1
|
Zhu B, Hendricks J, Morton JE, Rasmussen JC, Janssen C, Shah MN, Sevick-Muraca EM. Near-Infrared Fluorescence Tomography and Imaging of Ventricular Cerebrospinal Fluid Flow and Extracranial Outflow in Non-Human Primates. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3555-3565. [PMID: 37440390 PMCID: PMC10764096 DOI: 10.1109/tmi.2023.3295247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The role of the lymphatics in the clearance of cerebrospinal fluid (CSF) from the brain has been implicated in multiple neurodegenerative conditions. In premature infants, intraventricular hemorrhage causes increased CSF production and, if clearance is impeded, hydrocephalus and severe developmental disabilities can result. In this work, we developed and deployed near-infrared fluorescence (NIRF) tomography and imaging to assess CSF ventricular dynamics and extracranial outflow in similarly sized, intact non-human primates (NHP) following microdose of indocyanine green (ICG) administered to the right lateral ventricle. Fluorescence optical tomography measurements were made by delivering ~10 mW of 785 nm light to the scalp by sequential illumination of 8 fiber optics and imaging the 830 nm emission light collected from 22 fibers using a gallium arsenide intensified, charge coupled device. Acquisition times were 16 seconds. Image reconstruction used the diffusion approximation and hard-priors obtained from MRI to enable dynamic mapping of ICG-laden CSF ventricular dynamics and drainage into the subarachnoid space (SAS) of NHPs. Subsequent, planar NIRF imaging of the scalp confirmed extracranial efflux into SAS and abdominal imaging showed ICG clearance through the hepatobiliary system. Necropsy confirmed imaging results and showed that deep cervical lymph nodes were the routes of extracranial CSF egress. The results confirm the ability to use trace doses of ICG to monitor ventricular CSF dynamics and extracranial outflow in NHP. The techniques may also be feasible for similarly-sized infants and children who may suffer impairment of CSF outflow due to intraventricular hemorrhage.
Collapse
Affiliation(s)
- Banghe Zhu
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, and Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| | - Jonathan Hendricks
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| | - Janelle E. Morton
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030
| | - John C. Rasmussen
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030
| | - Christopher Janssen
- Center for Laboratory Animal Medicine and Care, The University of Texas Health Science Center, Houston, Texas 77030
| | - Manish N. Shah
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| | - Eva Marie Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, and Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
2
|
Zhu B, Sevick-Muraca EM, Nguyen RD, Shah MN. Cap-Based Transcranial Optical Tomography in an Awake Infant. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3300-3308. [PMID: 32356740 DOI: 10.1109/tmi.2020.2990823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although Blood Oxygenation Level Dependent (BOLD) functional MRI (fMRI) is widely used to examine brain function in adults, the need for general anesthesia limits its practical utility in infants and small children. Functional Near-Infrared Spectroscopy - Diffuse Optical Tomography (fNIRS-DOT) imaging promises to be an alternative brain network imaging technique. Yet current versions of continuous-wave fNIRS-DOT systems are restricted to the cortical surface measurements and do not probe deep structures that are frequently injured especially in premature infants. Herein we report a transcranial near infrared optical imaging system, called Cap-based Transcranial Optical Tomography (CTOT) able to image whole brain hemodynamic activity with 3 seconds of data acquisition time. We show the system is capable of whole brain oxygenation mapping in an awake child, and that tomographically reconstructed static CTOT-derived oxy- and deoxygenated blood volumes are spatially correlated with the time-averaged BOLD fMRI volumes. By removing time bottlenecks in the current system, dynamic CTOT mapping should be possible, which would then enable evaluation of functional connectivity in awake infants.
Collapse
|
3
|
Hien A, Pretze M, Braun F, Schäfer E, Kümmel T, Roscher M, Schock-Kusch D, Waldeck J, Müller B, Wängler C, Rädle M, Wängler B. Noncontact recognition of fluorescently labeled objects in deep tissue via a novel optical light beam arrangement. PLoS One 2018; 13:e0208236. [PMID: 30566459 PMCID: PMC6300195 DOI: 10.1371/journal.pone.0208236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/14/2018] [Indexed: 12/30/2022] Open
Abstract
To date, few optical imaging systems are available in clinical practice to perform noninvasive measurements transcutaneously. Instead, functional imaging is performed using ionizing radiation or intense magnetic fields in most cases. The applicability of fluorescence imaging (e.g., for the detection of fluorescently labeled objects, such as tumors) is limited due to the restricted tissue penetration of light and the required long exposure time. Thus, the development of highly sensitive and easily manageable instruments is necessary to broaden the utility of optical imaging. To advance these developments, an improved fluorescence imaging system was designed in this study that operates on the principle of noncontact laser-induced fluorescence and enables the detection of fluorescence from deeper tissue layers as well as real-time imaging. The high performance of the developed optical laser scanner results from the combination of specific point illumination, an intensified charge-coupled device (ICCD) detector with a novel light trap, and a filtering strategy. The suitability of the laser scanner was demonstrated in two representative applications and an in vivo evaluation. In addition, a comparison with a planar imaging system was performed. The results show that the exposure time with the developed laser scanner can be reduced to a few milliseconds during measurements with a penetration depth of up to 32 mm. Due to these short exposure times, real-time fluorescence imaging can be easily achieved. The ability to measure fluorescence from deep tissue layers enables clinically relevant applications, such as the detection of fluorescently labeled malignant tumors.
Collapse
Affiliation(s)
- Andreas Hien
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
- * E-mail:
| | - Marc Pretze
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Frank Braun
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Edgar Schäfer
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tim Kümmel
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mareike Roscher
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Daniel Schock-Kusch
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | | | | | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Matthias Rädle
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Gottam O, Naik N, Gambhir S. Parameterized level-set based pharmacokinetic fluorescence optical tomography using the regularized Gauss-Newton filter. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-17. [PMID: 30306755 PMCID: PMC6975229 DOI: 10.1117/1.jbo.24.3.031010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Pharmacokinetic tomography is emerging as an important methodology for detecting abnormalities in tissue based upon spatially varying estimation of the pharmacokinetic rates governing the leakage of an injected fluorophore between blood plasma and tissue. We present a shape-based reconstruction framework of a compartment-model based formulation of this dynamic fluorescent optical tomography problem to solve for the pharmacokinetic rates and concentrations of the fluorophore from time-varying log intensity measurements of the optical signal. The compartment-model based state variable model is set up in a radial basis function parameterized level set setting. The state (concentrations) and (pharmacokinetic) parameter estimation problem is solved with an iteratively regularized Gauss-Newton filter in a trust-region framework. Reconstructions obtained using this scheme for noisy data obtained from cancer mimicking numerical phantoms of near/sub-cm sizes show a good localization of the affected regions and reasonable estimates of the pharmacokinetic rates and concentration curves.
Collapse
Affiliation(s)
- Omprakash Gottam
- Indian Institute of Technology Kanpur, Department of Electrical Engineering, Kanpur, India
| | - Naren Naik
- Indian Institute of Technology Kanpur, Department of Electrical Engineering, Kanpur, India
- Indian Institute of Technology Kanpur, Center for Lasers and Photonics, Kanpur, India
| | - Sanjay Gambhir
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Nuclear Medicine, Lucknow, India
| |
Collapse
|
5
|
Jagtap J, Sharma G, Parchur AK, Gogineni V, Bergom C, White S, Flister MJ, Joshi A. Methods for detecting host genetic modifiers of tumor vascular function using dynamic near-infrared fluorescence imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:543-556. [PMID: 29552392 PMCID: PMC5854057 DOI: 10.1364/boe.9.000543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/07/2017] [Accepted: 01/03/2018] [Indexed: 05/06/2023]
Abstract
Vascular supply is a critical component of the tumor microenvironment (TME) and is essential for tumor growth and metastasis, yet the endogenous genetic modifiers that impact vascular function in the TME are largely unknown. To identify the host TME modifiers of tumor vascular function, we combined a novel genetic mapping strategy [Consomic Xenograft Model] with near-infrared (NIR) fluorescence imaging and multiparametric analysis of pharmacokinetic modeling. To detect vascular flow, an intensified cooled camera based dynamic NIR imaging system with 785 nm laser diode based excitation was used to image the whole-body fluorescence emission of intravenously injected indocyanine green dye. Principal component analysis was used to extract the spatial segmentation information for the lungs, liver, and tumor regions-of-interest. Vascular function was then quantified by pK modeling of the imaging data, which revealed significantly altered tissue perfusion and vascular permeability that were caused by host genetic modifiers in the TME. Collectively, these data demonstrate that NIR fluorescent imaging can be used as a non-invasive means for characterizing host TME modifiers of vascular function that have been linked with tumor risk, progression, and response to therapy.
Collapse
Affiliation(s)
- Jaidip Jagtap
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gayatri Sharma
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Abdul K. Parchur
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sarah White
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael J. Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Vats M, Mishra SK, Baghini MS, Chauhan DS, Srivastava R, De A. Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation. Int J Mol Sci 2017; 18:E924. [PMID: 28452928 PMCID: PMC5454837 DOI: 10.3390/ijms18050924] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 01/03/2023] Open
Abstract
The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials.
Collapse
Affiliation(s)
- Mukti Vats
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 410210, India.
| | - Sumit Kumar Mishra
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai 410210, India.
| | - Mahdieh Shojaei Baghini
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai 410210, India.
| | - Deepak S Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 410210, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 410210, India.
| | - Abhijit De
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai 410210, India.
| |
Collapse
|
7
|
Ban HY, Schweiger M, Kavuri VC, Cochran JM, Xie L, Busch DR, Katrašnik J, Pathak S, Chung SH, Lee K, Choe R, Czerniecki BJ, Arridge SR, Yodh AG. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry. Med Phys 2017; 43:4383. [PMID: 27370153 DOI: 10.1118/1.4953830] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. METHODS The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source-detector pairs (10(6)). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittal breast measurements. RESULTS The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. CONCLUSIONS Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.
Collapse
Affiliation(s)
- H Y Ban
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - M Schweiger
- Department of Computer Science, University College London, London WC1E 7JE, United Kingdom
| | - V C Kavuri
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J M Cochran
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - L Xie
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - D R Busch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - J Katrašnik
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia
| | - S Pathak
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - S H Chung
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - K Lee
- Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-813, South Korea
| | - R Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642
| | - B J Czerniecki
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - S R Arridge
- Department of Computer Science, University College London, London WC1E 7JE, United Kingdom
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
8
|
Liu M, Guo H, Liu H, Zhang Z, Chi C, Hui H, Dong D, Hu Z, Tian J. In vivo pentamodal tomographic imaging for small animals. BIOMEDICAL OPTICS EXPRESS 2017; 8:1356-1371. [PMID: 28663833 PMCID: PMC5480548 DOI: 10.1364/boe.8.001356] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 05/05/2023]
Abstract
Multimodality molecular imaging emerges as a powerful strategy for correlating multimodal information. We developed a pentamodal imaging system which can perform positron emission tomography, bioluminescence tomography, fluorescence molecular tomography, Cerenkov luminescence tomography and X-ray computed tomography successively. Performance of sub-systems corresponding to different modalities were characterized. In vivo multimodal imaging of an orthotopic hepatocellular carcinoma xenograft mouse model was performed, and acquired multimodal images were fused. The feasibility of pentamodal tomographic imaging system was successfully validated with the imaging application on the mouse model. The ability of integrating anatomical, metabolic, and pharmacokinetic information promises applications of multimodality molecular imaging in precise medicine.
Collapse
Affiliation(s)
- Muhan Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Contributed equally
| | - Hongbo Guo
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Information Sciences and Technology, Northwest University, Xi'an, 710069, China
- Contributed equally
| | - Hongbo Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zeyu Zhang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Hui
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Di Dong
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenhua Hu
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- The State Key Laboratory of Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- The State Key Laboratory of Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
9
|
Near-Infrared Fluorescence-Enhanced Optical Tomography. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5040814. [PMID: 27803924 PMCID: PMC5075630 DOI: 10.1155/2016/5040814] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022]
Abstract
Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography.
Collapse
|
10
|
Turchin IV. Methods of biomedical optical imaging: from subcellular structures to tissues and organs. ACTA ACUST UNITED AC 2016. [DOI: 10.3367/ufnr.2015.12.037734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
11
|
Godavarty A, Rodriguez S, Jung YJ, Gonzalez S. Optical imaging for breast cancer prescreening. BREAST CANCER-TARGETS AND THERAPY 2015; 7:193-209. [PMID: 26229503 PMCID: PMC4516032 DOI: 10.2147/bctt.s51702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach.
Collapse
Affiliation(s)
- Anuradha Godavarty
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Suset Rodriguez
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Young-Jin Jung
- Department of Radiological Science, Dongseo University, Busan, South Korea
| | - Stephanie Gonzalez
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| |
Collapse
|
12
|
Fudala R, Raut S, Maliwal BP, Zerda TW, Gryczynski I, Simanek E, Borejdo J, Rich R, Akopova I, Gryczynski Z. FRET enhanced fluorescent nanodiamonds. Curr Pharm Biotechnol 2015; 14:1127-33. [PMID: 22394126 DOI: 10.2174/138920101413140605110711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 11/09/2011] [Accepted: 12/10/2011] [Indexed: 11/22/2022]
Abstract
Fluorescent nanodiamonds (FNDs) are one of the new and very promising biocompatible nanomaterials that can be used both as a fluorescence imaging agent and a highly versatile platform for controlled functionalization to target and deliver a wide spectrum of therapeutic agents. Among the remarkable fluorescence properties are excellent photostability, emission between 600-700nm, quantum yield of 1 and moderately long fluorescence lifetimes. However the low absorption cross section of fluorescent (N-V)(-) centers limits FNDs' brightness. In this work we show that an approach based on the Forster resonance energy transfer (FRET) may significantly enhance the fluorescence signal observed from a single ND. We demonstrate that organic dyes (fluorophores) attached to the FND surface can efficiently transfer the excitation energy to (N-V)(-) centers. Multiple dyes positioned in close proximity to the ND facile surface may serve as harvesting antennas transferring excitation energy to the fluorescent centers. We propose that, with the help of some of the functional groups present on the FND surface, we can either directly link flurophores or use scalable dendrimer chemistry to position many organic dyes at a calibrated distance. Also, the remaining multiple functional groups will be still available for particle targeting and drug delivery. This opens a new way for designing a new type of theranostics particles of ultrahigh brightness, high photostability, specific targeting, and high capacity for drug delivery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zygmunt Gryczynski
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA.
| |
Collapse
|
13
|
Alfano RR, Wang WB, Wang L, Gayen SK. Light Propagation in Highly Scattering Turbid Media: Concepts, Techniques, and Biomedical Applications. PHOTONICS 2015. [DOI: 10.1002/9781119011804.ch9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Zhu B, Rasmussen JC, Sevick-Muraca EM. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see? Med Phys 2014; 41:022105. [PMID: 24506637 DOI: 10.1118/1.4862514] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of "first-in-humans" fluorescent imaging agents using these devices. METHODS The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM-pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. RESULTS The results show that intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. CONCLUSIONS Camera imaging performance could impact the success of future "first-in-humans" near-infrared fluorescence imaging agent studies.
Collapse
Affiliation(s)
- Banghe Zhu
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030
| | - John C Rasmussen
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030
| | - Eva M Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
15
|
Wu B, Gayen SK. Fluorescence tomography of targets in a turbid medium using non-negative matrix factorization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042708. [PMID: 24827279 DOI: 10.1103/physreve.89.042708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 06/03/2023]
Abstract
A near-infrared optical tomography approach for detection, three-dimensional localization, and cross-section imaging of fluorescent targets in a turbid medium is introduced. The approach uses multisource probing of targets, multidetector acquisition of diffusely transmitted fluorescence signal, and a non-negative matrix factorization based blind source separation scheme to obtain three-dimensional location of the targets. A Fourier transform back-projection algorithm provides an estimate of target cross section. The efficacy of the approach is demonstrated in an experiment involving two laterally separated small fluorescent targets embedded in a human breast tissue-simulating sample of thickness 60 times the transport mean free path. The approach could locate the targets within ∼1 mm of their known positions, and provide estimates of their cross sections. The high spatial resolution, fast reconstruction speed, noise tolerance, and ability to detect small targets are indicative of the potential of the approach for detecting and locating fluorescence contrast-enhanced breast tumors in early growth stages, when they are more amenable to treatment.
Collapse
Affiliation(s)
- Binlin Wu
- Physics Department, The City College and the Graduate Center of the City University of New York, 160 Convent Avenue, New York, New York 10031, USA
| | - S K Gayen
- Physics Department, The City College and the Graduate Center of the City University of New York, 160 Convent Avenue, New York, New York 10031, USA
| |
Collapse
|
16
|
Abstract
Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast.
Collapse
|
17
|
Zhu B, Rasmussen JC, Sevick-Muraca EM. Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode. BIOMEDICAL OPTICS EXPRESS 2014; 5:562-72. [PMID: 24575349 PMCID: PMC3920885 DOI: 10.1364/boe.5.000562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 05/06/2023]
Abstract
One limitation of fluorescence molecular imaging that can limit clinical implementation and hamper small animal imaging is the inability to eliminate ambient light. Herein, we demonstrate the ability to conduct rapid non-invasive, far-red and near-infrared fluorescence imaging in living animals and a phantom under ambient light conditions using a modulated image intensified CCD (ICCD) and a laser diode operated in homodyne detection. By mapping AC amplitude from three planar images at varying phase delays, we show improvement in target-to-background ratios (TBR) and reasonable signal-to-noise ratios (SNR) over continuous wave measurements. The rapid approach can be used to accurately collect fluorescence in situations where ambient light cannot be spectrally conditioned or controlled, such as in the case of fluorescent molecular image-guided surgery.
Collapse
|
18
|
Darne C, Lu Y, Sevick-Muraca EM. Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update. Phys Med Biol 2013; 59:R1-64. [PMID: 24334634 DOI: 10.1088/0031-9155/59/1/r1] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Emerging fluorescence and bioluminescence tomography approaches have several common, yet several distinct features from established emission tomographies of PET and SPECT. Although both nuclear and optical imaging modalities involve counting of photons, nuclear imaging techniques collect the emitted high energy (100-511 keV) photons after radioactive decay of radionuclides while optical techniques count low-energy (1.5-4.1 eV) photons that are scattered and absorbed by tissues requiring models of light transport for quantitative image reconstruction. Fluorescence imaging has been recently translated into clinic demonstrating high sensitivity, modest tissue penetration depth, and fast, millisecond image acquisition times. As a consequence, the promise of quantitative optical tomography as a complement of small animal PET and SPECT remains high. In this review, we summarize the different instrumentation, methodological approaches and schema for inverse image reconstructions for optical tomography, including luminescence and fluorescence modalities, and comment on limitations and key technological advances needed for further discovery research and translation.
Collapse
|
19
|
Roman M, Gonzalez J, Carrasquilla J, Erickson SJ, Akhter R, Godavarty A. Resolution of a Gen-2 handheld optical imager: diffuse and fluorescence imaging studies. APPLIED OPTICS 2013; 52:8060-8066. [PMID: 24513758 DOI: 10.1364/ao.52.008060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
A generation-2 (Gen-2) handheld optical imager capable of two-dimensional surface and three-dimensional tomographic imaging has recently been developed. Herein, the ability of the handheld imager to detect and resolve two targets under diffuse and fluorescence imaging conditions has been demonstrated via tissue phantom studies. Two-dimensional surface imaging studies demonstrated that two 0.96 cm diameter Indocyannine Green targets were detected and resolved ~0.5 cm apart (between edges) at a target depth of 1 cm during diffuse imaging and up to 2 cm depth during fluorescence imaging. Preliminary 3D tomographic imaging capability to resolve the two targets was also demonstrated, but requires extensive future studies.
Collapse
|
20
|
Erickson SJ, Martinez SL, DeCerce J, Romero A, Caldera L, Godavarty A. Three-dimensional fluorescence tomography of human breast tissues in vivo using a hand-held optical imager. Phys Med Biol 2013; 58:1563-79. [PMID: 23417060 DOI: 10.1088/0031-9155/58/5/1563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diffuse optical imaging using non-ionizing radiation is a non-invasive method that shows promise towards breast cancer diagnosis. Hand-held optical imagers show potential for clinical translation of the technology, yet they have not been used towards 3D tomography. Herein, 3D tomography of human breast tissue in vivo is demonstrated for the first time using a hand-held optical imager with automated coregistration facilities. Simulation studies are performed on breast geometries to demonstrate the feasibility of 3D tomographic imaging using a hand-held imager under perfect (1:0) and imperfect (100:1, 50:1) fluorescence absorption contrast ratios. Experimental studies are performed in vivo using a 1 µM ICG filled phantom target placed non-invasively underneath the flap of the breast tissue. Results show the ability to perform automated tracking and coregistered imaging of human breast tissue (with tracking accuracy on the order of ∼1 cm). Three-dimensional tomography results demonstrated the ability to recover a single target placed at a depth of 2.5 cm, from both the simulated (at 1:0, 100:1 and 50:1 contrasts) and experimental cases on actual breast tissues. Ongoing efforts to improve target depth recovery are carried out via implementation of transmittance imaging in the hand-held imager.
Collapse
Affiliation(s)
- Sarah J Erickson
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street EC 2610, Miami, FL 33174, USA
| | | | | | | | | | | |
Collapse
|
21
|
Zhang W, Wu L, Li J, Yi X, Wang X, Lu Y, Chen W, Zhou Z, Zhang L, Zhao H, Gao F. Combined hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a pilot study on time-domain methodology. BIOMEDICAL OPTICS EXPRESS 2013; 4:331-48. [PMID: 23412647 PMCID: PMC3567719 DOI: 10.1364/boe.4.000331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 05/14/2023]
Abstract
A combined time-domain fluorescence and hemoglobin diffuse optical tomography (DOT) system and the image reconstruction methods are proposed for enhancing the reliability of breast-dedicated optical measurement. The system equipped with two pulsed laser diodes at wavelengths of 780 nm and 830 nm that are specific to the peak excitation and emission of the FDA-approved ICG agent, and works with a 4-channel time-correlated single photon counting device to acquire the time-resolved distributions of the light re-emissions at 32 boundary sites of tissues in a tandem serial-to-parallel mode. The simultaneous reconstruction of the two optical (absorption and scattering) and two fluorescent (yield and lifetime) properties are achieved with the respective featured-data algorithms based on the generalized pulse spectrum technique. The performances of the methodology are experimentally assessed on breast-mimicking phantoms for hemoglobin- and fluorescence-DOT alone, as well as for fluorescence-guided hemoglobin-DOT. The results demonstrate the efficacy of improving the accuracy of hemoglobin-DOT based on a priori fluorescence localization.
Collapse
Affiliation(s)
- Wei Zhang
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Linhui Wu
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Jiao Li
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xi Yi
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xin Wang
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yiming Lu
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Weiting Chen
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zhongxing Zhou
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
| | - Limin Zhang
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
| | - Huijuan Zhao
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
| | - Feng Gao
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
| |
Collapse
|
22
|
Darne CD, Lu Y, Tan IC, Zhu B, Rasmussen JC, Smith AM, Yan S, Sevick-Muraca EM. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography. Phys Med Biol 2012; 57:8135-52. [PMID: 23171509 DOI: 10.1088/0031-9155/57/24/8135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and ⁶⁸Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP₃) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.
Collapse
Affiliation(s)
- Chinmay D Darne
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Choe R, Durduran T. Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2012; 18:1367-1386. [PMID: 23243386 PMCID: PMC3521564 DOI: 10.1109/jstqe.2011.2177963] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent advances in the use of diffuse optical techniques for monitoring the hemodynamic, metabolic and physiological signatures of the neoadjuvant breast cancer therapy effectiveness is critically reviewed. An extensive discussion of the state-of-theart diffuse optical mammography is presented alongside a discussion of the current approaches to breast cancer therapies. Overall, the diffuse optics field is growing rapidly with a great deal of promise to fill an important niche in the current approaches to monitor, predict and personalize neoadjuvant breast cancer therapies.
Collapse
Affiliation(s)
- Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA;
| | - Turgut Durduran
- ICFO- Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Barcelona, Spain;
| |
Collapse
|
24
|
Lin Y, Kwong TC, Bolisay L, Gulsen G. Temperature-modulated fluorescence tomography based on both concentration and lifetime contrast. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:056007. [PMID: 22612130 PMCID: PMC3381013 DOI: 10.1117/1.jbo.17.5.056007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
It is challenging to image fluorescence objects with high spatial resolution in a highly scattering medium. Recently reported temperature-sensitive indocyanine green-loaded pluronic nanocapsules can potentially alleviate this problem. Here we demonstrate a frequency-domain temperature-modulated fluorescence tomography system that could acquire images at high intensity-focused ultrasound resolution with use of these nanocapsules. The system is experimentally verified with a phantom study, where a 3-mm fluorescence object embedded 2 cm deep in a turbid medium is successfully recovered based on both intensity and lifetime contrast.
Collapse
Affiliation(s)
- Yuting Lin
- University of California, Department of Radiological Sciences, Tu and Yuen Center for Functional Onco-Imaging, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
25
|
A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012; 2012:940585. [PMID: 22577366 PMCID: PMC3346977 DOI: 10.1155/2012/940585] [Citation(s) in RCA: 830] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/01/2012] [Indexed: 02/07/2023] Open
Abstract
The purpose of this paper is to give an overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used. Well over 200 papers describing this technique in clinical setting are reviewed. In addition to the surgical applications, other recent medical applications of ICG are briefly examined.
Collapse
|
26
|
Two-dimensional Fast Surface Imaging Using a Handheld Optical Device: In Vitro and In Vivo Fluorescence Studies. Transl Oncol 2011; 3:16-22. [PMID: 20165691 DOI: 10.1593/tlo.09157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 09/08/2009] [Accepted: 09/15/2009] [Indexed: 11/18/2022] Open
Abstract
Near-infrared (NIR) optical imaging is a noninvasive and nonionizing modality that is emerging as a diagnostic tool for breast cancer. The handheld optical devices developed to date using the NIR technology are predominantly developed for spectroscopic applications. A novel handheld probe-based optical imaging device has been recently developed toward area imaging and tomography applications. The three-dimensional (3D) tomographic imaging capabilities of the device have been demonstrated from previous fluorescence studies on tissue phantoms. In the current work, fluorescence imaging studies are performed on tissue phantoms, in vitro, and in vivo tissue models to demonstrate the fast two-dimensional (2D) surface imaging capabilities of this flexible handheld-based optical imaging device, toward clinical breast imaging studies. Preliminary experiments were performed using target(s) of varying volume (0.23 and 0.45 cm(3)) and depth (1-2 cm), using indocyanine green as the fluorescence contrast agent in liquid phantom, in vitro, and in vivo tissue models. The feasibility of fast 2D surface imaging ( approximately 5 seconds) over large surface areas of 36 cm(2) was demonstrated from various tissue models. The surface images could differentiate the target(s) from the background, allowing a rough estimate of the target's location before extensive 3D tomographic analysis (future studies).
Collapse
|
27
|
Klose AD, Pöschinger T. Excitation-resolved fluorescence tomography with simplified spherical harmonics equations. Phys Med Biol 2011; 56:1443-69. [PMID: 21321388 DOI: 10.1088/0031-9155/56/5/015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fluorescence tomography (FT) reconstructs the three-dimensional (3D) fluorescent reporter probe distribution inside biological tissue. These probes target molecules of biological function, e.g. cell surface receptors or enzymes, and emit fluorescence light upon illumination with an external light source. The fluorescence light is detected on the tissue surface and a source reconstruction algorithm based on the simplified spherical harmonics (SP(N)) equations calculates the unknown 3D probe distribution inside tissue. While current FT approaches require multiple external sources at a defined wavelength range, the proposed FT method uses only a white light source with tunable wavelength selection for fluorescence stimulation and further exploits the spectral dependence of tissue absorption for the purpose of 3D tomographic reconstruction. We will show the feasibility of the proposed hyperspectral excitation-resolved fluorescence tomography method with experimental data. In addition, we will demonstrate the performance and limitations of such a method under ideal and controlled conditions by means of a digital mouse model and synthetic measurement data. Moreover, we will address issues regarding the required amount of wavelength intervals for fluorescent source reconstruction. We will explore the impact of assumed spatially uniform and nonuniform optical parameter maps on the accuracy of the fluorescence source reconstruction. Last, we propose a spectral re-scaling method for overcoming the observed limitations in reconstructing accurate source distributions in optically non-uniform tissue when assuming only uniform optical property maps for the source reconstruction process.
Collapse
Affiliation(s)
- Alexander D Klose
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
28
|
Lee K. Optical mammography: Diffuse optical imaging of breast cancer. World J Clin Oncol 2011; 2:64-72. [PMID: 21603315 PMCID: PMC3095466 DOI: 10.5306/wjco.v2.i1.64] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/01/2010] [Accepted: 11/08/2010] [Indexed: 02/06/2023] Open
Abstract
Existing imaging modalities for breast cancer screening, diagnosis and therapy monitoring, namely X-ray mammography and magnetic resonance imaging, have been proven to have limitations. Diffuse optical imaging is a set of non-invasive imaging modalities that use near-infrared light, which can be an alternative, if not replacement, to those existing modalities. This review covers the background knowledge, recent clinical outcome, and future outlook of this newly emerging medical imaging modality.
Collapse
Affiliation(s)
- Kijoon Lee
- Kijoon Lee, Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| |
Collapse
|
29
|
Li M, Zhang Y, Bai J. In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography. JOURNAL OF HEALTHCARE ENGINEERING 2010. [DOI: 10.1260/2040-2295.1.3.477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Ge J, Erickson SJ, Godavarty A. Multi-projection fluorescence optical tomography using a handheld-probe-based optical imager: phantom studies. APPLIED OPTICS 2010; 49:4343-4354. [PMID: 20697435 PMCID: PMC2975621 DOI: 10.1364/ao.49.004343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A handheld-probe-based optical imager has recently been developed toward three-dimensional tomography. In this study, the improvement of target depth recovery was demonstrated using a multi-projection technique on large slab phantoms using 0.45 cc fluorescing target(s) (with 1:0 contrast ratio) of 1.5 to 2.5 cm deep. Tomographic results using single- and multi- (here dual) projection measurements (with and without a priori information of target location) were compared. In all experimental cases, the use of multi-projection measurements along with a priori information recovered target depth and location closer to their true values, demonstrating its applicability for clinical translation.
Collapse
|
31
|
Lu Y, Zhu B, Shen H, Rasmussen JC, Wang G, Sevick-Muraca EM. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging. Phys Med Biol 2010; 55:4625-45. [PMID: 20671350 DOI: 10.1088/0031-9155/55/16/002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP(N)) approximations. To fully evaluate the performance of the SP(N) approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP(N) can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.
Collapse
Affiliation(s)
- Yujie Lu
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Durduran T, Choe R, Baker WB, Yodh AG. Diffuse Optics for Tissue Monitoring and Tomography. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2010; 73:076701. [PMID: 26120204 PMCID: PMC4482362 DOI: 10.1088/0034-4885/73/7/076701] [Citation(s) in RCA: 595] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics.
Collapse
Affiliation(s)
- T Durduran
- ICFO- Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - R Choe
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - W B Baker
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Barber WC, Lin Y, Nalcioglu O, Iwanczyk JS, Hartsough NE, Gulsen G. Combined fluorescence and X-Ray tomography for quantitative in vivo detection of fluorophore. Technol Cancer Res Treat 2010; 9:45-52. [PMID: 20082529 DOI: 10.1177/153303461000900105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Initial results from a novel dual modality preclinical imager which combines non-contact fluorescence tomography (FT) and x-ray computed tomography (CT) for preclinical functional and anatomical in vivo imaging are presented. The anatomical data from CT provides a priori information to the FT reconstruction to create overlaid functional and anatomical images with accurate localization and quantification of fluorophore distribution. Phantoms with inclusions containing Indocyanine-Green (ICG), and with heterogeneous backgrounds including iodine in compartments at different concentrations for CT contrast, have been imaged with the dual modality FT/CT system. Anatomical information from attenuation maps and optical morphological information from absorption and scattering maps are used as a priori information in the FT reconstruction. Although ICG inclusions can be located without the a priori information, the recovered ICG concentration shows 75% error. When the a priori information is utilized, the ICG concentration can be recovered with only 15% error. Developing the ability to accurately quantify fluorophore concentration in anatomical regions of interest may provide a powerful tool for in vivo small animal imaging.
Collapse
Affiliation(s)
- W C Barber
- DxRay Inc., 19355 Business Center Dr. Suite 10, Northridge, CA 91324, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Regalado S, Erickson SJ, Zhu B, Ge J, Godavarty A. Automated coregistered imaging using a hand-held probe-based optical imager. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:023702. [PMID: 20192497 DOI: 10.1063/1.3271019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Near-infrared optical imaging holds a promise as a noninvasive technology toward cancer diagnostics and other tissue imaging applications. In recent years, hand-held based imagers are of great interest toward the clinical translation of the technology. However hand-held imagers developed to date are typically designed to obtain surface images and not tomography information due to lack of coregistration facilities. Herein, a recently developed hand-held probe-based optical imager in our Optical Imaging Laboratory has been implemented with novel coregistration facilities toward real-time and tomographic imaging of tissue phantoms. Continuous-wave fluorescence-enhanced optical imaging studies were performed using an intensified charge coupled device camera based imaging system in order to demonstrate the feasibility of automated coregistered imaging of flat phantom surfaces, using a flexible probe that can also contour to curvatures. Three-dimensional fluorescence tomographic reconstructions were also demonstrated using coregistered frequency-domain measurements obtained using the hand-held based optical imager. It was also observed from preliminary studies on cubical phantoms that multiple coregistered scans differentiated deeper targets (approximately 3 cm) from artifacts that were not feasible from a single coregistered scan, demonstrating the possibility of improved target depth detectability in the future.
Collapse
Affiliation(s)
- Steven Regalado
- Department of Biomedical Engineering, Optical Imaging Laboratory, Florida International University, Miami, Florida 33174, USA
| | | | | | | | | |
Collapse
|
35
|
de la Zerda A, Bodapati S, Teed R, Schipper ML, Keren S, Smith BR, Ng JST, Gambhir SS. A comparison between time domain and spectral imaging systems for imaging quantum dots in small living animals. Mol Imaging Biol 2009; 12:500-8. [PMID: 20012220 DOI: 10.1007/s11307-009-0290-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/06/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE We quantified the performance of time-domain imaging (TDI) and spectral imaging (SI) for fluorescence imaging of quantum dots (QDs) in three distinct imaging instruments: eXplore Optix (TDI, Advanced Research Technologies Inc.), Maestro (SI, CRi Inc.), and IVIS-Spectrum (SI, Caliper Life Sciences Inc.). PROCEDURE The instruments were compared for their sensitivity in phantoms and living mice, multiplexing capabilities (ability to resolve the signal of one QD type in the presence of another), and the dependence of contrast and spatial resolution as a function of depth. RESULTS In phantoms, eXplore Optix had an order of magnitude better sensitivity compared to the SI systems, detecting QD concentrations of ~40 pM in vitro. Maestro was the best instrument for multiplexing QDs. Reduction of contrast and resolution as a function of depth was smallest with eXplore Optix for depth of 2-6 mm, while other depths gave comparable results in all systems. Sensitivity experiments in living mice showed that the eXplore Optix and Maestro systems outperformed the IVIS-Spectrum. CONCLUSION TDI was found to be an order of magnitude more sensitive than SI at the expense of speed and very limited multiplexing capabilities. For deep tissue QD imaging, TDI is most applicable for depths between 2 and 6 mm, as its contrast and resolution degrade the least at these depths.
Collapse
Affiliation(s)
- Adam de la Zerda
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), The Bio-X Program, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Vasefi F, Ng E, Kaminska B, Chapman GH, Jordan K, Carson JJL. Transmission and fluorescence angular domain optical projection tomography of turbid media. APPLIED OPTICS 2009; 48:6448-6457. [PMID: 19935964 DOI: 10.1364/ao.48.006448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
When imaging through turbid media, objects are often blurred by scattered light. An optical collimator (i.e., an angular filter array) improves images by accepting only photons propagating within a narrow solid angle about the direction of the incident light. These photons are expected to participate in a limited number of small-angle scattering events, maintaining their original propagation direction and, finally, contributing to the development of a faithful image of an object within a turbid medium. The collimation method, also referred to as angular domain imaging (ADI), applies to a see-through configuration where the incident collimated light beam can be aligned with the collimator in a transillumination mode of operation. In this paper, we present angular domain optical projection tomography (ADOPT), a method that can extract depth information of optical contrast in turbid media with high longitudinal resolution based on ADI technology. The resolution of the ADI system has been tested over various depths in a 5 cm optical cuvette using a resolution target suspended in a homogeneous turbid medium. The ADOPT system reconstructed images from a series of angular domain projections collected at angular intervals. The system was used to measure the attenuation of an absorbing target in transmission mode (t-ADOPT) and to measure the light emitting from a fluorescent target (f-ADOPT). Tissue-mimicking phantoms were used to validate the performance of the method. In the t-ADOPT configuration, a background scattered light estimation and subtraction methodology was introduced to improve the imaging contrast. A target consisting of two graphite rods (0.9 mm diameter) was suspended in the cuvette by a rotation stage. An Indocyanine Green-filled glass rod was used as an imaging target in the f-ADOPT arrangement. The target was placed in a manner such that the line of laser light was perpendicular to the longitudinal axis of the rods. Several projections were collected at increments of 1.8 degrees and compiled into a sinogram. A transverse image was reconstructed from the sinogram by using filtered backprojection and image contrast was improved by experimental scatter measurements using a wedge prism and an image processing algorithm. The submillimeter target embedded in a 2 cm thick scattering medium (reduced scattering coefficient < or = 2.4 cm(-1)) was discernable in both the sinograms and the reconstructed images. In the f-ADOPT system, fluorescent line targets <1 cm in diameter embedded in a 2 cm thick scattering medium (reduced scattering coefficient < or = 0.8 cm(-1)) were discernable in both the sinograms and the reconstructed images. The proposed method could be used as the basis to construct an optical tomographic scanner for simultaneous absorption and fluorescence-based imaging of biological specimens (i.e., up to 7 mm across).
Collapse
Affiliation(s)
- Fartash Vasefi
- The School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Yuan B. Sensitivity of fluorophore-quencher labeled microbubbles to externally applied static pressure. Med Phys 2009; 36:3455-69. [PMID: 19746779 DOI: 10.1118/1.3158734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A fluorophore-quencher (F-Q) labeled microbubble system is proposed as a sensor for measuring externally applied static pressure distribution in a tumor. To quantify the sensitivity of such an F-Q bubble system to the externally applied pressure, a model describing bubble response to the static pressure was derived. Additionally, a model connecting the fluorescence lifetime and bubble radius was developed for the basic F-Q bubble system. The sensitivity is quantified based on these models given typical parameters. Results show that it is possible to resolve as low as 1 mm Hg pressure variation when both the F-Q bubble system and the measurement system are optimized. Strategies for optimizing an F-Q bubble system are discussed.
Collapse
Affiliation(s)
- Baohong Yuan
- Department of Biomedical Engineering, Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
38
|
Li C, Cheung MR. The utility of a marched absorbing layer boundary condition in the finite element analysis of diffuse photon density wave propagation in tissues relevant to breast imaging. Comput Biol Med 2009; 39:934-9. [PMID: 19665697 DOI: 10.1016/j.compbiomed.2009.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 05/26/2009] [Accepted: 07/20/2009] [Indexed: 11/29/2022]
Abstract
Here we introduce a marched absorbing layer boundary condition for the finite element analysis of diffuse photon density wave propagation in tissues. We investigated and optimized the parameters required to set up a marched absorbing layer boundary for diffuse photon density wave propagation in media with different absorption and scattering coefficients. Comparing with using a breast model connected to a large substrate and a Robin boundary condition, using a marched absorbing layer boundary condition to replace part of the large base reduced the time for forward modeling by about 30%.
Collapse
Affiliation(s)
- Chengyu Li
- Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
39
|
Erickson SJ, Godavarty A. Hand-held based near-infrared optical imaging devices: A review. Med Eng Phys 2009; 31:495-509. [DOI: 10.1016/j.medengphy.2008.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/12/2008] [Accepted: 10/15/2008] [Indexed: 11/15/2022]
|
40
|
Ge J, Zhu B, Regalado S, Godavarty A. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system. Med Phys 2008; 35:3354-63. [PMID: 18697559 DOI: 10.1118/1.2940603] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.
Collapse
Affiliation(s)
- Jiajia Ge
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, Florida 33174, USA
| | | | | | | |
Collapse
|
41
|
Kumar ATN, Raymond SB, Dunn AK, Bacskai BJ, Boas DA. A time domain fluorescence tomography system for small animal imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2008; 27:1152-63. [PMID: 18672432 PMCID: PMC2920137 DOI: 10.1109/tmi.2008.918341] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We describe the application of a time domain diffuse fluorescence tomography system for whole body small animal imaging. The key features of the system are the use of point excitation in free space using ultrashort laser pulses and noncontact detection using a gated, intensified charge-coupled device (CCD) camera. Mouse shaped epoxy phantoms, with embedded fluorescent inclusions, were used to verify the performance of a recently developed asymptotic lifetime-based tomography algorithm. The asymptotic algorithm is based on a multiexponential analysis of the decay portion of the data. The multiexponential model is shown to enable the use of a global analysis approach for a robust recovery of the lifetime components present within the imaging medium. The surface boundaries of the imaging volume were acquired using a photogrammetric camera integrated with the imaging system, and implemented in a Monte-Carlo model of photon propagation in tissue. The tomography results show that the asymptotic approach is able to separate axially located fluorescent inclusions centered at depths of 4 and 10 mm from the surface of the mouse phantom. The fluorescent inclusions had distinct lifetimes of 0.5 and 0.95 ns. The inclusions were nearly overlapping along the measurement axis and shown to be not resolvable using continuous wave (CW) methods. These results suggest the practical feasibility and advantages of a time domain approach for whole body small animal fluorescence molecular imaging, particularly with the use of lifetime as a contrast mechanism.
Collapse
Affiliation(s)
- Anand T N Kumar
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | |
Collapse
|
42
|
Sevick-Muraca EM, Rasmussen JC. Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:041303. [PMID: 19021311 PMCID: PMC2915929 DOI: 10.1117/1.2953185] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We compare and contrast the development of optical molecular imaging techniques with nuclear medicine with a didactic emphasis for initiating readers into the field of molecular imaging. The nuclear imaging techniques of gamma scintigraphy, single-photon emission computed tomography, and positron emission tomography are first briefly reviewed. The molecular optical imaging techniques of bioluminescence and fluorescence using gene reporter/probes and gene reporters are described prior to introducing the governing factors of autofluorescence and excitation light leakage. The use of dual-labeled, near-infrared excitable and radio-labeled agents are described with comparative measurements between planar fluorescence and nuclear molecular imaging. The concept of time-independent and -dependent measurements is described with emphasis on integrating time-dependent measurements made in the frequency domain for 3-D tomography. Finally, we comment on the challenges and progress for translating near-infrared (NIR) molecular imaging agents for personalized medicine.
Collapse
Affiliation(s)
- Eva M Sevick-Muraca
- Baylor College of Medicine, Department of Radiology, Division of Molecular Imaging, Houston, Texas 77030, USA.
| | | |
Collapse
|
43
|
Turchin IV, Kamensky VA, Plehanov VI, Orlova AG, Kleshnin MS, Fiks II, Shirmanova MV, Meerovich IG, Arslanbaeva LR, Jerdeva VV, Savitsky AP. Fluorescence diffuse tomography for detection of red fluorescent protein expressed tumors in small animals. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:041310. [PMID: 19021318 DOI: 10.1117/1.2953528] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A fluorescence diffuse tomography (FDT) setup for monitoring tumor growth in small animals has been created. In this setup an animal is scanned in the transilluminative configuration by a single source and detector pair. To remove stray light in the detection system, we used a combination of interferometric and absorption filters. To reduce the scanning time, an experimental animal was scanned using the following algorithm: (1) large-step scanning to obtain a general view of the animal (source and detector move synchronously); (2) selection of the fluorescing region; and (3) small-step scanning of the selected region and different relative shifts between the source and detector to obtain sufficient information for 3D reconstruction. We created a reconstruction algorithm based on the Holder norm to estimate the fluorophore distribution. This algorithm converges to the solution with a minimum number of fluorescing zones. The use of tumor cell lines transfected with fluorescent proteins allowed us to conduct intravital monitoring studies. Cell lines of human melanomas Mel-P, Mel-Ibr, Mel-Kor, and human embryonic kidney HEK293 Phoenix were transfected with DsRed-Express and Turbo-RFP genes. The emission of red fluorescent proteins (RFPs) in the long-wave optical range permits detection of deep-seated tumors. In vivo experiments were conducted immediately after subcutaneous injection of fluorescing cells into small animals.
Collapse
Affiliation(s)
- Ilya V Turchin
- Institute of Applied Physics RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mohajerani P, Eftekhar AA, Adibi A. Object localization in the presence of a strong heterogeneous background in fluorescent tomography. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2008; 25:1467-79. [PMID: 18516159 DOI: 10.1364/josaa.25.001467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We propose a method for object localization in fluorescent tomography (FT) in the presence of a highly heterogeneous background. Existing approaches typically assume a homogeneous background distribution; thus, they are incapable of accurately accounting for the more general case of an unconstrained, possibly heterogeneous, background. The proposed method iteratively solves the inverse problem over a solution space partitioned into a background subspace and an object subspace to simultaneously estimate the background and localize the target fluorescent objects. Simulation results of this algorithm applied to continuous-wave FT demonstrate effective localization of target objects in the presence of highly heterogeneous background distributions.
Collapse
Affiliation(s)
- Pouyan Mohajerani
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, Georgia 30332, USA.
| | | | | |
Collapse
|
45
|
Lasser T, Soubret A, Ripoll J, Ntziachristos V. Surface Reconstruction for free-space 360 degrees fluorescence molecular tomography and the effects of animal motion. IEEE TRANSACTIONS ON MEDICAL IMAGING 2008; 27:188-94. [PMID: 18334440 DOI: 10.1109/tmi.2007.904662] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Complete projection (360 degrees ) free-space fluorescence tomography of opaque media is poised to enable 3-D imaging through entire small animals in vivo with improved depth resolution compared to 360 degrees -projection fiber-based systems or limited-view angle systems. This approach can lead to a new generation of Fluorescence Molecular Tomography (FMT) performance since it allows high spatial sampling of photon fields propagating through tissue at any projection, employing nonconstricted animal surfaces. Herein, we employ a volume carving method to capture 3-D surfaces of diffusive objects and register the captured surface in the geometry of an FMT 360 degrees -projection acquisition system to obtain 3-D fluorescence image reconstructions. Using experimental measurements we evaluate the accuracy of the surface capture procedure by reconstructing the surfaces of phantoms of known dimensions. We then employ this methodology to characterize the animal movement of anaesthetized animals. We find that the effects of animal movement on the FMT reconstructed image were within system resolution limits (approximately 0.07 cm).
Collapse
Affiliation(s)
- Tobias Lasser
- Laboratory for Bio-optics and Molecular Imaging, Center for Molecular Imaging Research, Massachusetts General Hosiptal and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
46
|
Keren S, Gheysens O, Levin CS, Gambhir SS. A comparison between a time domain and continuous wave small animal optical imaging system. IEEE TRANSACTIONS ON MEDICAL IMAGING 2008; 27:58-63. [PMID: 18270062 PMCID: PMC4143158 DOI: 10.1109/tmi.2007.902800] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a phantom study to evaluate the performance of the eXplore Optix (Advanced Research Technologies-GE Healthcare), the first commercially available time-domain tomography system for small animal fluorescence imaging, and compare its capabilities with the widely used IVIS 200 (Xenogen Corporation-Caliper) continuous wave planar imaging system. The eXplore Optix, based on point-wise illumination and collection scheme, is found to be a log order more sensitive with significantly higher detection depth and spatial resolution as compared with the wide-area illumination IVIS 200 under the conditions tested. A time-resolved detection system allows the eXplore Optix to measure the arrival time distribution of fluorescence photons. This enables fluorescence lifetime measurement, absorption mapping, and estimation of fluorescent inclusion depth, which in turn is used by a reconstruction algorithm to calculate the volumetric distribution of the fluorophore concentration. An increased acquisition time and lack of ability to image multiple animals simultaneously are the main drawbacks of the eXplore Optix as compared with the IVIS 200.
Collapse
Affiliation(s)
- Shay Keren
- Molecular Imaging Program at Stanford (MIPS), Radiology Department, Stanford University, Stanford, CA 94305 USA
| | - Olivier Gheysens
- Molecular Imaging Program at Stanford (MIPS), Radiology Department, Stanford University, Stanford, CA 94305 USA
| | - Craig S. Levin
- Molecular Imaging Program at Stanford (MIPS), Radiology Department, Stanford University, Stanford, CA 94305 USA
| | | |
Collapse
|
47
|
Margolis DJA, Hoffman JM, Herfkens RJ, Jeffrey RB, Quon A, Gambhir SS. Molecular Imaging Techniques in Body Imaging. Radiology 2007; 245:333-56. [DOI: 10.1148/radiol.2452061117] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Jayachandran B, Ge J, Regalado S, Godavarty A. Design and development of a hand-held optical probe toward fluorescence diagnostic imaging. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:054014. [PMID: 17994902 DOI: 10.1117/1.2799193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Near-infrared optical imaging is an emerging noninvasive technology toward breast cancer diagnosis. The optical imaging systems available to date are limited either by flexibility to image any given breast volume, patient comfort, or instrument portability. Here, a hand-held optical probe is designed and developed, 1. employing a unique measurement scheme of simultaneous multiple point illumination and collection for rapid data acquisition and minimal patient discomfort, and 2. employing a curved probe head such that it allows flexible imaging of tissue curvatures. Simulation studies are carried out on homogeneous slab phantoms (5x10x8 cc) to determine an appropriate source-detector configuration for the probe head. These design features are implemented in the development of the probe, which consisted of six simultaneous illuminating and 165 simultaneous collecting fibers, spaced 0.5 cm apart on a 5x10 sq-cm probe head. Simulation studies on 3-D slab and curved phantoms demonstrate an increase in the total area of predicted fluorescence amplitude and overall signal strength on using simultaneous multiple point sources over a single point source. The probe is designed and developed such that on coupling with a detection system in the future, the hand-held probe based imager can be clinically assessed toward cancer diagnostic imaging.
Collapse
Affiliation(s)
- Bhavani Jayachandran
- Florida International University, Optical Imaging Laboratory, Department of Biomedical Engineering, Miami, Florida 33174, USA
| | | | | | | |
Collapse
|
49
|
Hervé L, Koenig A, Da Silva A, Berger M, Boutet J, Dinten JM, Peltié P, Rizo P. Noncontact fluorescence diffuse optical tomography of heterogeneous media. APPLIED OPTICS 2007; 46:4896-906. [PMID: 17676093 DOI: 10.1364/ao.46.004896] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fluorescence-enhanced diffuse optical tomography is expected to be useful to the collection of functional information from small animal models. This technique is currently limited by the extent of tissue heterogeneity and management of the shape of the animals. We propose an approach based on the reconstruction of object heterogeneity, which provides an original solution to the two problems. Three evaluation campaigns are described: the first two were performed on phantoms designed to test the reconstructions in highly heterogeneous media and noncontact geometries; the third was conducted on mice with lung tumors to test fluorescence yield reconstruction feasibility in vivo.
Collapse
Affiliation(s)
- L Hervé
- CEA-LETI, MINATEC, Grenoble F-38054, France.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Roy R, Godavarty A, Sevick-Muraca EM. Fluorescence-enhanced three-dimensional lifetime imaging: a phantom study. Phys Med Biol 2007; 52:4155-70. [PMID: 17664600 DOI: 10.1088/0031-9155/52/14/009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Near-infrared fluorescence optical imaging has the unique opportunity of differentiating diseased lesions from normal lesions based upon environmentally indicated changes in the lifetime of a fluorescent imaging agent. In this paper, we demonstrate three-dimensional lifetime tomography using the gradient-based penalty modified barrier function with simple bounds truncated Newton with trust region method to reconstruct lifetime maps in a clinically relevant, single breast-shaped ( approximately 1081 cm(3)) phantom from point-frequency-domain photon migration measurements at 100 MHz. A reverse differentiation technique is used to calculate the gradients. This algorithm is desirable because the storage benefit from the use of the truncated Newton method and the reverse differentiation technique increase the speed. Two fluorescent contrast agents, indocyanine green and 3-3'-diethylthiatricarbocyanine iodide which differed in their fluorescence lifetimes by 0.62 ns, were used. Images of targets at a depth of 2.0 cm and target-to-background ratios (T:B) of 212:1 and 70:1 in fluoroscence absorption and 1:2.1 and 2.1:1 in lifetimes are successfully reconstructed. Our results show that image reconstruction is possible when there is (i) a longer lifetime in a target than the background and (ii) a shorter lifetime in a target than the background.
Collapse
Affiliation(s)
- Ranadhir Roy
- Mathematics Department University of Texas-Pan American Edinburg, TX 78541, USA.
| | | | | |
Collapse
|