1
|
Fontúrbel FE, Villarroel J, Orellana JI. With a little help from my friends: Hyperparasitism allows a generalist mistletoe to expand habitat use. Ecology 2023; 104:e3919. [PMID: 36415080 DOI: 10.1002/ecy.3919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Javiera Villarroel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - José I Orellana
- Laboratorio de Vida Silvestre, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| |
Collapse
|
2
|
Li M, Sui Y, Wang X, Ma Z, Luo Y, Aluthwattha ST, McKey D, Pujol B, Chen J, Zhang L. High outcrossing rates in a self-compatible and highly aggregated host-generalist mistletoe. Mol Ecol 2022; 31:6489-6504. [PMID: 36201456 DOI: 10.1111/mec.16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023]
Abstract
Plants have evolved various strategies to avoid inbreeding, but the mass flowering displayed by many plants predisposes them to within-plant pollen movements and self-pollination. Mistletoes often aggregate at multiple spatial scales. Their bird pollinators often visit several flowers of the same individual and of others on the same host tree. We hypothesized that hermaphroditic mistletoes have self-incompatibility mechanisms that reduce or prevent selfing. Whether their spatial distribution, affected by host specificity, host distribution, and the behaviour of seed dispersers, influences their mating system and population genetic structure remains unclear. We studied how mating system and spatial distribution affect genetic structure in four populations of the host-generalist mistletoe Dendrophthoe pentandra in southwestern China using microsatellite markers and progeny arrays. We also characterized the fine-scale spatial genetic structure among 166 mistletoes from four host trees in one population. Prevalence and intensity of infection both appeared to vary among host species, strongly affecting the degree of aggregation. Host tree size had a strong effect on infection intensity. Surprisingly, manual pollination experiments indicated that D. pentandra is self-compatible, but genetic analyses revealed that outcrossing rates were higher than expected in all four populations (MLTR tm 0.83-1.20, Bayesian tm 0.772-0.952). Spatial genetic structure was associated with distance between host trees but not at shorter scales (within hosts). Our results demonstrate that the combination of bird pollination, bird-mediated seed dispersal, and post-dispersal processes result in outcrossing and maintain relatively high diversity in the presence of biparental inbreeding, despite very high local densities and possible self-compatibility.
Collapse
Affiliation(s)
- Manru Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Sui
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuanni Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhanxia Ma
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yahuang Luo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sasith Tharanga Aluthwattha
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Doyle McKey
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Benoit Pujol
- PSL Université Paris, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Jin Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Ling Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| |
Collapse
|
3
|
Génin F, Mazza PP, Pellen R, Rabineau M, Aslanian D, Masters JC. Co-evolution assists geographic dispersal: the case of Madagascar. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Interspecific associations may limit the dispersal of individual species, but may also facilitate it when entire co-evolved systems expand their geographic ranges. We tested the recent proposal that episodic land bridges linked Africa and Madagascar at three stages during the Cenozoic by comparing divergence estimates of Madagascar’s angiosperm taxa with their dispersal mechanisms. Plants that rely on gravity for seed dispersal indicate at least two episodes of land connection between Africa and Madagascar, in the Early Palaeocene and Early Oligocene. Seed dispersal by strepsirrhine primates possibly evolved in the Palaeocene, with the divergence of at least one endemic Malagasy angiosperm genus, Burasaia (Menispermaceae). This genus may have facilitated the lemur colonization of Madagascar. Frugivory, nectarivory and gummivory probably generalized in the Oligocene, with the co-evolution of modern lemurs and at least 10 new Malagasy angiosperm families. In the Late Miocene, more angiosperms were probably brought from Africa by birds via a discontinuous land connection, and radiated on Madagascar in diffuse association with birds (asities) and dwarf nocturnal lemurs (cheirogaleids). During the same connective episode, Madagascar was probably colonized by hippopotamuses, which both followed and re-seeded a variety of plants, forming the grassy Uapaca ‘tapia’ forest and ericoid ‘savoka’ thicket.
Collapse
Affiliation(s)
- Fabien Génin
- African Primate Initiative for Ecology and Speciation (APIES) and Africa Earth Observatory Network (AEON), Earth Stewardship Science Research Institute, Nelson Mandela University , Gqeberha (Port Elizabeth) , South Africa
| | - Paul Pa Mazza
- Department of Earth Sciences, University of Florence , via La Pira, Florence , Italy
| | - Romain Pellen
- African Primate Initiative for Ecology and Speciation (APIES) and Africa Earth Observatory Network (AEON), Earth Stewardship Science Research Institute, Nelson Mandela University , Gqeberha (Port Elizabeth) , South Africa
| | - Marina Rabineau
- CNRS, Institut Français de Recherche pour l’Exploration de la Mer (IFREMER ), UMR 6538 Geo-Ocean, IUEM, Univ Brest, Plouzané , France
| | - Daniel Aslanian
- CNRS, Institut Français de Recherche pour l’Exploration de la Mer (IFREMER ), UMR 6538 Geo-Ocean, IUEM, Univ Brest, Plouzané , France
| | - Judith C Masters
- African Primate Initiative for Ecology and Speciation (APIES) and Africa Earth Observatory Network (AEON), Earth Stewardship Science Research Institute, Nelson Mandela University , Gqeberha (Port Elizabeth) , South Africa
- Department of Botany & Zoology, Stellenbosch University , Stellenbosch , South Africa
| |
Collapse
|
4
|
Fontúrbel FE, Franco LM, Bozinovic F, Quintero‐Galvis JF, Mejías C, Amico GC, Vazquez MS, Sabat P, Sánchez‐Hernández JC, Watson DM, Saenz‐Agudelo P, Nespolo RF. The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests. Ecol Evol 2022; 12:e8645. [PMID: 35261741 PMCID: PMC8888251 DOI: 10.1002/ece3.8645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.
Collapse
Affiliation(s)
- Francisco E. Fontúrbel
- Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
| | - Lida M. Franco
- Facultad de Ciencias Naturales y MatemáticasUniversidad de IbaguéIbaguéColombia
| | - Francisco Bozinovic
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | | | - Carlos Mejías
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | | | | | - Pablo Sabat
- Departamento de Ciencias EcológicasFacultad de CienciasUniversidad de ChileSantiagoChile
| | | | - David M. Watson
- School of Agricultural, Environmental and Veterinary SciencesCharles Sturt UniversityAlburyNSWAustralia
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
5
|
Fontúrbel FE, Nespolo RF, Amico GC, Watson DM. Climate change can disrupt ecological interactions in mysterious ways: Using ecological generalists to forecast community-wide effects. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Krasylenko Y, Těšitel J, Ceccantini G, Oliveira-da-Silva M, Dvořák V, Steele D, Sosnovsky Y, Piwowarczyk R, Watson DM, Teixeira-Costa L. Parasites on parasites: hyper-, epi-, and autoparasitism among flowering plants. AMERICAN JOURNAL OF BOTANY 2021; 108:8-21. [PMID: 33403666 DOI: 10.1002/ajb2.1590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
All organisms engage in parasitic relations, as either parasites or hosts. Some species may even play both roles simultaneously. Among flowering plants, the most widespread form of parasitism is characterized by the development of an intrusive organ called the haustorium, which absorbs water and nutrients from the host. Despite this functionally unifying feature of parasitic plants, haustoria are not homologous structures; they have evolved 12 times independently. These plants represent ca. 1% of all extant flowering species and show a wide diversity of life histories. A great variety of plants may also serve as hosts, including other parasitic plants. This phenomenon of parasitic exploitation of another parasite, broadly known as hyper- or epiparasitism, is well described among bacteria, fungi, and animals, but remains poorly understood among plants. Here, we review empirical evidence of plant hyperparasitism, including variations of self-parasitism, discuss the diversity and ecological importance of these interactions, and suggest possible evolutionary mechanisms. Hyperparasitism may provide benefits in terms of improved nutrition and enhanced host-parasite compatibility if partners are related. Different forms of self-parasitism may facilitate nutrient sharing among and within parasitic plant individuals, while also offering potential for the evolution of hyperparasitism. Cases of hyperparasitic interactions between parasitic plants may affect the ecology of individual species and modulate their ecosystem impacts. Parasitic plant phenology and disperser feeding behavior are considered to play a major role in the occurrence of hyperparasitism, especially among mistletoes. There is also potential for hyperparasites to act as biological control agents of invasive primary parasitic host species.
Collapse
Affiliation(s)
- Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů, 27, 78371, Olomouc, Czech Republic
| | - Jakub Těšitel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Gregorio Ceccantini
- Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Mariana Oliveira-da-Silva
- Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Václav Dvořák
- Botanical Garden, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc, Czech Republic
| | - Daniel Steele
- Department of Plant Sciences, UC Davis, One Shields Avenue, Davis, CA, 95616
| | - Yevhen Sosnovsky
- Botanical Garden, Ivan Franko National University of Lviv, 44 Cheremshyna Str., 79014, Lviv, Ukraine
| | - Renata Piwowarczyk
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - David M Watson
- Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, 2640, Australia
| | - Luiza Teixeira-Costa
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA, 02138, USA
| |
Collapse
|