1
|
Sweeney A, Arora A, Edwards S, Mallidi S. Ultrasound-guided Photoacoustic image Annotation Toolkit in MATLAB (PHANTOM) for preclinical applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565885. [PMID: 37986998 PMCID: PMC10659350 DOI: 10.1101/2023.11.07.565885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Depth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from ultrasound to generate fluence maps to depth compensate PA images. The methodology was used to analyze PA images of phantoms with varying blood oxygenation and results were validated with oxygen electrode measurements. Two preclinical models, a subcutaneous tumor and a calcified placenta, were imaged and fluence-compensated using the PHANTOM toolkit and the results were verified with immunohistochemistry. The PHANTOM toolkit provides scripts and auxiliary functions to enable biomedical researchers not specialized in optical imaging to apply fluence correction to PA images, enhancing accessibility of quantitative PAI for researchers in various fields.
Collapse
Affiliation(s)
- Allison Sweeney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Aayush Arora
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Skye Edwards
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
2
|
Swann R, Slikboer S, Genady A, Silva LR, Janzen N, Faraday A, Valliant JF, Sadeghi S. Tetrazine-Derived Near-Infrared Dye for Targeted Photoacoustic Imaging of Bone. J Med Chem 2023; 66:6025-6036. [PMID: 37129217 DOI: 10.1021/acs.jmedchem.2c01685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A near-infrared photoacoustic probe was used to image bone in vivo through active and bioorthogonal pretargeting strategies that utilized coupling between a tetrazine-derived cyanine dye and a trans-cyclooctene-modified bisphosphonate. In vitro hydroxyapatite binding of the probe via active and pretargeting strategies showed comparable increases in percent binding vs a nontargeted control. Intrafemoral injection of the bisphosphonate-dye conjugate showed retention out to 24 h post-injection, with a 14-fold increase in signal over background, while the nontargeted dye exhibited negligible binding to bone and signal washout by 4 h post-injection. Intravenous injection, using both active and pretargeting strategies, demonstrated bone accumulation as earlier as 4 h post-injection, where the signal was found to be 3.6- and 1.5-fold higher, respectively, than the signal from the nontargeted dye. The described bone-targeted dye enabled in vivo photoacoustic imaging, while the synthetic strategy provides a convenient building block for developing new targeted photoacoustic probes.
Collapse
Affiliation(s)
- Rowan Swann
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Samantha Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Afaf Genady
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Luis Rafael Silva
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Amber Faraday
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
3
|
Khadria A, Paavola CD, Maslov K, Valenzuela FA, Sperry AE, Cox AL, Cao R, Shi J, Brown-Augsburger PL, Lozano E, Blankenship RL, Majumdar R, Bradley SA, Beals JM, Oladipupo SS, Wang LV. Photoacoustic imaging reveals mechanisms of rapid-acting insulin formulations dynamics at the injection site. Mol Metab 2022; 62:101522. [PMID: 35671972 PMCID: PMC9207296 DOI: 10.1016/j.molmet.2022.101522] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Ultra-rapid insulin formulations control postprandial hyperglycemia; however, inadequate understanding of injection site absorption mechanisms is limiting further advancement. We used photoacoustic imaging to investigate the injection site dynamics of dye-labeled insulin lispro in the Humalog® and Lyumjev® formulations using the murine ear cutaneous model and correlated it with results from unlabeled insulin lispro in pig subcutaneous injection model. METHODS We employed dual-wavelength optical-resolution photoacoustic microscopy to study the absorption and diffusion of the near-infrared dye-labeled insulin lispro in the Humalog and Lyumjev formulations in mouse ears. We mathematically modeled the experimental data to calculate the absorption rate constants and diffusion coefficients. We studied the pharmacokinetics of the unlabeled insulin lispro in both the Humalog and Lyumjev formulations as well as a formulation lacking both the zinc and phenolic preservative in pigs. The association state of insulin lispro in each of the formulations was characterized using SV-AUC and NMR spectroscopy. RESULTS Through experiments using murine and swine models, we show that the hexamer dissociation rate of insulin lispro is not the absorption rate-limiting step. We demonstrated that the excipients in the Lyumjev formulation produce local tissue expansion and speed both insulin diffusion and microvascular absorption. We also show that the diffusion of insulin lispro at the injection site drives its initial absorption; however, the rate at which the insulin lispro crosses the blood vessels is its overall absorption rate-limiting step. CONCLUSIONS This study provides insights into injection site dynamics of insulin lispro and the impact of formulation excipients. It also demonstrates photoacoustic microscopy as a promising tool for studying protein therapeutics. The results from this study address critical questions around the subcutaneous behavior of insulin lispro and the formulation excipients, which could be useful to make faster and better controlled insulin formulations in the future.
Collapse
Affiliation(s)
- Anjul Khadria
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Chad D Paavola
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Francisco A Valenzuela
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Andrea E Sperry
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Amy L Cox
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Junhui Shi
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Emmanuel Lozano
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Ross L Blankenship
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Ranajoy Majumdar
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Scott A Bradley
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - John M Beals
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA, 92121, USA.
| | - Sunday S Oladipupo
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA; Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
4
|
Claus A, Sweeney A, Sankepalle DM, Li B, Wong D, Xavierselvan M, Mallidi S. 3D Ultrasound-Guided Photoacoustic Imaging to Monitor the Effects of Suboptimal Tyrosine Kinase Inhibitor Therapy in Pancreatic Tumors. Front Oncol 2022; 12:915319. [PMID: 35875138 PMCID: PMC9300843 DOI: 10.3389/fonc.2022.915319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer is a disease with an incredibly poor survival rate. As only about 20% of patients are eligible for surgical resection, neoadjuvant treatments that can relieve symptoms and shrink tumors for surgical resection become critical. Many forms of treatments rely on increased vulnerability of cancerous cells, but tumors or regions within the tumors that may be hypoxic could be drug resistant. Particularly for neoadjuvant therapies such as the tyrosine kinase inhibitors utilized to shrink tumors, it is critical to monitor changes in vascular function and hypoxia to predict treatment efficacy. Current clinical imaging modalities used to obtain structural and functional information regarding hypoxia or oxygen saturation (StO2) do not provide sufficient depth penetration or require the use of exogenous contrast agents. Recently, ultrasound-guided photoacoustic imaging (US-PAI) has garnered significant popularity, as it can noninvasively provide multiparametric information on tumor vasculature and function without the need for contrast agents. Here, we built upon existing literature on US-PAI and demonstrate the importance of changes in StO2 values to predict treatment response, particularly tumor growth rate, when the outcomes are suboptimal. Specifically, we image xenograft mouse models of pancreatic adenocarcinoma treated with suboptimal doses of a tyrosine kinase inhibitor cabozantinib. We utilize the US-PAI data to develop a multivariate regression model that demonstrates that a therapy-induced reduction in tumor growth rate can be predicted with 100% positive predictive power and a moderate (58.33%) negative predictive power when a combination of pretreatment tumor volume and changes in StO2 values pretreatment and immediately posttreatment was employed. Overall, our study indicates that US-PAI has the potential to provide label-free surrogate imaging biomarkers that can predict tumor growth rate in suboptimal therapy.
Collapse
|
5
|
Photoacoustic Imaging in Biomedicine and Life Sciences. Life (Basel) 2022; 12:life12040588. [PMID: 35455079 PMCID: PMC9028050 DOI: 10.3390/life12040588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022] Open
Abstract
Photo-acoustic imaging, also known as opto-acoustic imaging, has become a widely popular modality for biomedical applications. This hybrid technique possesses the advantages of high optical contrast and high ultrasonic resolution. Due to the distinct optical absorption properties of tissue compartments and main chromophores, photo-acoustics is able to non-invasively observe structural and functional variations within biological tissues including oxygenation and deoxygenation, blood vessels and spatial melanin distribution. The detection of acoustic waves produced by a pulsed laser source yields a high scaling range, from organ level photo-acoustic tomography to sub-cellular or even molecular imaging. This review discusses significant novel technical solutions utilising photo-acoustics and their applications in the fields of biomedicine and life sciences.
Collapse
|
6
|
Park S, Brooks FJ, Villa U, Su R, Anastasio MA, Oraevsky AA. Normalization of optical fluence distribution for three-dimensional functional optoacoustic tomography of the breast. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210367GR. [PMID: 35293163 PMCID: PMC8923705 DOI: 10.1117/1.jbo.27.3.036001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/22/2022] [Indexed: 05/20/2023]
Abstract
SIGNIFICANCE In three-dimensional (3D) functional optoacoustic tomography (OAT), wavelength-dependent optical attenuation and nonuniform incident optical fluence limit imaging depth and field of view and can hinder accurate estimation of functional quantities, such as the vascular blood oxygenation. These limitations hinder OAT of large objects, such as a human female breast. AIM We aim to develop a measurement-data-driven method for normalization of the optical fluence distribution and to investigate blood vasculature detectability and accuracy for estimating vascular blood oxygenation. APPROACH The proposed method is based on reasonable assumptions regarding breast anatomy and optical properties. The nonuniform incident optical fluence is estimated based on the illumination geometry in the OAT system, and the depth-dependent optical attenuation is approximated using Beer-Lambert law. RESULTS Numerical studies demonstrated that the proposed method significantly enhanced blood vessel detectability and improved estimation accuracy of the vascular blood oxygenation from multiwavelength OAT measurements, compared with direct application of spectral linear unmixing without optical fluence compensation. Experimental results showed that the proposed method revealed previously invisible structures in regions deeper than 15 mm and/or near the chest wall. CONCLUSIONS The proposed method provides a straightforward and computationally inexpensive approximation of wavelength-dependent effective optical attenuation and, thus, enables mitigation of the spectral coloring effect in functional 3D OAT imaging.
Collapse
Affiliation(s)
- Seonyeong Park
- University of Illinois Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Frank J. Brooks
- University of Illinois Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Umberto Villa
- Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
| | - Richard Su
- TomoWave Laboratories, Houston, Texas, United States
| | - Mark A. Anastasio
- University of Illinois Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Alexander A. Oraevsky
- TomoWave Laboratories, Houston, Texas, United States
- Address all correspondence to Alexander A. Oraevsky,
| |
Collapse
|
7
|
Alzahrani MSH, Elmeged LSMA. Immunological and Histological Effects of Pomegranate in Hepatic Rats. PHARMACOPHORE 2022; 13:65-73. [DOI: 10.51847/fphyml85ns] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Mahmoodkalayeh S, Kratkiewicz K, Manwar R, Shahbazi M, Ansari MA, Natarajan G, Asano E, Avanaki K. Wavelength and pulse energy optimization for detecting hypoxia in photoacoustic imaging of the neonatal brain: a simulation study. BIOMEDICAL OPTICS EXPRESS 2021; 12:7458-7477. [PMID: 35003846 PMCID: PMC8713673 DOI: 10.1364/boe.439147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 05/03/2023]
Abstract
Cerebral hypoxia is a severe injury caused by oxygen deprivation to the brain. Hypoxia in the neonatal period increases the risk for the development of neurological disorders, including hypoxic-ischemic encephalopathy, cerebral palsy, periventricular leukomalacia, and hydrocephalus. It is crucial to recognize hypoxia as soon as possible because early intervention improves outcomes. Photoacoustic imaging, using at least two wavelengths, through a spectroscopic analysis, can measure brain oxygen saturation. Due to the spectral coloring effect arising from the dependency of optical properties of biological tissues to the wavelength of light, choosing the right wavelength-pair for efficient and most accurate oxygen saturation measurement and consequently quantifying hypoxia at a specific depth is critical. Using a realistic neonate head model and Monte Carlo simulations, we found practical wavelength-pairs that quantified regions with hypoxia most accurately at different depths down to 22 mm into the cortex neighboring the lateral ventricle. We also demonstrated, for the first time, that the accuracy of the sO2 measurement can be increased by adjusting the level of light energy for each wavelength-pair. Considering the growing interest in photoacoustic imaging of the brain, this work will assist in a more accurate use of photoacoustic spectroscopy and help in the clinical translation of this promising imaging modality. Please note that explaining the effect of acoustic aberration of the skull is not in the scope of this study.
Collapse
Affiliation(s)
- Sadreddin Mahmoodkalayeh
- Department of Physics, Shahid Beheshti University, Tehran, Iran
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- These authors have contributed equally
| | - Karl Kratkiewicz
- Wayne State University, Bioengineering Department, Detroit, Michigan 48201, USA
| | - Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Meysam Shahbazi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Ali Ansari
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Girija Natarajan
- Wayne State University School of Medicine, Department of Neurology, Detroit, Michigan 48201, USA
- Wayne State University School of Medicine, Department of Pediatrics, Detroit, Michigan 48201, USA
| | - Eishi Asano
- Wayne State University School of Medicine, Department of Neurology, Detroit, Michigan 48201, USA
- Wayne State University School of Medicine, Department of Pediatrics, Detroit, Michigan 48201, USA
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- These authors have contributed equally
| |
Collapse
|
9
|
Gao R, Xu Z, Ren Y, Song L, Liu C. Nonlinear mechanisms in photoacoustics-Powerful tools in photoacoustic imaging. PHOTOACOUSTICS 2021; 22:100243. [PMID: 33643841 PMCID: PMC7893487 DOI: 10.1016/j.pacs.2021.100243] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 05/03/2023]
Abstract
Many nonlinear effects have been discovered and developed in photoacoustic imaging. These nonlinear mechanisms have been explored for different utilizations, such as enhancing imaging contrast, measuring tissue temperature, achieving super-resolution imaging, enabling functional imaging, and extracting important physical parameters. This review aims to introduce different nonlinear mechanisms in photoacoustics, underline the fundamental principles, highlight their representative applications, and outline the occurrence conditions and applicable range of each nonlinear mechanism. Furthermore, this review thoroughly discusses the nonlinearity rule concerning how the mathematical structure of the nonlinear dependence is correlated to its practical applications. This summarization is useful for identifying and guiding the potential applications of nonlinearity based on their mathematical expressions, and is helpful for new nonlinear mechanism discovery or implementation in the future, which facilitates further breakthroughs in nonlinear photoacoustics.
Collapse
Affiliation(s)
- Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiqiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
11
|
Fadhel MN, Hysi E, Assi H, Kolios MC. Fluence-matching technique using photoacoustic radiofrequency spectra for improving estimates of oxygen saturation. PHOTOACOUSTICS 2020; 19:100182. [PMID: 32547922 PMCID: PMC7284135 DOI: 10.1016/j.pacs.2020.100182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 05/24/2023]
Abstract
Photoacoustic (PA) signals encode information about the optical absorption and spatial distribution of absorbing chromophores as well as the light distribution in the medium. The wavelength dependence of the latter affects the accuracy in chromophore quantification, including estimations of oxygen saturation (sO2) with depth. We propose the use of the ratio of the PA radiofrequency (RF) spectral slopes (SS) at different optical wavelengths to generate frequency filters which can be used to match the fluence profiles across separate images generated with different optical wavelengths. Proof-of-principle experiments were carried on a plastic tube with blood of a known oxygenation inserted into a porcine tissue. The algorithm was tested in-vivo in the hind leg of six CD1 mice, each under three different breathing conditions (100 % O2, room air and 100 % CO2). Imaging was done using the VevoLAZR system at the wavelengths 720 and 870 nm. The SS was calculated from the linear fit of the ratio of the photoacoustic RF power spectra at the two wavelengths. An ultrasound frequency filter was designed and applied to each segmented PA signal in the frequency domain and inversely transformed into the time domain to correct for the differences in the fluence profiles at both wavelengths. Linear spectral unmixing was used to estimate sO2 before and after applying the ultrasound frequency filter. The estimated blood sO2 in the plastic tube for the porcine tissue experiment improved by 10.3% after applying the frequency filter when compared to the sO2 measured by a blood gas analyzer. For the in-vivo mouse experiments, the applied sO2 correction was 2.67, 1.33 and -3.33% for every mm of muscle tissue for mice breathing 100% O2, room air and 100% CO2, respectively. The approach presented here provides a new approach for fluence matching that can potentially improve the accuracy of sO2 estimates by removing the fluence depth dependence at different optical wavelengths.
Collapse
Affiliation(s)
- Muhannad N. Fadhel
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Keenan Research Center, St. Michael’s Hospital, Toronto, Canada
| | - Eno Hysi
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Keenan Research Center, St. Michael’s Hospital, Toronto, Canada
| | - Hisham Assi
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Keenan Research Center, St. Michael’s Hospital, Toronto, Canada
| | - Michael C. Kolios
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Keenan Research Center, St. Michael’s Hospital, Toronto, Canada
| |
Collapse
|
12
|
Kim M, Jeng GS, O’Donnell M, Pelivanov I. Correction of wavelength-dependent laser fluence in swept-beam spectroscopic photoacoustic imaging with a hand-held probe. PHOTOACOUSTICS 2020; 19:100192. [PMID: 32670789 PMCID: PMC7339128 DOI: 10.1016/j.pacs.2020.100192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 05/11/2023]
Abstract
Recently, we demonstrated an integrated photoacoustic (PA) and ultrasound (PAUS) system using a kHz-rate wavelength-tunable laser and a swept-beam delivery approach. It irradiates a medium using a narrow laser beam swept at high repetition rate (∼1 kHz) over the desired imaging area, in contrast to the conventional PA approach using broad-beam illumination at a low repetition rate (10-50 Hz). Here, we present a method to correct the wavelength-dependent fluence distribution and demonstrate its performance in phantom studies using a conventional limited view/bandwidth hand-held US probe. We adopted analytic fluence models, extending diffusion theory for the case of a pencil beam obliquely incident on an optically homogenous turbid medium, and developed a robust method to estimate fluence attenuation in the medium using PA measurements acquired from multiple fiber-irradiation positions swept at a kHz rate. We conducted comprehensive simulation tests and phantom studies using well-known contrast-agents to validate the reliability of the fluence model and its spectral corrections.
Collapse
Affiliation(s)
- MinWoo Kim
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| | - Geng-Shi Jeng
- Department of Electronics Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Matthew O’Donnell
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| | - Ivan Pelivanov
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
13
|
Friedlein JT, Baumann E, Briggman KA, Colacion GM, Giorgetta FR, Goldfain AM, Herman DI, Hoenig EV, Hwang J, Newbury NR, Perez EF, Yung CS, Coddington I, Cossel KC. Dual-comb photoacoustic spectroscopy. Nat Commun 2020; 11:3152. [PMID: 32561738 PMCID: PMC7305174 DOI: 10.1038/s41467-020-16917-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Spectrally resolved photoacoustic imaging is promising for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds and causes errors if the sample changes in time between images acquired at different wavelengths. We demonstrate a solution to this problem by using dual-comb spectroscopy for photoacoustic measurements. This approach enables a photoacoustic measurement at thousands of wavelengths simultaneously. In this technique, two optical-frequency combs are interfered on a sample and the resulting pressure wave is measured with an ultrasound transducer. This acoustic signal is processed in the frequency-domain to obtain an optical absorption spectrum. For a proof-of-concept demonstration, we measure photoacoustic signals from polymer films. The absorption spectra obtained from these measurements agree with those measured using a spectrophotometer. Improving the signal-to-noise ratio of the dual-comb photoacoustic spectrometer could enable high-speed spectrally resolved photoacoustic imaging.
Collapse
Affiliation(s)
- Jacob T Friedlein
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Esther Baumann
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Kimberly A Briggman
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Gabriel M Colacion
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- Optical Science and Engineering, University of New Mexico, 1313 Goddard, SE, Albuquerque, NM, 87106, USA
| | - Fabrizio R Giorgetta
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Aaron M Goldfain
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Daniel I Herman
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Eli V Hoenig
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, ERC 387, Chicago, IL, 60637, USA
| | - Jeeseong Hwang
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Nathan R Newbury
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Edgar F Perez
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, 8279 Paint Branch Drive, College Park, MD, 20742-3511, USA
| | - Christopher S Yung
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Ian Coddington
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Kevin C Cossel
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA.
| |
Collapse
|
14
|
Ulrich L, Held KG, Jaeger M, Frenz M, Akarçay HG. Reliability assessment for blood oxygen saturation levels measured with optoacoustic imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-15. [PMID: 32323509 PMCID: PMC7175414 DOI: 10.1117/1.jbo.25.4.046005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Quantitative optoacoustic (OA) imaging has the potential to provide blood oxygen saturation (SO2) estimates due to the proportionality between the measured signal and the blood's absorption coefficient. However, due to the wavelength-dependent attenuation of light in tissue, a spectral correction of the OA signals is required, and a prime challenge is the validation of both the optical characterization of the tissue and the SO2. AIM We propose to assess the reliability of SO2 levels retrieved from spectral fitting by measuring the similarity of OA spectra to the fitted blood absorption spectra. APPROACH We introduce a metric that quantifies the trends of blood spectra by assigning a pair of spectral slopes to each spectrum. The applicability of the metric is illustrated with in vivo measurements on a human forearm. RESULTS We show that physiologically sound SO2 values do not necessarily imply a successful spectral correction and demonstrate how the metric can be used to distinguish SO2 values that are trustworthy from unreliable ones. CONCLUSIONS The metric is independent of the methods used for the OA data acquisition, image reconstruction, and spectral correction, thus it can be readily combined with existing approaches, in order to monitor the accuracy of quantitative OA imaging.
Collapse
Affiliation(s)
- Leonie Ulrich
- University of Bern, Institute of Applied Physics, Biomedical Photonics, Bern, Switzerland
| | - Kai Gerrit Held
- University of Bern, Institute of Applied Physics, Biomedical Photonics, Bern, Switzerland
- ABB Switzerland, Corporate Research, Baden-Daettwil, Switzerland
| | - Michael Jaeger
- University of Bern, Institute of Applied Physics, Biomedical Photonics, Bern, Switzerland
| | - Martin Frenz
- University of Bern, Institute of Applied Physics, Biomedical Photonics, Bern, Switzerland
| | - Hidayet Günhan Akarçay
- University of Bern, Institute of Applied Physics, Biomedical Photonics, Bern, Switzerland
| |
Collapse
|
15
|
Wang Y, Wu Y, Wen Q, Li P, Wang Y, Jiang H, Zhang W. PEGylated gold nanorods with a broad absorption band in the first near-infrared window for in vivo multifunctional photoacoustic imaging. RSC Adv 2020; 10:4561-4567. [PMID: 35495238 PMCID: PMC9049190 DOI: 10.1039/c9ra10442a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles with absorbances in the near-infrared window (NIR, 700-1300 nm) are ideal contrast agents for in vivo imaging of deep tissue with high signal-to-noise ratios. By using CTAB and l(+)-ascorbic acid (AA) as ligands to effectively balance particle nucleation and growth, PEGylated Au nanorods (NRs) with broad absorption bands (from 650 to 1100 nm) in the first NIR window could be successfully realized. The morphologies, crystal structures, absorption and biotoxicities of the samples were determined by TEM, TGA, UV-vis and MTT assay. The results indicated that the presence of a thin poly(ethylene glycol) (PEG) shell could greatly improve the biocompatibility of the Au NRs (1.7 times that of non-PEGylated Au NRs), making them harmless to living cells. Moreover, the prepared PEGylated Au NRs displayed the highest image contrast and SNR values (1.1-1.5 times that of commercial Au nanospheres and NRs), with excitation lasers of 532, 680 and 828 nm, showing their great potential for use in multicolor photoacoustic imaging in vivo. With the prepared PEGylated Au NRs, a functional image of oxygen saturation was constructed in a single step without changing the contrast agent.
Collapse
Affiliation(s)
- Yiping Wang
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Yiduo Wu
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Qiang Wen
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Pengwei Li
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Ying Wang
- College of Mechanics, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Huabei Jiang
- Biomedical Optics Laboratory, Department of Medical Engineering, College of Engineering, University of South Florida Tampa FL 33620 USA
| | - Wendong Zhang
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| |
Collapse
|
16
|
Kang D. Signal magnitude nonlinearity to an absorption coefficient in photoacoustic imaging. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:163-173. [PMID: 32118894 DOI: 10.1364/josaa.37.000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We investigate photoacoustic (PA) signal magnitude variation to an absorption coefficient of localized absorbing objects measured by spherically focused ultrasound transducers (US TDs). For this investigation, we develop the PA simulation method that directly calculates Green function solutions of the Helmholtz PA wave equation, considering grid-like elements on absorbing objects and US TDs. The simulation results show that the PA signal amplitude in the PA imaging is nonlinearly varied to the absorption coefficient of localized objects, which are distinct from the known PA saturation effect. For spherical objects especially, the PA amplitude shows a maximum value at a certain absorption coefficient, and decreases even though the absorption coefficient further increases from that point. We suggest conceptual and mathematical interpretations for this phenomenon by analyzing the characteristics of PA spectra combined with US TD transfer functions, which indicates that the combined effect of US TD spatial and temporal filtering plays a significant role in the PA signal magnitude nonlinearity.
Collapse
|
17
|
Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic clinical imaging. PHOTOACOUSTICS 2019; 14:77-98. [PMID: 31293884 PMCID: PMC6595011 DOI: 10.1016/j.pacs.2019.05.001] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
Photoacoustic is an emerging biomedical imaging modality, which allows imaging optical absorbers in the tissue by acoustic detectors (light in - sound out). Such a technique has an immense potential for clinical translation since it allows high resolution, sufficient imaging depth, with diverse endogenous and exogenous contrast, and is free from ionizing radiation. In recent years, tremendous developments in both the instrumentation and imaging agents have been achieved. These opened avenues for clinical imaging of various sites allowed applications such as brain functional imaging, breast cancer screening, diagnosis of psoriasis and skin lesions, biopsy and surgery guidance, the guidance of tumor therapies at the reproductive and urological systems, as well as imaging tumor metastases at the sentinel lymph nodes. Here we survey the various clinical and pre-clinical literature and discuss the potential applications and hurdles that still need to be overcome.
Collapse
Affiliation(s)
- Idan Steinberg
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
| | - David M. Huland
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Ophir Vermesh
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Hadas E. Frostig
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Willemieke S. Tummers
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Materials Science & Engineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
18
|
Ulrich L, Ahnen L, Akarçay HG, Majos SS, Jaeger M, Held KG, Wolf M, Frenz M. Spectral correction for handheld optoacoustic imaging by means of near-infrared optical tomography in reflection mode. JOURNAL OF BIOPHOTONICS 2019; 12:e201800112. [PMID: 30098119 PMCID: PMC7065640 DOI: 10.1002/jbio.201800112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 08/09/2018] [Indexed: 05/04/2023]
Abstract
In vivo imaging of tissue/vasculature oxygen saturation levels is of prime interest in many clinical applications. To this end, the feasibility of combining two distinct and complementary imaging modalities is investigated: optoacoustics (OA) and near-infrared optical tomography (NIROT), both operating noninvasively in reflection mode. Experiments were conducted on two optically heterogeneous phantoms mimicking tissue before and after the occurrence of a perturbation. OA imaging was used to resolve submillimetric vessel-like optical absorbers at depths up to 25 mm, but with a spectral distortion in the OA signals. NIROT measurements were utilized to image perturbations in the background and to estimate the light fluence inside the phantoms at the wavelength pair (760 nm, 830 nm). This enabled the spectral correction of the vessel-like absorbers' OA signals: the error in the ratio of the absorption coefficient at 830 nm to that at 760 nm was reduced from 60%-150% to 10%-20%. The results suggest that oxygen saturation (SO 2 ) levels in arteries can be determined with <10% error and furthermore, that relative changes in vessels' SO 2 can be monitored with even better accuracy. The outcome relies on a proper identification of the OA signals emanating from the studied vessels.
Collapse
Affiliation(s)
- Leonie Ulrich
- Institute of Applied PhysicsUniversity of BernBernSwitzerland
| | - Linda Ahnen
- Biomedical Optics Research Laboratory, Department of NeonatologyUniversity Hospital ZurichZurichSwitzerland
| | | | - Salvador Sánchez Majos
- Biomedical Optics Research Laboratory, Department of NeonatologyUniversity Hospital ZurichZurichSwitzerland
| | - Michael Jaeger
- Institute of Applied PhysicsUniversity of BernBernSwitzerland
| | - Kai Gerrit Held
- Institute of Applied PhysicsUniversity of BernBernSwitzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of NeonatologyUniversity Hospital ZurichZurichSwitzerland
| | - Martin Frenz
- Institute of Applied PhysicsUniversity of BernBernSwitzerland
| |
Collapse
|
19
|
Lin L, Hu P, Shi J, Appleton CM, Maslov K, Li L, Zhang R, Wang LV. Single-breath-hold photoacoustic computed tomography of the breast. Nat Commun 2018; 9:2352. [PMID: 29907740 PMCID: PMC6003984 DOI: 10.1038/s41467-018-04576-z] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
We have developed a single-breath-hold photoacoustic computed tomography (SBH-PACT) system to reveal detailed angiographic structures in human breasts. SBH-PACT features a deep penetration depth (4 cm in vivo) with high spatial and temporal resolutions (255 µm in-plane resolution and a 10 Hz 2D frame rate). By scanning the entire breast within a single breath hold (~15 s), a volumetric image can be acquired and subsequently reconstructed utilizing 3D back-projection with negligible breathing-induced motion artifacts. SBH-PACT clearly reveals tumors by observing higher blood vessel densities associated with tumors at high spatial resolution, showing early promise for high sensitivity in radiographically dense breasts. In addition to blood vessel imaging, the high imaging speed enables dynamic studies, such as photoacoustic elastography, which identifies tumors by showing less compliance. We imaged breast cancer patients with breast sizes ranging from B cup to DD cup, and skin pigmentations ranging from light to dark. SBH-PACT identified all the tumors without resorting to ionizing radiation or exogenous contrast, posing no health risks.
Collapse
Affiliation(s)
- Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.,Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130, USA
| | - Peng Hu
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130, USA
| | - Junhui Shi
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Catherine M Appleton
- Breast Imaging Section, Washington University School of Medicine in St. Louis, 510 South Kingshighway Blvd, St. Louis, MO, 63108, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.,Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Ruiying Zhang
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA. .,Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
20
|
Hirasawa T, Iwatate RJ, Kamiya M, Okawa S, Fujita M, Urano Y, Ishihara M. Spectral-differential-based unmixing for multispectral photoacoustic imaging. APPLIED OPTICS 2018; 57:2383-2393. [PMID: 29714218 DOI: 10.1364/ao.57.002383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We propose the use of a spectral differential method (SDM) to emphasize the spectral peaks of multispectral photoacoustic images. Because contrast agent signals have spectral peaks at the contrast agent absorption peak, the SDM can selectively emphasize contrast agent signals. Unlike the conventional spectral fitting method (SFM), the SDM does not require reference background spectra and, consequently, does not suffer from separation error caused by the deviation of reference spectra from the measured spectra. We performed multispectral photoacoustic imaging of tissue-mimicking phantoms and subcutaneous tumors of mice injected with small organic molecule-based contrast agents. Contrast agent images obtained by the SDM were clearer than those obtained by SFM.
Collapse
|
21
|
Ul Haq I, Nagaoka R, Siregar S, Saijo Y. Sparse-representation-based denoising of photoacoustic images. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7a44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Lim L, Mastragostino R, Ng K, Zheng G, Wilson BC. Can photoacoustic imaging quantify surface-localized J-aggregating nanoparticles? JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76008. [PMID: 28703256 DOI: 10.1117/1.jbo.22.7.076008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/21/2017] [Indexed: 05/07/2023]
Abstract
We investigate the feasibility of photoacoustic (PA) imaging to quantify the concentration of surface-localized nanoparticles, using tissue-mimicking phantoms and imaging with a commercial PA instrument at 815 nm and a linear-array transducer at a center frequency of 40 MHz. The nanoparticles were J-aggregating porphysomes (JNP) comprising self-assembling, all-organic porphyrin-lipid micelles with a molar absorption coefficient of 8.7×108 cm−1 M−1 at this wavelength. The PA signal intensity versus JNP areal concentration followed a sigmoidal curve with a reproducible linear range of ∼17 fmol/mm2 to 11 pmol/mm2, i.e., ∼3 orders of magnitude with ±34% error. For physiologically-relevant conditions (i.e., optical scattering-dominated tissues: transport albedo >0.8) and JNP concentrations above ∼330 fmol/mm2, the PA signal depends only on the nanoparticle concentration. Otherwise, independent measurement of the optical absorption and scattering properties of the underlying tissue is required for accurate quantification. The implications for surface PA imaging, such as in the use of targeted nanoparticles applied topically to tissue as in endoscopic diagnosis, are considered.
Collapse
Affiliation(s)
- Liang Lim
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Robert Mastragostino
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Kenneth Ng
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Gang Zheng
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, CanadabUniversity of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Brian C Wilson
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, CanadabUniversity of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Polo-Parada L, Gutiérrez-Juárez G, Cywiak D, Pérez-Solano R, Baker GA. Spectrophotometric analysis at the single-cell level: elucidating dispersity within melanic immortalized cell populations. Analyst 2017; 142:1482-1491. [DOI: 10.1039/c6an02662a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The widely held notion that melanin-containing cells are uniform in both size and optical characteristics is demonstrably false.
Collapse
Affiliation(s)
- Luis Polo-Parada
- Department of Medical Pharmacology and Physiology
- University of Missouri
- USA
- Dalton Cardiovascular Research Center
- University of Missouri
| | | | - David Cywiak
- Centro Nacional de Metrología
- Municipio El Marqués
- Mexico
| | - Rafael Pérez-Solano
- División de Ciencias e Ingenierías-Campus León
- Universidad de Guanajuato
- Mexico
| | | |
Collapse
|
24
|
Held KG, Jaeger M, Rička J, Frenz M, Akarçay HG. Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging. PHOTOACOUSTICS 2016; 4:70-80. [PMID: 27766211 PMCID: PMC5066091 DOI: 10.1016/j.pacs.2016.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/02/2016] [Accepted: 05/26/2016] [Indexed: 05/06/2023]
Abstract
Spectral optoacoustic (OA) imaging enables spatially-resolved measurement of blood oxygenation levels, based on the distinct optical absorption spectra of oxygenated and de-oxygenated blood. Wavelength-dependent optical attenuation in the bulk tissue, however, distorts the acquired OA spectrum and thus makes quantitative oxygenation measurements challenging. We demonstrate a correction for this spectral distortion without requiring a priori knowledge of the tissue optical properties, using the concept of multiple irradiation sensing: recording the OA signal amplitude of an absorbing structure (e.g. blood vessel), which serves as an intrinsic fluence detector, as function of irradiation position. This permits the reconstruction of the bulk effective optical attenuation coefficient μeff,λ . If performed at various irradiation wavelengths, a correction for the wavelength-dependent fluence attenuation is achieved, revealing accurate spectral information on the absorbing structures. Phantom studies were performed to show the potential of this technique for handheld clinical combined OA and ultrasound imaging.
Collapse
|
25
|
Abstract
Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT.
Collapse
Affiliation(s)
- Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Jun Xia
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lihong V Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| |
Collapse
|
26
|
Wu M, Jansen K, van der Steen AFW, van Soest G. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. BIOMEDICAL OPTICS EXPRESS 2015; 6:3276-86. [PMID: 26417500 PMCID: PMC4574656 DOI: 10.1364/boe.6.003276] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 05/11/2023]
Abstract
The lipid content in plaques is an important marker for identifying atherosclerotic lesions and disease states. Intravascular photoacoustic (IVPA) imaging can be used to visualize lipids in the artery. In this study, we further investigated lipid detection in the 1.7-µm spectral range. By exploiting the relative difference between the IVPA signal strengths at 1718 and 1734 nm, we could successfully detect and differentiate between the plaque lipids and peri-adventitial fat in human coronary arteries ex vivo. Our study demonstrates that IVPA imaging can positively identify atherosclerotic plaques using only two wavelengths, which could enable rapid data acquisition in vivo.
Collapse
Affiliation(s)
- Min Wu
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Krista Jansen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Interuniversity Cardiology Institute of The Netherlands–Netherlands Heart Institute, PO Box 19258, 3501 DG Utrecht, The Netherlands
- Section Audiology, Department of Otolaryngology–Head and Neck Surgery, and EMGO Institute of Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Antonius F. W. van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Interuniversity Cardiology Institute of The Netherlands–Netherlands Heart Institute, PO Box 19258, 3501 DG Utrecht, The Netherlands
- Department of Imaging Science and Technology, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Gijs van Soest
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
27
|
Danielli A, Maslov K, Favazza CP, Xia J, Wang LV. Nonlinear photoacoustic spectroscopy of hemoglobin. APPLIED PHYSICS LETTERS 2015; 106:203701. [PMID: 26045627 PMCID: PMC4441705 DOI: 10.1063/1.4921474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/11/2015] [Indexed: 05/10/2023]
Abstract
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.
Collapse
Affiliation(s)
- Amos Danielli
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Konstantin Maslov
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Christopher P Favazza
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Jun Xia
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
28
|
Shelton RL, Mattison SP, Applegate BE. Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2014; 7:834-40. [PMID: 23963621 DOI: 10.1002/jbio.201300059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 05/11/2023]
Abstract
Photoacoustic microscopy (PAM) is an imaging modality well suited to mapping vasculature and other strong absorbers in tissue. However, one of the primary drawbacks to PAM when used for high-resolution imaging is the relatively poor axial resolution due to the inverse dependence on the transducer bandwidth. While submicron lateral resolution PAM can be achieved by tightly focusing the excitation light, the axial resolution is fundamentally limited to 10s of microns for typical transducer frequencies. Here we present a multiphoton PAM technique called transient absorption ultrasonic microscopy (TAUM), which results in a completely optically resolved voxel with an experimentally measured axial resolution of 1.5 microns. This technique is demonstrated by imaging individual red blood cells in three dimensions in blood smear and ex vivo tissues. To the best of our knowledge, this is the first demonstration of fully resolved, volumetric photoacoustic imaging of erythrocytes.
Collapse
Affiliation(s)
- Ryan L Shelton
- Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 TAMU, Texas A&M University, College Station, 77843, USA
| | | | | |
Collapse
|
29
|
Yao J, Wang LV. Sensitivity of photoacoustic microscopy. PHOTOACOUSTICS 2014; 2:87-101. [PMID: 25302158 PMCID: PMC4182819 DOI: 10.1016/j.pacs.2014.04.002] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/12/2014] [Indexed: 05/03/2023]
Abstract
Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude), and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency of different PAM designs, and summarizes the imaging performance of various endogenous and exogenous contrast agents. It then describes representative PAM applications with high detection sensitivity, and outlines paths to further improvement.
Collapse
Affiliation(s)
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
30
|
Liang J, Gao L, Li C, Wang LV. Spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device. OPTICS LETTERS 2014; 39:430-3. [PMID: 24487832 PMCID: PMC3978131 DOI: 10.1364/ol.39.000430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have developed spatially Fourier-encoded photoacoustic (PA) microscopy using a digital micromirror device. The spatial intensity distribution of laser pulses is Fourier-encoded, and a series of such encoded PA measurements allows one to decode the spatial distribution of optical absorption. The throughput and Fellgett advantages were demonstrated by imaging a chromium target. By using 63 spatial elements, the signal-to-noise ratio in the recovered PA signal was enhanced by ∼4×. The system was used to image two biological targets, a monolayer of red blood cells and melanoma cells.
Collapse
|
31
|
Yao DK, Zhang C, Maslov K, Wang LV. Photoacoustic measurement of the Grüneisen parameter of tissue. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:17007. [PMID: 24474512 PMCID: PMC3904038 DOI: 10.1117/1.jbo.19.1.017007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/23/2013] [Accepted: 12/31/2013] [Indexed: 05/20/2023]
Abstract
The Grüneisen parameter, a constitutive parameter in photoacoustics, is usually measured from isobaric thermal expansion, which may not be valid for a biological medium due to its heterogeneity. Here, we directly measured the Grüneisen parameter by applying photoacoustic spectroscopy. Laser pulses at wavelengths between 460 and 1800 nm were delivered to tissue samples, and photoacoustic signals were detected by flat water-immersion ultrasonic transducers. Least-squares fitting photoacoustic spectra to molar optical absorption spectra showed that the Grüneisen parameter was 0.81±0.05 (mean±SD) for porcine subcutaneous fat tissue and 0.69±0.02 for porcine lipid at room temperature (22°C). The Grüneisen parameter of a red blood cell suspension was linearly related to hemoglobin concentration, and the parameter of bovine serum was 9% greater than that of water at room temperature.
Collapse
Affiliation(s)
- Da-Kang Yao
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri 63130
| | - Chi Zhang
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri 63130
| | - Konstantin Maslov
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri 63130
| | - Lihong V. Wang
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri 63130
- Address all correspondence to: Lihong V. Wang, E-mail:
| |
Collapse
|
32
|
Hirasawa T, Fujita M, Okawa S, Kushibiki T, Ishihara M. Quantification of effective attenuation coefficients using continuous wavelet transform of photoacoustic signals. APPLIED OPTICS 2013; 52:8562-8571. [PMID: 24513902 DOI: 10.1364/ao.52.008562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/13/2013] [Indexed: 06/03/2023]
Abstract
A method for quantifying the effective attenuation coefficients of optical absorbers by using the continuous wavelet transform (CWT) to calculate the time-resolved frequency spectra of photoacoustic signals is proposed. Because the coefficients can be quantified according to the relative intensity of the frequency content of the signals, it is unnecessary to determine the fluences. A computational simulation reveals that the time-resolved frequency spectra exhibit better correlation with the coefficients than do power spectra calculated using a Fourier transformation. The CWT-based method was experimentally verified, and the coefficients were quantified with mean square error of 2.0 cm(-1).
Collapse
|
33
|
Bost W, Lemor R, Fournelle M. Comparison of the optoacoustic signal generation efficiency of different nanoparticular contrast agents. APPLIED OPTICS 2012. [PMID: 23207315 DOI: 10.1364/ao.51.008041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Optoacoustic imaging represents a new modality that allows noninvasive in vivo molecular imaging with optical contrast and acoustical resolution. Whereas structural or functional imaging applications such as imaging of vasculature do not require contrast enhancing agents, nanoprobes with defined biochemical binding behavior are needed for molecular imaging tasks. Since the contrast of this modality is based on the local optical absorption coefficient, all particle or molecule types that show significant absorption cross sections in the spectral range of the laser wavelength used for signal generation are suitable contrast agents. Currently, several particle types such as gold nanospheres, nanoshells, nanorods, or polymer particles are used as optoacoustic contrast agents. These particles have specific advantages with respect to their absorption properties, or in terms of biologically relevant features (biodegradability, binding to molecular markers). In the present study, a comparative analysis of the signal generation efficiency of gold nanorods, polymeric particles, and magnetite particles using a 1064 nm Nd:YAG laser for signal generation is described.
Collapse
Affiliation(s)
- Wolfgang Bost
- Fraunhofer Institut für Biomedizinische Technik (IBMT), Ensheimer Strasse 48, Sankt Ingbert D-66386, Germany.
| | | | | |
Collapse
|
34
|
Wang Y, Maslov K, Wang LV. Spectrally encoded photoacoustic microscopy using a digital mirror device. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:066020. [PMID: 22734776 PMCID: PMC3381037 DOI: 10.1117/1.jbo.17.6.066020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/16/2012] [Accepted: 05/11/2012] [Indexed: 05/19/2023]
Abstract
We have developed spectrally encoded photoacoustic microscopy using a digital mirror device for multi-wavelength tomography, which enables fast spectral imaging of optical absorption. The optical illumination wavelengths are multiplexed at a laser pulse repetition rate of ≈ 2 kHz. Liquid samples, whole blood, and blood vessels in mouse ears were imaged. Compared with internal wavelength tuning of a narrow-band laser, external wavelength tuning based on a digital mirror device improves the data acquisition speed of spectral photoacoustic microscopy. Compared with external wavelength scanning of a wide-band laser with the same pulse energy, spectral encoding improves the signal-to-noise ratio.
Collapse
Affiliation(s)
- Yu Wang
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, 1 Brookings Drive, St. Louis, Missouri 63130
| | - Konstantin Maslov
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, 1 Brookings Drive, St. Louis, Missouri 63130
| | - Lihong V. Wang
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, 1 Brookings Drive, St. Louis, Missouri 63130
- Address all correspondence to: Lihong V. Wang, Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, 1 Brookings Drive, St. Louis, Missouri 63130. E-mail:
| |
Collapse
|
35
|
Cox B, Laufer JG, Arridge SR, Beard PC. Quantitative spectroscopic photoacoustic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:061202. [PMID: 22734732 DOI: 10.1117/1.jbo.17.6.061202] [Citation(s) in RCA: 352] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Obtaining absolute chromophore concentrations from photoacoustic images obtained at multiple wavelengths is a nontrivial aspect of photoacoustic imaging but is essential for accurate functional and molecular imaging. This topic, known as quantitative photoacoustic imaging, is reviewed here. The inverse problems involved are described, their nature (nonlinear and ill-posed) is discussed, proposed solution techniques and their limitations are explained, and the remaining unsolved challenges are introduced.
Collapse
Affiliation(s)
- Ben Cox
- University College London, Department of Medical Physics and Bioengineering, Gower Street, London WC1E 6BT, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Saha RK, Karmakar S, Hysi E, Roy M, Kolios MC. Validity of a theoretical model to examine blood oxygenation dependent optoacoustics. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:055002. [PMID: 22612123 DOI: 10.1117/1.jbo.17.5.055002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A theoretical model investigating the dependence of optoacoustic (OA) signal on blood oxygen saturation (SO(2)) is discussed. The derivations for the nonbandlimited and bandlimited OA signals from many red blood cells (RBCs) are presented. The OA field generated by many RBCs was obtained by summing the OA field emitted by each RBC approximated as a fluid sphere. A Monte Carlo technique was employed generating the spatial organizations of RBCs in two-dimensional. The RBCs were assumed to have the same SO(2) level in a simulated configuration. The fractional number of oxyhemoglobin molecules, confined in a cell, determined the cellular SO(2) and also defined the blood SO(2). For the nonbandlimited case, the OA signal amplitude decreased and increased linearly with blood SO(2) when illuminated by 700 and 1000 nm radiations, respectively. The power spectra exhibited similar trends over the entire frequency range (MHz to GHz). For the bandlimited case, three acoustic receivers with 2, 10, and 50 MHz as the center frequencies were considered. The linear variations of the OA amplitude with blood SO(2) were also observed for each receiver at those laser sources. The good agreement between simulated and published experimental results validates the model qualitatively.
Collapse
Affiliation(s)
- Ratan K Saha
- Saha Institute of Nuclear Physics, Applied Material Science Division, 1/AF Bidhannagar, Kolkata 700 064, India.
| | | | | | | | | |
Collapse
|
37
|
Ke H, Erpelding TN, Jankovic L, Liu C, Wang LV. Performance characterization of an integrated ultrasound, photoacoustic, and thermoacoustic imaging system. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:056010. [PMID: 22612133 PMCID: PMC3381021 DOI: 10.1117/1.jbo.17.5.056010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We developed a novel trimodality system for human breast imaging by integrating photoacoustic (PA) and thermoacoustic (TA) imaging techniques into a modified commercial ultrasound scanner. Because light was delivered with an optical assembly placed within the microwave antenna, no mechanical switching between the microwave and laser sources was needed. Laser and microwave excitation pulses were interleaved to enable PA and TA data acquisition in parallel at a rate of 10 frames per second. A tube (7 mm inner diameter) filled with oxygenated bovine blood or 30 mM methylene blue dye was successfully detected in PA images in chicken breast tissue at depths of 6.6 and 8.4 cm, respectively, for the first time. The SNRs at these depths reached ∼24 and ∼15 dB, respectively, by averaging 200 signal acquisitions. Similarly, a tube (13 mm inner diameter) filled with saline solution (0.9%) at a depth of 4.4 cm in porcine fat tissue was successfully detected in TA images. The PA axial, lateral, and elevational resolutions were 640 μm, 720 μm, and 3.5 mm, respectively, suitable for breast cancer imaging. A PA noise-equivalent sensitivity to methylene blue solution of 260 nM was achieved in chicken tissue at a depth of 3.4 cm.
Collapse
Affiliation(s)
- Haixin Ke
- Washington University, Department of Biomedical Engineering, Optical Imaging Laboratory, St. Louis, Missouri
| | | | | | - Changjun Liu
- Washington University, Department of Biomedical Engineering, Optical Imaging Laboratory, St. Louis, Missouri
- Sichuan University, School of Electronics and Information Engineering, Chengdu, China
| | - Lihong V. Wang
- Washington University, Department of Biomedical Engineering, Optical Imaging Laboratory, St. Louis, Missouri
- Address all correspondence to: Lihong V. Wang, Washington University, Department of Biomedical Engineering, Optical Imaging Laboratory, St. Louis, Missouri. Tel.: +314 9356152; Fax: +314 9357448; E-mail:
| |
Collapse
|
38
|
Zhang HF, Puliafito CA, Jiao S. Photoacoustic ophthalmoscopy for in vivo retinal imaging: current status and prospects. Ophthalmic Surg Lasers Imaging Retina 2012; 42 Suppl:S106-15. [PMID: 21790106 DOI: 10.3928/15428877-20110627-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 03/24/2011] [Indexed: 11/20/2022]
Abstract
Photoacoustic ophthalmoscopy (PAOM) is a new retinal imaging technology that offers the unique capability to measure optical absorption in the retina. Because PAOM is compatible with optical coherence tomography, scanning laser ophthalmoscopy, and autofluorescence imaging, registered multimodal images can be acquired from a single device at comparable resolution for comprehensive anatomic and functional retinal characterizations. Therefore, PAOM is anticipated to have applications in both research and clinical diagnosis of many blinding diseases. The authors explain the basic principles of the photoacoustic effect and imaging. Then, different types of photoacoustic microscopy are introduced and compared. Finally, the current status of photoacoustic imaging in animal eyes is presented and the prospects of future development of PAOM are suggested.
Collapse
Affiliation(s)
- Hao F Zhang
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, 1450 San Pablo, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|
39
|
Pancholi K. A review of imaging methods for measuring drug release at nanometre scale: a case for drug delivery systems. Expert Opin Drug Deliv 2012; 9:203-18. [DOI: 10.1517/17425247.2011.648374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Kanawade R, Stelzle F, Schmidt M. In Vivo Monitoring of Hemodynamic Changes during Clogging and Unclogging of Blood Supply for the Application of Clinical Shock Detection. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.phpro.2012.10.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Li Z, Li H, Chen H, Xie W. In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:076011. [PMID: 21806272 DOI: 10.1117/1.3598314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The location and ischemia extent are two important parameters for evaluating the acute myocardial ischemia (AMI). A focused-transducer-based photoacoustic imaging method was employed to assess time-dependent AMI. Our preliminary results show that the photoacoustic signal could identify the myocardium. The intensity and area of photoacoustic images of myocardium could be used for characterizing the ischemia extent and scope of myocardial ischemia. The results also imply that the intensity and area of photoacoustic images are the rapid fall of an exponential model with an increase of delaying time after the left anterior descending coronary artery (LAD) occlusion. These experimental results were consistent with the clinical characteristics. The findings suggest that the photoacoustic imaging be a potential tool for the real-time assessment of acute myocardial ischemia during surgical operation.
Collapse
Affiliation(s)
- Zhifang Li
- Fujian Normal University, Institute of Laser and Optoeletronics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian 350007, China
| | | | | | | |
Collapse
|
42
|
Yao J, Maslov KI, Zhang Y, Xia Y, Wang LV. Label-free oxygen-metabolic photoacoustic microscopy in vivo. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:076003. [PMID: 21806264 PMCID: PMC3144973 DOI: 10.1117/1.3594786] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/12/2011] [Accepted: 05/05/2011] [Indexed: 05/18/2023]
Abstract
Almost all diseases, especially cancer and diabetes, manifest abnormal oxygen metabolism. Accurately measuring the metabolic rate of oxygen (MRO(2)) can be helpful for fundamental pathophysiological studies, and even early diagnosis and treatment of disease. Current techniques either lack high resolution or rely on exogenous contrast. Here, we propose label-free metabolic photoacoustic microscopy (mPAM) with small vessel resolution to noninvasively quantify MRO(2) in vivo in absolute units. mPAM is the unique modality for simultaneously imaging all five anatomical, chemical, and fluid-dynamic parameters required for such quantification: tissue volume, vessel cross-section, concentration of hemoglobin, oxygen saturation of hemoglobin, and blood flow speed. Hyperthermia, cryotherapy, melanoma, and glioblastoma were longitudinally imaged in vivo. Counterintuitively, increased MRO(2) does not necessarily cause hypoxia or increase oxygen extraction. In fact, early-stage cancer was found to be hyperoxic despite hypermetabolism.
Collapse
Affiliation(s)
- Junjie Yao
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
43
|
Liu T, Wei Q, Wang J, Jiao S, Zhang HF. Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen. BIOMEDICAL OPTICS EXPRESS 2011; 2:1359-65. [PMID: 21559147 PMCID: PMC3087592 DOI: 10.1364/boe.2.001359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/22/2011] [Indexed: 05/02/2023]
Abstract
We proposed to measure the metabolic rate of oxygen (MRO(2)) in small animals in vivo using a multimodal imaging system that combines laser-scanning optical-resolution photoacoustic microscopy (LSOR-PAM) and spectral-domain optical coherence tomography (SD-OCT). We first tested the capability of the multimodal system to measure flow rate in a phantom made of two capillary tubes of different diameters. We then demonstrated the capability of measuring MRO(2) by imaging two parallel vessels selected from the ear of a Swiss Webster mouse. The hemoglobin oxygen saturation (sO(2)) and the vessel diameter were measured by the LSOR-PAM and the blood flow velocity was measured by the SD-OCT, from which blood flow rate and MRO(2) were further calculated. The measured blood flow rates in the two vessels agreed with each other.
Collapse
Affiliation(s)
- Tan Liu
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208, USA
| | - Qing Wei
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208, USA
| | - Jing Wang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208, USA
| | - Shuliang Jiao
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208, USA
| |
Collapse
|
44
|
Kumavor PD, Xu C, Aguirre A, Gamelin J, Ardeshirpour Y, Tavakoli B, Zanganeh S, Alqasemi U, Yang Y, Zhu Q. Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:046010. [PMID: 21529079 PMCID: PMC3188979 DOI: 10.1117/1.3587643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a photoacoustic tomography-guided diffuse optical tomography approach using a hand-held probe for detection and characterization of deeply-seated targets embedded in a turbid medium. Diffuse optical tomography guided by coregistered ultrasound, MRI, and x ray has demonstrated a great clinical potential to overcome lesion location uncertainty and to improve light quantification accuracy. However, due to the different contrast mechanisms, some lesions may not be detectable by a nonoptical modality but yet have high optical contrast. Photoacoustic tomography utilizes a short-pulsed laser beam to diffusively penetrate into tissue. Upon absorption of the light by the target, photoacoustic waves are generated and used to reconstruct, at ultrasound resolution, the optical absorption distribution that reveals optical contrast. However, the robustness of optical property quantification of targets by photoacoustic tomography is complicated because of the wide range of ultrasound transducer sensitivity, the orientation and shape of the targets relative to the ultrasound array, and the uniformity of the laser beam. We show in this paper that the relative optical absorption map provided by photoacoustic tomography can potentially guide the diffuse optical tomography to accurately reconstruct target absorption maps.
Collapse
Affiliation(s)
- Patrick D Kumavor
- Electrical and Computer Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 2157, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kumavor PD, Xu C, Aguirre A, Gamelin J, Ardeshirpour Y, Tavakoli B, Zanganeh S, Alqasemi U, Yang Y, Zhu Q. Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:046010. [PMID: 21529079 PMCID: PMC3087425 DOI: 10.1117/1.3563534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/13/2011] [Accepted: 02/16/2011] [Indexed: 05/21/2023]
Abstract
We present a photoacoustic tomography-guided diffuse optical tomography approach using a hand-held probe for detection and characterization of deeply-seated targets embedded in a turbid medium. Diffuse optical tomography guided by coregistered ultrasound, MRI, and x ray has demonstrated a great clinical potential to overcome lesion location uncertainty and to improve light quantification accuracy. However, due to the different contrast mechanisms, some lesions may not be detectable by a nonoptical modality but yet have high optical contrast. Photoacoustic tomography utilizes a short-pulsed laser beam to diffusively penetrate into tissue. Upon absorption of the light by the target, photoacoustic waves are generated and used to reconstruct, at ultrasound resolution, the optical absorption distribution that reveals optical contrast. However, the robustness of optical property quantification of targets by photoacoustic tomography is complicated because of the wide range of ultrasound transducer sensitivity, the orientation and shape of the targets relative to the ultrasound array, and the uniformity of the laser beam. We show in this paper that the relative optical absorption map provided by photoacoustic tomography can potentially guide the diffuse optical tomography to accurately reconstruct target absorption maps.
Collapse
Affiliation(s)
- Patrick D Kumavor
- Electrical and Computer Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 2157, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
He JW, Kashyap D, Trevino LA, Liu H, Peng YB. Simultaneous absolute measures of glabrous skin hemodynamic and light-scattering change in response to formalin injection in rats. Neurosci Lett 2011; 492:59-63. [PMID: 21281696 DOI: 10.1016/j.neulet.2011.01.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/21/2011] [Accepted: 01/23/2011] [Indexed: 12/20/2022]
Abstract
Subcutaneous injection of formalin is a well-known model to study the nature of inflammatory pain. One of the cardinal signs of inflammation is redness, as a result of increased blood perfusion. We used an optical technology, light reflectance spectroscopy, to noninvasively obtain absolute measures of cutaneous hemodynamic components, including the concentrations of oxy- ([HbO]), deoxy- ([Hb]), total-hemoglobin ([HbT]), oxygen saturation (SO(2)), and the reduced light-scattering coefficient (μs'). The objective is to assess the effect of formalin-induced skin inflammation on the aforementioned parameters. Six rats were injected with formalin (50 μl, 3%) into left hind paw under pentobarbital anesthesia. Our results indicate prolonged increases in [HbO], [HbT], and SO(2) post injection only in the ipsilateral side. No statistically significant changes in [Hb] and μ(s)' occurred in either side. The arterial blood influx tends to be the major attribute of local hyperemia during inflammation. Thereby, [HbO] appears to be superior to [Hb] in measuring inflammation. In conclusion, the needle-probe-based light reflectance can be a feasible means to obtaining absolute measures of skin hemodynamic and light-scattering parameters when studying inflammatory pain.
Collapse
Affiliation(s)
- Ji-Wei He
- Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX 76019-0528, USA
| | | | | | | | | |
Collapse
|
47
|
Liu T, Wang J, Petrov GI, Yakovlev VV, Zhang HF. Photoacoustic generation by multiple picosecond pulse excitation. Med Phys 2010; 37:1518-21. [PMID: 20443472 DOI: 10.1118/1.3352666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this work is to demonstrate that higher amplitude of ultrashort laser induced photoacoustic signal can be achieved by multiple-pulse excitation when the temporal duration of the pulse train is less than the minimum of the medium's thermal relaxation time and stress relaxation time. Thus, improved signal-to-noise ratio can thus be attained through multiple-pulse excitation while minimizing the energy of each pulse. METHODS The authors used a Michelson interferometer together with a picoseconds laser system to introduce two 6 ps pulses separated by a controllable delay by introducing a path length difference between the two arms of the interferometer. The authors then employed a series of three interferometers to create a pulse train consisting of eight pulses. The average pulse energy was 11 nJ and the temporal span of the pulse train was less than 1 ns. RESULTS The detected peak-to-peak amplitude of the multiple-pulse induced photoacoustic waves were linearly dependent on the number of pulses in the pulse train and such a linearity held for different optical absorption coefficients. The signal-to-noise ratio improved when the number of pulses increased. Moreover, nonlinear effects were not detected and no photoacoustic saturation effect was observed. CONCLUSIONS The authors have shown that multiple-pulse excitation improves the signal-to-noise ratio through an accumulated energy deposition effect. This method is invaluable for photoacoustic measurements that require ultrashort laser pulses with minimized pulse energy to avoid laser damage.
Collapse
Affiliation(s)
- Tan Liu
- Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | | | | | |
Collapse
|
48
|
Wang J, Liu T, Jiao S, Chen R, Zhou Q, Shung KK, Wang LV, Zhang HF. Saturation effect in functional photoacoustic imaging. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:021317. [PMID: 20459239 PMCID: PMC3188629 DOI: 10.1117/1.3333549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 05/18/2023]
Abstract
We investigate the saturation effect, which describes the violation of the linearity between the measured photoacoustic amplitude and the object's optical absorption coefficient in functional photoacoustic imaging when the optical absorption in the object increases. We model the optical energy deposition and photoacoustic signal generation and detection in a semi-infinite optical absorbing object. Experiments are carried out by measuring photoacoustic signals generated from an ink-filled plastic tube. The saturation effect is studied by varying the optical absorption coefficient in the model and the ink concentration in the photoacoustic experiments. By changing the center frequency of the ultrasonic detector, the requirement to minimize the saturation effect in functional photoacoustic imaging is established.
Collapse
Affiliation(s)
- Jing Wang
- University of Wisconsin-Milwaukee, Department of Electrical Engineering and Computer Science, 3200 N Cramer Street, Milwaukee, Wisconsin 53201, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wankhede M, Agarwal N, Fraga-Silva RA, deDeugd C, Raizada MK, Oh SP, Sorg BS. Spectral imaging reveals microvessel physiology and function from anastomoses to thromboses. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:011111. [PMID: 20210437 PMCID: PMC2917463 DOI: 10.1117/1.3316299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/15/2009] [Accepted: 12/15/2009] [Indexed: 05/28/2023]
Abstract
Abnormal microvascular physiology and function is common in many diseases. Numerous pathologies include hypervascularity, aberrant angiogenesis, or abnormal vascular remodeling among the characteristic features of the disease, and quantitative imaging and measurement of microvessel function can be important to increase understanding of these diseases. Several optical techniques are useful for direct imaging of microvascular function. Spectral imaging is one such technique that can be used to assess microvascular oxygen transport function with high spatial and temporal resolution in microvessel networks through measurements of hemoglobin saturation. We highlight novel observation made with our intravital microscopy spectral imaging system employed with mouse dorsal skin-fold window chambers for imaging hemoglobin saturation in microvessel networks. Specifically, we image acute oxygenation fluctuations in a tumor microvessel network, the development of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia, and the formation of spontaneous and induced microvascular thromboses and occlusions.
Collapse
Affiliation(s)
- Mamta Wankhede
- University of Florida, College of Engineering, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, Florida 32611-6131, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Photoacoustics has been broadly studied in biomedicine, for both human and small animal tissues. Photoacoustics uniquely combines the absorption contrast of light or radio frequency waves with ultrasound resolution. Moreover, it is non-ionizing and non-invasive, and is the fastest growing new biomedical method, with clinical applications on the way. This review provides a brief recap of recent developments in photoacoustics in biomedicine, from basic principles to applications. The emphasized areas include the new imaging modalities, hybrid detection methods, photoacoustic contrast agents and the photoacoustic Doppler effect, as well as translational research topics.
Collapse
Affiliation(s)
- Changhui Li
- Optical Imaging Laboratory, Department of Biomedical Engineering Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|