, as observed here, introgression may promote population expansion into unoccupied habitats and accelerate invasion success.
Collapse
Affiliation(s)
- Cameron Marshall Hudson
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Maria Cuenca Cambronero
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Aquatic Ecology Group, University of Vic, Central University of Catalonia, Vic, Spain
| | - Marvin Moosmann
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
| |
Collapse
|
5
|
Raffard A, Cucherousset J, Santoul F, Di Gesu L, Blanchet S. Climate and intraspecific variation in a consumer species drive ecosystem multifunctionality. OIKOS 2023. [DOI: 10.1111/oik.09286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Allan Raffard
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
- Laboratoire d'Ecologie Fonctionelle et Environnement CNRS‐INPT‐UPS, Univ. Paul Sabatier Toulouse France
| | - Julien Cucherousset
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Univ. de Toulouse 3 Paul Sabatier, CNRS, IRD Toulouse France
| | - Frédéric Santoul
- Laboratoire d'Ecologie Fonctionelle et Environnement CNRS‐INPT‐UPS, Univ. Paul Sabatier Toulouse France
| | - Lucie Di Gesu
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
| |
Collapse
|
6
|
Oester R, Greenway R, Moosmann M, Sommaruga R, Tartarotti B, Brodersen J, Matthews B. The influence of predator community composition on photoprotective traits of copepods. Ecol Evol 2022; 12:e8862. [PMID: 35494499 PMCID: PMC9035585 DOI: 10.1002/ece3.8862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Trait expression of natural populations often jointly depends on prevailing abiotic environmental conditions and predation risk. Copepods, for example, can vary their expression of compounds that confer protection against ultraviolet radiation (UVR), such as astaxanthin and mycosporine‐like amino acids (MAAs), in relation to predation risk. Despite ample evidence that copepods accumulate less astaxanthin in the presence of predators, little is known about how the community composition of planktivorous fish can affect the overall expression of photoprotective compounds. Here, we investigate how the (co‐)occurrence of Arctic charr (Salvelinus alpinus) and threespine stickleback (Gasterosteus aculeatus) affects the photoprotective phenotype of the copepod Leptodiaptomus minutus in lake ecosystems in southern Greenland. We found that average astaxanthin and MAA contents were lowest in lakes with stickleback, but we found no evidence that these photoprotective compounds were affected by the presence of charr. Furthermore, variance in astaxanthin among individual copepods was greatest in the presence of stickleback and the astaxanthin content of copepods was negatively correlated with increasing stickleback density. Overall, we show that the presence and density of stickleback jointly affect the content of photoprotective compounds by copepods, illustrating how the community composition of predators in an ecosystem can determine the expression of prey traits that are also influenced by abiotic stressors.
Collapse
Affiliation(s)
- Rebecca Oester
- ETH Zürich, D‐USYS Zürich Switzerland
- Department of Fish Ecology and Evolution Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Institute of Applied Microbiology University of Applied Sciences and Arts of Southern Switzerland Mendrisio Switzerland
| | - Ryan Greenway
- Department of Fish Ecology and Evolution Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
| | - Marvin Moosmann
- Department of Fish Ecology and Evolution Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
- Division of Aquatic Ecology and Evolution Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Ruben Sommaruga
- Department of Ecology Lake and Glacier Ecology Research Group University of Innsbruck Innsbruck Austria
| | - Barbara Tartarotti
- Department of Ecology Lake and Glacier Ecology Research Group University of Innsbruck Innsbruck Austria
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
- Division of Aquatic Ecology and Evolution Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
| |
Collapse
|
7
|
Raffard A, Bestion E, Cote J, Haegeman B, Schtickzelle N, Jacob S. Dispersal syndromes can link intraspecific trait variability and meta-ecosystem functioning. Trends Ecol Evol 2021; 37:322-331. [PMID: 34952726 DOI: 10.1016/j.tree.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Dispersal mediates the flow of organisms in meta-communities and subsequently energy and material flows in meta-ecosystems. Individuals within species often vary in dispersal tendency depending on their phenotypic traits (i.e., dispersal syndromes), but the implications of dispersal syndromes for meta-ecosystems have been rarely studied. Using empirical examples on vertebrates, arthropods, and microbes, we highlight that key functional traits can be linked to dispersal. We argue that this coupling between dispersal and functional traits can have consequences for meta-ecosystem functioning, mediating flows of functional traits and thus the spatial heterogeneity of ecosystem functions. As dispersal syndromes may be genetically determined, the spatial heterogeneity of functional traits may be further carried over across generations and link meta-ecosystem functioning to evolutionary dynamics.
Collapse
Affiliation(s)
- Allan Raffard
- Université Catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium.
| | - Elvire Bestion
- Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, Moulis, France
| | - Julien Cote
- CNRS, UPS, IRD, Laboratoire Évolution et Diversité Biologique, UAR 5174, 31062, Cedex 9 Toulouse, France
| | - Bart Haegeman
- Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, Moulis, France
| | - Nicolas Schtickzelle
- Université Catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
| | - Staffan Jacob
- Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, Moulis, France
| |
Collapse
|
8
|
Hudson CM, Ladd SN, Leal MC, Schubert CJ, Seehausen O, Matthews B. Fit and fatty freshwater fish: contrasting polyunsaturated fatty acid phenotypes between hybridizing stickleback lineages. OIKOS 2021. [DOI: 10.1111/oik.08558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cameron M. Hudson
- Dept of Fish Ecology and Evolution, Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry Kastanienbaum Switzerland
- Aquatic Ecology and Evolution, Inst. of Ecology and Evolution, Univ. of Bern Bern Switzerland
| | - S. Nemiah Ladd
- Dept of Surface Waters – Research and Management, Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry Kastanienbaum Switzerland
- Ecosystem Physiology, Univ. of Freiburg Freiburg Germany
| | - Miguel C. Leal
- ECOMARE, CESAM – Center for Environmental and Marine Studies, Dept of Biology, Univ. of Aveiro, Campus Universitário de Santiago Aveiro Portugal
| | - Carsten J. Schubert
- Dept of Surface Waters – Research and Management, Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry Kastanienbaum Switzerland
| | - Ole Seehausen
- Dept of Fish Ecology and Evolution, Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry Kastanienbaum Switzerland
- Aquatic Ecology and Evolution, Inst. of Ecology and Evolution, Univ. of Bern Bern Switzerland
| | - Blake Matthews
- Dept of Fish Ecology and Evolution, Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry Kastanienbaum Switzerland
| |
Collapse
|
9
|
Fleischer SR, Bolnick DI, Schreiber SJ. Sick of eating: Eco-evo-immuno dynamics of predators and their trophically acquired parasites. Evolution 2021; 75:2842-2856. [PMID: 34562317 PMCID: PMC8985590 DOI: 10.1111/evo.14353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
When predators consume prey, they risk becoming infected with their prey's parasites, which can then establish the predator as a secondary host. A predator population's diet therefore influences what parasites it is exposed to, as has been repeatedly shown in many species such as threespine stickleback (Gasterosteus aculeatus) (more benthic‐feeding individuals obtain nematodes from oligocheate prey, whereas limnetic‐feeding individuals catch cestodes from copepod prey). These differing parasite encounters, in turn, determine how natural selection acts on the predator's immune system. We might therefore expect that ecoevolutionary dynamics of a predator's diet (as determined by its ecomorphology) should drive correlated evolution of its immune traits. Conversely, the predator's immunity to certain parasites might alter the relative costs and benefits of different prey, driving evolution of its ecomorphology. To evaluate the potential for ecological morphology to drive evolution of immunity, and vice versa, we use a quantitative genetics framework coupled with an ecological model of a predator and two prey species (the diet options). Our analysis reveals fundamental asymmetries in the evolution of ecomorphology and immunity. When ecomorphology rapidly evolves, it determines how immunity evolves, but not vice versa. Weak trade‐offs in ecological morphology select for diet generalists despite strong immunological trade‐offs, but not vice versa. Only weak immunological trade‐offs can explain negative diet‐infection correlations across populations. The analysis also reveals that eco‐evo‐immuno feedbacks destabilize population dynamics when trade‐offs are sufficiently weak and heritability is sufficiently high. Collectively, these results highlight the delicate interplay between multivariate trait evolution and the dynamics of ecological communities.
Collapse
Affiliation(s)
- Samuel R Fleischer
- Graduate Group in Applied Mathematics, University of California, Davis, Davis, California 95616
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Sebastian J Schreiber
- Department of Evolution and Ecology, University of California, Davis, Davis, California 95616
| |
Collapse
|
10
|
Eriksson BK, Yanos C, Bourlat SJ, Donadi S, Fontaine MC, Hansen JP, Jakubavičiūtė E, Kiragosyan K, Maan ME, Merilä J, Austin ÅN, Olsson J, Reiss K, Sundblad G, Bergström U, Eklöf JS. Habitat segregation of plate phenotypes in a rapidly expanding population of three‐spined stickleback. Ecosphere 2021. [DOI: 10.1002/ecs2.3561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Britas Klemens Eriksson
- Groningen Institute for Evolutionary Life‐Sciences, GELIFES University of Groningen Nijenborgh 7 Groningen9747 AGThe Netherlands
| | - Casey Yanos
- Groningen Institute for Evolutionary Life‐Sciences, GELIFES University of Groningen Nijenborgh 7 Groningen9747 AGThe Netherlands
| | - Sarah J. Bourlat
- Zoological Research Museum Alexander Koenig Adenauerallee 160 Bonn53113Germany
| | - Serena Donadi
- Department of Aquatic Resources Swedish University of Agricultural Science Drottningholm Sweden
| | - Michael C. Fontaine
- MIVEGEC CNRS IRD Univ. Montpellier Montpellier France
- Centre de Recherche en Ecologie et Evolution de la Santé (CREES) Montpellier France
| | | | | | - Karine Kiragosyan
- Groningen Institute for Evolutionary Life‐Sciences, GELIFES University of Groningen Nijenborgh 7 Groningen9747 AGThe Netherlands
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life‐Sciences, GELIFES University of Groningen Nijenborgh 7 Groningen9747 AGThe Netherlands
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme Faculty Biological & Environmental Sciences University of Helsinki PO Box 65 HelsinkiFI‐00014Finland
- Research Division of Ecology & Biodiversity University of Hong Kong Hong Kong Hong Kong, SAR China
| | - Åsa N. Austin
- Department of Ecology, Environment and Plant Sciences Stockholm University Sweden
| | - Jens Olsson
- Department of Aquatic Resources Swedish University of Agricultural Science Drottningholm Sweden
| | - Katrin Reiss
- Faculty for Biosciences and Aquaculture Nord University Bodø8049Norway
| | - Göran Sundblad
- Department of Aquatic Resources Swedish University of Agricultural Science Drottningholm Sweden
| | - Ulf Bergström
- Department of Aquatic Resources Swedish University of Agricultural Science Drottningholm Sweden
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant Sciences Stockholm University Sweden
| |
Collapse
|
11
|
Hudson CM, Lucek K, Marques DA, Alexander TJ, Moosmann M, Spaak P, Seehausen O, Matthews B. Threespine Stickleback in Lake Constance: The Ecology and Genomic Substrate of a Recent Invasion. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.611672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invasive species can be powerful models for studying contemporary evolution in natural environments. As invading organisms often encounter new habitats during colonization, they will experience novel selection pressures. Threespine stickleback (Gasterosteus aculeatus complex) have recently colonized large parts of Switzerland and are invasive in Lake Constance. Introduced to several watersheds roughly 150 years ago, they spread across the Swiss Plateau (400–800 m a.s.l.), bringing three divergent hitherto allopatric lineages into secondary contact. As stickleback have colonized a variety of different habitat types during this recent range expansion, the Swiss system is a useful model for studying contemporary evolution with and without secondary contact. For example, in the Lake Constance region there has been rapid phenotypic and genetic divergence between a lake population and some stream populations. There is considerable phenotypic variation within the lake population, with individuals foraging in and occupying littoral, offshore pelagic, and profundal waters, the latter of which is a very unusual habitat for stickleback. Furthermore, adults from the lake population can reach up to three times the size of adults from the surrounding stream populations, and are large by comparison to populations globally. Here, we review the historical origins of the threespine stickleback in Switzerland, and the ecomorphological variation and genomic basis of its invasion in Lake Constance. We also outline the potential ecological impacts of this invasion, and highlight the interest for contemporary evolution studies.
Collapse
|
12
|
Haines GE, Stuart YE, Hanson D, Tasneem T, Bolnick DI, Larsson HCE, Hendry AP. Adding the third dimension to studies of parallel evolution of morphology and function: An exploration based on parapatric lake-stream stickleback. Ecol Evol 2020; 10:13297-13311. [PMID: 33304538 PMCID: PMC7713967 DOI: 10.1002/ece3.6929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/04/2022] Open
Abstract
Recent methodological advances have led to a rapid expansion of evolutionary studies employing three-dimensional landmark-based geometric morphometrics (GM). GM methods generally enable researchers to capture and compare complex shape phenotypes, and to quantify their relationship to environmental gradients. However, some recent studies have shown that the common, inexpensive, and relatively rapid two-dimensional GM methods can distort important information and produce misleading results because they cannot capture variation in the depth (Z) dimension. We use micro-CT scanned threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) from six parapatric lake-stream populations on Vancouver Island, British Columbia, to test whether the loss of the depth dimension in 2D GM studies results in misleading interpretations of parallel evolution. Using joint locations described with 2D or 3D landmarks, we compare results from separate 2D and 3D shape spaces, from a combined 2D-3D shape space, and from estimates of biomechanical function. We show that, although shape is distorted enough in 2D projections to strongly influence the interpretation of morphological parallelism, estimates of biomechanical function are relatively robust to the loss of the Z dimension.
Collapse
Affiliation(s)
- Grant E. Haines
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQCCanada
| | | | - Dieta Hanson
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQCCanada
| | - Tania Tasneem
- Kealing Middle SchoolAustin Independent School DistrictAustinTXUSA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Hans C. E. Larsson
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQCCanada
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQCCanada
| |
Collapse
|
13
|
Marques DA, Lucek K, Sousa VC, Excoffier L, Seehausen O. Admixture between old lineages facilitated contemporary ecological speciation in Lake Constance stickleback. Nat Commun 2019; 10:4240. [PMID: 31534121 PMCID: PMC6751218 DOI: 10.1038/s41467-019-12182-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/27/2019] [Indexed: 01/25/2023] Open
Abstract
Ecological speciation can sometimes rapidly generate reproductively isolated populations coexisting in sympatry, but the origin of genetic variation permitting this is rarely known. We previously explored the genomics of very recent ecological speciation into lake and stream ecotypes in stickleback from Lake Constance. Here, we reconstruct the origin of alleles underlying ecological speciation by combining demographic modelling on genome-wide single nucleotide polymorphisms, phenotypic data and mitochondrial sequence data in the wider European biogeographical context. We find that parallel differentiation between lake and stream ecotypes across replicate lake-stream ecotones resulted from recent secondary contact and admixture between old East and West European lineages. Unexpectedly, West European alleles that introgressed across the hybrid zone at the western end of the lake, were recruited to genomic islands of differentiation between ecotypes at the eastern end of the lake. Our results highlight an overlooked outcome of secondary contact: ecological speciation facilitated by admixture variation. Ecological speciation can proceed rapidly, but the origin of genetic variation facilitating it has remained elusive. Here, the authors show that secondary contact and introgression between deeply diverged lineages of stickleback fish facilitated rapid ecological speciation into lake and stream ecotypes in Lake Constance.
Collapse
Affiliation(s)
- David A Marques
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland.,Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Vitor C Sousa
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Campo Grande 016, 1749-016, Lisbon, Portugal
| | - Laurent Excoffier
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland. .,Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland.
| |
Collapse
|