1
|
Howard NOA, Williams A, Durant E, Pressel S, Daniell TJ, Field KJ. Preferential nitrogen and carbon exchange dynamics in Mucoromycotina "fine root endophyte"-plant symbiosis. Curr Biol 2024; 34:5484-5493.e3. [PMID: 39566496 DOI: 10.1016/j.cub.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Mucoromycotina "fine root endophyte" (MFRE) fungi are an understudied group of plant symbionts that regularly co-occur with arbuscular mycorrhizal fungi. The functional significance of MFRE in plant nutrition remains underexplored, particularly their role in plant nitrogen (N) assimilation from the variety of sources typically found in soils. Using four 15N-labeled N sources to track N transfer between MFRE and Plantago lanceolata, applied singly and in tandem, we investigated N source discrimination, preference, and transfer to host plants by MFRE. We traced movement of 14C from plants to MFRE to determine the impact of N source type on plant carbon (C) allocation to MFRE. We found that MFRE preferentially transferred N derived from glycine and ammonium to plant hosts over that derived from nitrate and urea, regardless of other N sources present. MFRE mycelium supplied with glycine and ammonium contained more plant-derived carbon than those supplied with other N sources. We show that the MFRE directly assimilates and metabolizes organic compounds, retaining C to meet its own metabolic requirements and transferring N to plant hosts. Our findings highlight diversity in the function of endomycorrhizal associations, with potentially profound implications for our understanding of the physiology and ecology of plant-fungal symbioses.
Collapse
Affiliation(s)
- Nathan O A Howard
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Alex Williams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Emily Durant
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Tim J Daniell
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Katie J Field
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
2
|
Courtene-Jones W, Cheung SWH, Thompson RC, Hanley ME. Effect of biodegradable and conventional microplastic exposure in combination with seawater inundation on the coastal terrestrial plant Plantago coronopus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124573. [PMID: 39029863 DOI: 10.1016/j.envpol.2024.124573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Coastal ecosystems face a multitude of pressures including plastic pollution and increased flood risk due to sea level rise and the frequency and severity of storms. Experiments seldom examine multiple stressors such as these, but here we quantified the effect of microplastics (polyethylene terephthalate (PET): a durable plastic and polybutylene adipate terephthalate (PBAT): a biodegradable polymer), in combination with simulated seawater inundation on the coastal species Plantago coronopus. After 35-days exposure to plastic (0.02 g.Kg-1, <300 μm diameter), P. coronopus were flooded to pot height with artificial seawater for 72-h, drained and grown for a further 24-days. Plant mortality, necrosis and photosynthetic efficiency (Fv/Fm) were recorded throughout, with root:shoot biomass and scape production (flower stalks) quantified at harvest. There were significant interactions between microplastics and seawater on the root:shoot ratio; a measure of resource allocation. The allocation to belowground biomass increased significantly under the PET + inundation treatment compared to the PBAT + inundation and the no plastic + inundation treatments, with potential consequences on the capture of water, nutrients and sunlight, which can affect plant performance. Plant necrosis significantly increased, and Fv/Fm declined as a result of seawater inundation. While not significant, plant Fv/Fm responses were influenced by microplastics (17% and 7% reduction in PBAT and PET exposure respectively compared to the no plastic control). Plants mediated this stress response with no discernible treatment-specific effects detected in Fv/Fm 14-days after seawater introduction. Plastic exposure significantly influenced potential reproductive output, with lower average scape numbers across PBAT treatments, but higher in PET treatments. This study highlights the complex interactions and potential for microplastics to present an elevated risk when in combination with additional stressors like seawater flooding; establishing the threat presented to ecosystem resilience in a changing world is a priority.
Collapse
Affiliation(s)
- W Courtene-Jones
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
| | - S W H Cheung
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - R C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - M E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| |
Collapse
|
3
|
Levengood H, Zhou Y, Zhang C. Advancements in plant transformation: from traditional methods to cutting-edge techniques and emerging model species. PLANT CELL REPORTS 2024; 43:273. [PMID: 39467894 DOI: 10.1007/s00299-024-03359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
The ability to efficiently genetically modify plant species is crucial, driving the need for innovative technologies in plant biotechnology. Existing plant genetic transformation systems include Agrobacterium-mediated transformation, biolistics, protoplast-based methods, and nanoparticle techniques. Despite these diverse methods, many species exhibit resistance to transformation, limiting the applicability of most published methods to specific species or genotypes. Tissue culture remains a significant barrier for most species, although other barriers exist. These include the infection and regeneration stages in Agrobacterium, cell death and genomic instability in biolistics, the creation and regeneration of protoplasts for protoplast-based methods, and the difficulty of achieving stable transformation with nanoparticles. To develop species-independent transformation methods, it is essential to address these transformation bottlenecks. This review examines recent advancements in plant biotechnology, highlighting both new and existing techniques that have improved the success rates of plant transformations. Additionally, several newly emerged plant model systems that have benefited from these technological advancements are also discussed.
Collapse
Affiliation(s)
- Hannah Levengood
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cankui Zhang
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Mehmood F, Li M, Bertolli A, Prosser F, Varotto C. Comparative Plastomics of Plantains ( Plantago, Plantaginaceae) as a Tool for the Development of Species-Specific DNA Barcodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2691. [PMID: 39409561 PMCID: PMC11478842 DOI: 10.3390/plants13192691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024]
Abstract
Plantago (plantains, Plantaginaceae) is a cosmopolitan genus including over 250 species used as functional foods, forage, and traditional medicine. Among them, Plantago lanceolata is commonly used as an ingredient of herbal products, but the close similarity to other Plantago species can cause misidentifications with potentially serious consequences for product safety/quality. To test the possibility of developing species-specific barcoding markers, we de novo assembled plastome sequences of individuals of Plantago argentea, Plantago atrata, P. lanceolata, and Plantago maritima. These genomes were characterized in comparison with both previously sequenced conspecific accessions and other publicly available plastomes, thus providing an assessment of both intraspecific and interspecific genetic variation in Plantago plastomes. Additionally, molecular evolutionary analyses indicated that eleven protein-coding genes involved in different plastid functions in Plantago plastomes underwent positive selection, suggesting they might have contributed to enhancing species' adaptation during the evolutionary history of Plantago. While the most variable mutational hotspots in Plantago plastomes were not suitable for the development of species-specific molecular markers, species-specific polymorphisms could discriminate P. lanceolata from its closest relatives. Taken together, these results highlight the potential of plastome sequencing for the development of molecular markers to improve the identification of species with relevance in herbal products.
Collapse
Affiliation(s)
- Furrukh Mehmood
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mingai Li
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | | | - Claudio Varotto
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
5
|
Fox QN, Farah KN, Shaw OS, Pollowitz M, Sánchez-Conde A, Goodson C, Penczykowski RM. Effects of microclimate on disease prevalence across an urbanization gradient. Ecology 2024; 105:e4313. [PMID: 38708902 DOI: 10.1002/ecy.4313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
Increased temperatures associated with urbanization (the "urban heat island" effect) have been shown to impact a wide range of traits across diverse taxa. At the same time, climatic conditions vary at fine spatial scales within habitats due to factors including shade from shrubs, trees, and built structures. Patches of shade may function as microclimate refugia that allow species to occur in habitats where high temperatures and/or exposure to ultraviolet radiation would otherwise be prohibitive. However, the importance of shaded microhabitats for interactions between species across urbanized landscapes remains poorly understood. Weedy plants and their foliar pathogens are a tractable system for studying how multiple scales of climatic variation influence infection prevalence. Powdery mildew pathogens are particularly well suited to this work, as these fungi can be visibly diagnosed on leaf surfaces. We studied the effects of shaded microclimates on rates of powdery mildew infection on Plantago host species in (1) "pandemic pivot" surveys in which undergraduate students recorded shade and infection status of thousands of plants along road verges in urban and suburban residential neighborhoods, (2) monthly surveys of plant populations in 22 parks along an urbanization gradient, and (3) a manipulative field experiment directly testing the effects of shade on the growth and transmission of powdery mildew. Together, our field survey results show strong positive effects of shade on mildew infection in wild Plantago populations across urban, suburban, and rural habitats. Our experiment suggests that this relationship is causal, where microclimate conditions associated with shade promote pathogen growth. Overall, infection prevalence increased with urbanization despite a negative association between urbanization and tree cover at the landscape scale. These findings highlight the importance of taking microclimate heterogeneity into account when establishing links between macroclimate or land use context and prevalence of disease.
Collapse
Affiliation(s)
- Quinn N Fox
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Keiko N Farah
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Olivia S Shaw
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michelle Pollowitz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Carrie Goodson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
6
|
Potter JJ, Tan S, Penczykowski RM. Robotany: A portable, low‐cost platform for precise automated aerial imaging of field plots. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James J. Potter
- Department of Mechanical Engineering and Materials Science Washington University in St. Louis St. Louis Missouri USA
- Tyson Research Center Washington University in St. Louis Eureka Missouri USA
| | - Sylvia Tan
- Department of Mechanical Engineering and Materials Science Washington University in St. Louis St. Louis Missouri USA
- Department of Mechanical Engineering Northwestern University Evanston Illinois USA
| | - Rachel M. Penczykowski
- Department of Biology Washington University in St. Louis St. Louis Missouri USA
- Tyson Research Center Washington University in St. Louis Eureka Missouri USA
| |
Collapse
|
7
|
Duffy MA, García-Robledo C, Gordon SP, Grant NA, Green DA, Kamath A, Penczykowski RM, Rebolleda-Gómez M, Wale N, Zaman L. Model Systems in Ecology, Evolution, and Behavior: A Call for Diversity in Our Model Systems and Discipline. Am Nat 2021; 198:53-68. [PMID: 34143717 DOI: 10.1086/714574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractEcologists and evolutionary biologists are fascinated by life's variation but also seek to understand phenomena and mechanisms that apply broadly across taxa. Model systems can help us extract generalities from amid all the wondrous diversity, but only if we choose and develop them carefully, use them wisely, and have a range of model systems from which to choose. In this introduction to the Special Feature on Model Systems in Ecology, Evolution, and Behavior (EEB), we begin by grappling with the question, What is a model system? We then explore where our model systems come from, in terms of the skills and other attributes required to develop them and the historical biases that influence traditional model systems in EEB. We emphasize the importance of communities of scientists in the success of model systems-narrow scientific communities can restrict the model organisms themselves. We also consider how our discipline was built around one type of "model scientist"-a history still reflected in the field. This lack of diversity in EEB is unjust and also narrows the field's perspective, including by restricting the questions asked and talents used to answer them. Increasing diversity, equity, and inclusion will require acting at many levels, including structural changes. Diversity in EEB, in both model systems and the scientists who use them, strengthens our discipline.
Collapse
|