1
|
Cui G, Mi J, Moret A, Menzies J, Zhong H, Li A, Hung SH, Al-Babili S, Aranda M. A carbon-nitrogen negative feedback loop underlies the repeated evolution of cnidarian-Symbiodiniaceae symbioses. Nat Commun 2023; 14:6949. [PMID: 37914686 PMCID: PMC10620218 DOI: 10.1038/s41467-023-42582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Symbiotic associations with Symbiodiniaceae have evolved independently across a diverse range of cnidarian taxa including reef-building corals, sea anemones, and jellyfish, yet the molecular mechanisms underlying their regulation and repeated evolution are still elusive. Here, we show that despite their independent evolution, cnidarian hosts use the same carbon-nitrogen negative feedback loop to control symbiont proliferation. Symbiont-derived photosynthates are used to assimilate nitrogenous waste via glutamine synthetase-glutamate synthase-mediated amino acid biosynthesis in a carbon-dependent manner, which regulates the availability of nitrogen to the symbionts. Using nutrient supplementation experiments, we show that the provision of additional carbohydrates significantly reduces symbiont density while ammonium promotes symbiont proliferation. High-resolution metabolic analysis confirmed that all hosts co-incorporated glucose-derived 13C and ammonium-derived 15N via glutamine synthetase-glutamate synthase-mediated amino acid biosynthesis. Our results reveal a general carbon-nitrogen negative feedback loop underlying these symbioses and provide a parsimonious explanation for their repeated evolution.
Collapse
Affiliation(s)
- Guoxin Cui
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| | - Jianing Mi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, the BioActives Lab, Center for Desert Agriculture, Thuwal, 23955- 6900, Saudi Arabia
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Alessandro Moret
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - Jessica Menzies
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - Huawen Zhong
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - Angus Li
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - Shiou-Han Hung
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, the BioActives Lab, Center for Desert Agriculture, Thuwal, 23955- 6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, the Plant Science Program, Thuwal, 23955- 6900, Saudi Arabia
| | - Manuel Aranda
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Host and Symbiont Cell Cycle Coordination Is Mediated by Symbiotic State, Nutrition, and Partner Identity in a Model Cnidarian-Dinoflagellate Symbiosis. mBio 2020; 11:mBio.02626-19. [PMID: 32156819 PMCID: PMC7064764 DOI: 10.1128/mbio.02626-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biomass regulation is critical to the overall health of cnidarian-dinoflagellate symbioses. Despite the central role of the cell cycle in the growth and proliferation of cnidarian host cells and dinoflagellate symbionts, there are few studies that have examined the potential for host-symbiont coregulation. This study provides evidence for the acceleration of host cell proliferation when in local proximity to clusters of symbionts within cnidarian tentacles. The findings suggest that symbionts augment the cell cycle of not only their enveloping host cells but also neighboring cells in the epidermis and gastrodermis. This provides a possible mechanism for rapid colonization of cnidarian tissues. In addition, the cell cycles of symbionts differed depending on nutritional regime, symbiotic state, and species identity. The responses of cell cycle profiles to these different factors implicate a role for species-specific regulation of symbiont cell cycles within host cnidarian tissues. The cell cycle is a critical component of cellular proliferation, differentiation, and response to stress, yet its role in the regulation of intracellular symbioses is not well understood. To explore host-symbiont cell cycle coordination in a marine symbiosis, we employed a model for coral-dinoflagellate associations: the tropical sea anemone Aiptasia (Exaiptasia pallida) and its native microalgal photosymbionts (Breviolum minutum and Breviolum psygmophilum). Using fluorescent labeling and spatial point-pattern image analyses to characterize cell population distributions in both partners, we developed protocols that are tailored to the three-dimensional cellular landscape of a symbiotic sea anemone tentacle. Introducing cultured symbiont cells to symbiont-free adult hosts increased overall host cell proliferation rates. The acceleration occurred predominantly in the symbiont-containing gastrodermis near clusters of symbionts but was also observed in symbiont-free epidermal tissue layers, indicating that the presence of symbionts contributes to elevated proliferation rates in the entire host during colonization. Symbiont cell cycle progression differed between cultured algae and those residing within hosts; the endosymbiotic state resulted in increased S-phase but decreased G2/M-phase symbiont populations. These phenotypes and the deceleration of cell cycle progression varied with symbiont identity and host nutritional status. These results demonstrate that host and symbiont cells have substantial and species-specific effects on the proliferation rates of their mutualistic partners. This is the first empirical evidence to support species-specific regulation of the symbiont cell cycle within a single cnidarian-dinoflagellate association; similar regulatory mechanisms likely govern interpartner coordination in other coral-algal symbioses and shape their ecophysiological responses to a changing climate.
Collapse
|
3
|
Fujise L, Nitschke MR, Frommlet JC, Serôdio J, Woodcock S, Ralph PJ, Suggett DJ. Cell Cycle Dynamics of Cultured Coral Endosymbiotic Microalgae (
Symbiodinium
) Across Different Types (Species) Under Alternate Light and Temperature Conditions. J Eukaryot Microbiol 2018; 65:505-517. [DOI: 10.1111/jeu.12497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Lisa Fujise
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Matthew R. Nitschke
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Jörg C. Frommlet
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - João Serôdio
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Stephen Woodcock
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Ralph
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - David J. Suggett
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| |
Collapse
|
4
|
Iwai S, Fujiwara K, Tamura T. Maintenance of algal endosymbionts in P
aramecium bursaria
: a simple model based on population dynamics. Environ Microbiol 2016; 18:2435-45. [DOI: 10.1111/1462-2920.13140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Sosuke Iwai
- Department of Biology; Faculty of Education; Hirosaki University; Hirosaki 036-8560 Japan
| | - Kenji Fujiwara
- Department of Biology; Faculty of Education; Hirosaki University; Hirosaki 036-8560 Japan
| | - Takuro Tamura
- Department of Biology; Faculty of Education; Hirosaki University; Hirosaki 036-8560 Japan
| |
Collapse
|