1
|
Campbell CR, Manser M, Shiratori M, Williams K, Barreiro L, Clutton-Brock T, Tung J. A female-biased gene expression signature of dominance in cooperatively breeding meerkats. Mol Ecol 2024; 33:e17467. [PMID: 39021304 PMCID: PMC11521775 DOI: 10.1111/mec.17467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Dominance is a primary determinant of social dynamics and resource access in social animals. Recent studies show that dominance is also reflected in the gene regulatory profiles of peripheral immune cells. However, the strength and direction of this relationship differs across the species and sex combinations investigated, potentially due to variation in the predictors and energetic consequences of dominance status. Here, we investigated the association between social status and gene expression in the blood of wild meerkats (Suricata suricatta; n = 113 individuals), including in response to lipopolysaccharide, Gardiquimod (an agonist of TLR7, which detects single-stranded RNA in vivo) and glucocorticoid stimulation. Meerkats are cooperatively breeding social carnivores in which breeding females physically outcompete other females to suppress reproduction, resulting in high reproductive skew. They therefore present an opportunity to disentangle the effects of social dominance from those of sex per se. We identify a sex-specific signature of dominance, including 1045 differentially expressed genes in females but none in males. Dominant females exhibit elevated activity in innate immune pathways and a larger fold-change response to LPS challenge. Based on these results and a preliminary comparison to other mammals, we speculate that the gene regulatory signature of social status in the immune system depends on the determinants and energetic costs of social dominance, such that it is most pronounced in hierarchies where physical competition is important and reproductive skew is large. Such a pattern has the potential to mediate life history trade-offs between investment in reproduction versus somatic maintenance.
Collapse
Affiliation(s)
- C. Ryan Campbell
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Marta Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kalahari Research Centre, Kuruman River Reserve, Northern Cape, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Mari Shiratori
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kelly Williams
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Luis Barreiro
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Tim Clutton-Brock
- Kalahari Research Centre, Kuruman River Reserve, Northern Cape, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
- Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Duke Population Research Institute, Duke University, Durham, North Carolina, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
2
|
Capilla-Lasheras P, Bircher N, Brown AM, Harrison X, Reed T, York JE, Cram DL, Rutz C, Walker L, Naguib M, Young AJ. Evolution of sex differences in cooperation can be explained by trade-offs with dispersal. PLoS Biol 2024; 22:e3002859. [PMID: 39446701 PMCID: PMC11500963 DOI: 10.1371/journal.pbio.3002859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Explaining the evolution of sex differences in cooperation remains a major challenge. Comparative studies highlight that offspring of the more philopatric sex tend to be more cooperative within their family groups than those of the more dispersive sex but we do not understand why. The leading "Philopatry hypothesis" proposes that the more philopatric sex cooperates more because their higher likelihood of natal breeding increases the direct fitness benefits of natal cooperation. However, the "Dispersal trade-off hypothesis" proposes that the more dispersive sex cooperates less because preparations for dispersal, such as extra-territorial prospecting, trade-off against natal cooperation. Here, we test both hypotheses in cooperatively breeding white-browed sparrow weavers (Plocepasser mahali), using a novel high-resolution automated radio-tracking method. First, we show that males are the more dispersive sex (a rare reversal of the typical avian sex difference in dispersal) and that, consistent with the predictions of both hypotheses, females contribute substantially more than males to cooperative care while within the natal group. However, the Philopatry hypothesis cannot readily explain this female-biased cooperation, as females are not more likely than males to breed within their natal group. Instead, our radio-tracking findings support the Dispersal trade-off hypothesis: males conduct pre-dispersal extra-territorial prospecting forays at higher rates than females and prospecting appears to trade-off against natal cooperation. Our findings thus highlight that the evolution of sex differences in cooperation could be widely attributable to trade-offs between cooperation and dispersal; a potentially general explanation that does not demand that cooperation yields direct fitness benefits.
Collapse
Affiliation(s)
- Pablo Capilla-Lasheras
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
- Swiss Ornithological Institute, Bird Migration Unit, Sempach, Switzerland
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Nina Bircher
- Behavioural Ecology Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Antony M. Brown
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Xavier Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Thomas Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Jennifer E. York
- Department of Zoology, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Republic of South Africa
| | - Dominic L. Cram
- Department of Zoology, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, Sir Harold Mitchell Building, St Andrews, United Kingdom
| | - Lindsay Walker
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Marc Naguib
- Behavioural Ecology Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Andrew J. Young
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
3
|
Morin A, Culbert BM, Mehdi H, Balshine S, Turko AJ. Status-dependent metabolic effects of social interactions in a group-living fish. Biol Lett 2024; 20:20240056. [PMID: 39045657 PMCID: PMC11267398 DOI: 10.1098/rsbl.2024.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Social interactions can sometimes be a source of stress, but social companions can also ameliorate and buffer against stress. Stress and metabolism are closely linked, but the degree to which social companions modulate metabolic responses during stressful situations-and whether such effects differ depending on social rank-is poorly understood. To investigate this question, we studied Neolamprologus pulcher, a group-living cichlid fish endemic to Lake Tanganyika and measured the metabolic responses of dominant and subordinate individuals when they were either visible or concealed from one another. When individuals could see each other, subordinates had lower maximum metabolic rates and tended to take longer to recover following an exhaustive chase compared with dominants. In contrast, metabolic responses of dominants and subordinates did not differ when individuals could not see one another. These findings suggest that the presence of a dominant individual has negative metabolic consequences for subordinates, even in stable social groups with strong prosocial relationships.
Collapse
Affiliation(s)
- André Morin
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, Victoria, Australia
| | - Brett M. Culbert
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | - Hossein Mehdi
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Andy J. Turko
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Behr DM, Hodel FH, Cozzi G, McNutt JW, Ozgul A. Higher Mortality Is Not a Universal Cost of Dispersal: A Case Study in African Wild Dogs. Am Nat 2023; 202:616-629. [PMID: 37963118 DOI: 10.1086/726220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractMortality is considered one of the main costs of dispersal. A reliable evaluation of mortality, however, is often hindered by a lack of information about the fate of individuals that disappear under unexplained circumstances (i.e., missing individuals). Here, we addressed this uncertainty by applying a Bayesian mortality analysis that inferred the fate of missing individuals according to information from individuals with known fate. Specifically, we tested the hypothesis that mortality during dispersal is higher than mortality among nondispersers using 32 years of mark-resighting data from a free-ranging population of the endangered African wild dog (Lycaon pictus) in northern Botswana. Contrary to expectations, we found that mortality during dispersal was lower than mortality among nondispersers, indicating that higher mortality is not a universal cost of dispersal. Our findings suggest that group living can incur costs for certain age classes, such as limited access to resources as group density increases, that exceed the mortality costs associated with dispersal. By challenging the accepted expectation of higher mortality during dispersal, we urge for further investigations of this key life history trait and propose a robust statistical approach to reduce bias in mortality estimates.
Collapse
|
5
|
Maag N, Cozzi G, Seager D, Manser M, Sickmüller A, Hildebrandt TB, Clutton-Brock T, Ozgul A. Dispersal-induced social stress prolongs gestation in wild meerkats. Biol Lett 2023; 19:20230183. [PMID: 37376852 PMCID: PMC10300508 DOI: 10.1098/rsbl.2023.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In the majority of mammals, gestation length is relatively consistent and seldom varies by more than 3%. In a few species, females can adjust gestation length by delaying the development of the embryo after implantation. Delays in embryonic development allow females to defer the rising energetic costs of gestation when conditions are unfavourable, reducing the risk of embryo loss. Dispersal in mammals that breed cooperatively is a period when food intake is likely to be suppressed and stress levels are likely to be high. Here, we show that pregnant dispersing meerkats (Suricata suricatta), which have been aggressively evicted from their natal group and experience weight loss and extended periods of social stress, prolong their gestation by means of delayed embryonic development. Repeated ultrasound scans of wild, unanaesthetized females throughout their pregnancies showed that pregnancies of dispersers were on average 6.3% longer and more variable in length (52-65 days) than those of residents (54-56 days). The variation in dispersers shows that, unlike most mammals, meerkats can adapt to stress by adjusting their pregnancy length by up to 25%. By doing so, they potentially rearrange the costs of gestation during adverse conditions of dispersal and enhance offspring survival.
Collapse
Affiliation(s)
- Nino Maag
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus 8467, South Africa
| | - Gabriele Cozzi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus 8467, South Africa
| | - David Seager
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus 8467, South Africa
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marta Manser
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus 8467, South Africa
- Mammal Research Institute, University of Pretoria, cnr Lynnwood Road and Roper Street, Hatfield 0028, South Africa
| | - Anna Sickmüller
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
- Freie Universität Berlin, Kaiserwerther Strasse 16-18, 14195 Berlin, Germany
| | - Tim Clutton-Brock
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus 8467, South Africa
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Mammal Research Institute, University of Pretoria, cnr Lynnwood Road and Roper Street, Hatfield 0028, South Africa
| | - Arpat Ozgul
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus 8467, South Africa
| |
Collapse
|
6
|
Finn KT, Thorley J, Bensch HM, Zöttl M. Subterranean Life-Style Does Not Limit Long Distance Dispersal in African Mole-Rats. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dispersal from the natal site to breeding sites is a crucial phase in the life history of animals and can have profound effects on the reproductive ecology and the structure of animal societies. However, few studies have assessed dispersal dynamics in subterranean mammals and it is unknown whether dispersal distances are constrained by living underground. Here we show, in social, subterranean Damaraland mole-rats (Fukomys damarensis), that a subterranean lifestyle does not preclude long distance dispersal and that both sexes are capable of successfully dispersing long distances (>4 km). Body condition did not predict dispersal distance, but dispersers from larger groups traveled farther than individuals from smaller groups. Subsequently we show in a phylogenetically controlled comparative analysis of dispersal distances in subterranean and surface-dwelling rodents that living underground does not constrain dispersal distances and that dispersal capacity is mainly a consequence of body size in both lifestyles.
Collapse
|