1
|
Chu FY, Clavijo AS, Lee S, Zidovska A. Transcription-dependent mobility of single genes and genome-wide motions in live human cells. Nat Commun 2024; 15:8879. [PMID: 39438437 PMCID: PMC11496510 DOI: 10.1038/s41467-024-51149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/31/2024] [Indexed: 10/25/2024] Open
Abstract
The human genome is highly dynamic across all scales. At the gene level, chromatin is persistently remodeled and rearranged during active processes such as transcription, replication and DNA repair. At the genome level, chromatin moves in micron-scale domains that break up and re-form over seconds, but the origin of these coherent motions is unknown. Here, we investigate the connection between genomic motions and gene-level activity. Simultaneous mapping of single-gene and genome-wide motions shows that the coupling of gene transcriptional activity to flows of the nearby genome is modulated by chromatin compaction. A motion correlation analysis suggests that a single active gene drives larger-scale motions in low-compaction regions, but high-compaction chromatin drives gene motion regardless of its activity state. By revealing unexpected connections among gene activity, spatial heterogeneities of chromatin and its emergent genome-wide motions, these findings uncover aspects of the genome's spatiotemporal organization that directly impact gene regulation and expression.
Collapse
Affiliation(s)
- Fang-Yi Chu
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Alexis S Clavijo
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Suho Lee
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA.
| |
Collapse
|
2
|
Wilde S, Feneck EM, Mohun TJ, Logan MPO. 4D formation of human embryonic forelimb musculature. Development 2021; 148:dev.194746. [PMID: 33234713 PMCID: PMC7904005 DOI: 10.1242/dev.194746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
The size, shape and insertion sites of muscles enable them to carry out their precise functions in moving and supporting the skeleton. Although forelimb anatomy is well described, much less is known about the embryonic events that ensure individual muscles reach their mature form. A description of human forelimb muscle development is needed to understand the events that control normal muscle formation and to identify what events are disrupted in congenital abnormalities in which muscles fail to form normally. We provide a new, 4D anatomical characterisation of the developing human upper limb muscles between Carnegie stages 18 and 22 using optical projection tomography. We show that muscles develop in a progressive wave, from proximal to distal and from superficial to deep. We show that some muscle bundles undergo splitting events to form individual muscles, whereas others translocate to reach their correct position within the forelimb. Finally, we show that palmaris longus fails to form from early in development. Our study reveals the timings of, and suggests mechanisms for, crucial events that enable nascent muscle bundles to reach their mature form and position within the human forelimb. Summary: A detailed 4D anatomical description of the human upper limb musculature through embryonic development reveals important events that enable nascent muscle bundles to form correctly.
Collapse
Affiliation(s)
- Susan Wilde
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Eleanor M Feneck
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | - Malcolm P O Logan
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
3
|
Constraints to counting bioluminescence producing cells by a commonly used transgene promoter and its implications for experimental design. Sci Rep 2019; 9:11334. [PMID: 31383876 PMCID: PMC6683182 DOI: 10.1038/s41598-019-46916-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/02/2019] [Indexed: 01/15/2023] Open
Abstract
It is routine to genetically modify cells to express fluorescent or bioluminescent reporter proteins to enable tracking or quantification of cells in vitro and in vivo. Herein, we characterized the stability of luciferase reporter systems in C4-2B prostate cancer cells in mono-culture and in co-culture with bone marrow-derived mesenchymal stem/stromal cells (BMSC). An assumption made when employing the luciferase reporter is that the luciferase expressing cell number and bioluminescence signal are linearly proportional. We observed instances where luciferase expression was significantly upregulated in C4-2B cell populations when co-cultured with BMSC, resulting in a significant disconnect between bioluminescence signal and cell number. We subsequently characterized luciferase reporter stability in a second C4-2B reporter cell line, and six other cancer cell lines. All but the single C4-2B reporter cell population had stable luciferase reporter expression in mono-culture and BMSC co-culture. Whole-genome sequencing revealed that relative number of luciferase gene insertions per genome in the unstable C4-2B reporter cell population was lesser than stable C4-2B, PC3 and MD-MBA-231 luciferase reporter cell lines. We reasoned that the low luciferase gene copy number and genome insertion locations likely contributed to the reporter gene expression being exquisitely sensitive BMSC paracrine signals. In this study, we show that it is possible to generate a range of stable and reliable luciferase reporter prostate- and breast- cancer cell populations but advise not to assume stability across different culture conditions. Reporter stability should be validated, on a case-by-case basis, for each cell line and culture condition.
Collapse
|
4
|
Yu T, Qi Y, Gong H, Luo Q, Zhu D. Optical clearing for multiscale biological tissues. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 29024450 DOI: 10.1002/jbio.201700187] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/08/2017] [Indexed: 05/03/2023]
Abstract
Three-dimensional reconstruction of tissue structures is essential for biomedical research. The development of light microscopes and various fluorescent labeling techniques provides powerful tools for this motivation. However, optical imaging depth suffers from strong light scattering due to inherent heterogeneity of biological tissues. Tissue optical clearing technology provides a distinct solution and permits us to image large volumes with high resolution. Until now, various clearing methods have been developed. In this study, from the perspective of the end users, we review in vitro tissue optical clearing techniques based on the sample features in terms of size and age, enumerate the methods suitable for immunostaining and lipophilic dyes and summarize the combinations with various imaging techniques. We hope this review will be helpful for researchers to choose the most suitable clearing method from a variety of protocols to meet their specific needs.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yisong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Szabo M, Svensson Akusjärvi S, Saxena A, Liu J, Chandrasekar G, Kitambi SS. Cell and small animal models for phenotypic drug discovery. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1957-1967. [PMID: 28721015 PMCID: PMC5500539 DOI: 10.2147/dddt.s129447] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The phenotype-based drug discovery (PDD) approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s) or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery.
Collapse
Affiliation(s)
- Mihaly Szabo
- Department of Microbiology Tumor, and Cell Biology
| | | | - Ankur Saxena
- Department of Microbiology Tumor, and Cell Biology
| | - Jianping Liu
- Department of Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | | | | |
Collapse
|
6
|
Montoro R, Dickie R. Comparison of tissue processing methods for microvascular visualization in axolotls. MethodsX 2017; 4:265-273. [PMID: 28913170 PMCID: PMC5587881 DOI: 10.1016/j.mex.2017.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
The vascular system, the pipeline for oxygen and nutrient delivery to tissues, is essential for vertebrate development, growth, injury repair, and regeneration. With their capacity to regenerate entire appendages throughout their lifespan, axolotls are an unparalleled model for vertebrate regeneration, but they lack many of the molecular tools that facilitate vascular imaging in other animal models. The determination of vascular metrics requires high quality image data for the discrimination of vessels from background tissue. Quantification of the vasculature using perfused, cleared specimens is well-established in mammalian systems, but has not been widely employed in amphibians. The objective of this study was to optimize tissue preparation methods for the visualization of the microvascular network in axolotls, providing a basis for the quantification of regenerative angiogenesis. To accomplish this aim, we performed intracardiac perfusion of pigment-based contrast agents and evaluated aqueous and non-aqueous clearing techniques. The methods were verified by comparing the quality of the vascular images and the observable vascular density across treatment groups. Simple and inexpensive, these tissue processing techniques will be of use in studies assessing vascular growth and remodeling within the context of regeneration. Advantages of this method include: Higher contrast of the vasculature within the 3D context of the surrounding tissue
Enhanced detection of microvasculature facilitating vascular quantification
Compatibility with other labeling techniques
Collapse
|
7
|
Treweek JB, Gradinaru V. Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Curr Opin Biotechnol 2016; 40:193-207. [PMID: 27393829 DOI: 10.1016/j.copbio.2016.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
The scientific community has learned a great deal from imaging small and naturally transparent organisms such as nematodes and zebrafish. The consequences of genetic mutations on their organ development and survival can be visualized easily and with high-throughput at the organism-wide scale. In contrast, three-dimensional information is less accessible in mammalian subjects because the heterogeneity of light-scattering tissue elements renders their organs opaque. Likewise, genetically labeling desired circuits across mammalian bodies is prohibitively slow and costly via the transgenic route. Emerging breakthroughs in viral vector engineering, genome editing tools, and tissue clearing can render larger opaque organisms genetically tractable and transparent for whole-organ cell phenotyping, tract tracing and imaging at depth.
Collapse
Affiliation(s)
- Jennifer Brooke Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Vittori M, Breznik B, Gredar T, Hrovat K, Bizjak Mali L, Lah TT. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain. Radiol Oncol 2016; 50:159-67. [PMID: 27247548 PMCID: PMC4852964 DOI: 10.1515/raon-2016-0017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. MATERIALS AND METHODS We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. RESULTS By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. CONCLUSIONS This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors.
Collapse
Affiliation(s)
- Milos Vittori
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Tajda Gredar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Lilijana Bizjak Mali
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
9
|
Susaki E, Ueda H. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chem Biol 2016; 23:137-157. [DOI: 10.1016/j.chembiol.2015.11.009] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/29/2022]
|
10
|
Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, Lignell A, Xiao C, Cai L, Ladinsky MS, Bjorkman PJ, Fowlkes CC, Gradinaru V. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc 2015; 10:1860-1896. [PMID: 26492141 PMCID: PMC4917295 DOI: 10.1038/nprot.2015.122] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.
Collapse
Affiliation(s)
- Jennifer B Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ken Y Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nicholas C Flytzanis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Antti Lignell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Long Cai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Charless C Fowlkes
- Department of Computer Science, University of California, Irvine, California, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
11
|
Decroix L, Van Muylder V, Desender L, Sampaolesi M, Thorrez L. Tissue clearing for confocal imaging of native and bio-artificial skeletal muscle. Biotech Histochem 2015; 90:424-31. [PMID: 25893542 DOI: 10.3109/10520295.2015.1019564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel clearing techniques have revolutionized three-dimensional confocal imaging of the brain without the need for physical tissue sectioning. We evaluated three clearing methods, ScaleA2, Clear(T2), and 3DISCO for visualizing native and tissue engineered muscle by confocal microscopy. We found that Clear(T2) treatment improved the depth of visualization of immunohistochemical staining slightly, but did not improve depth of visualization of endogenous green fluorescent protein (GFP). ScaleA2 preserved endogenous GFP signal better and permitted significantly deeper GFP imaging, but it was incompatible with tropomyosin immunohistochemical staining. 3DISCO treatment preserved both endogenous GFP and immunohistochemical staining, and permitted significantly deeper imaging. Clearing time for the 3DISCO procedure is short compared to ScaleA2 and Clear(T2). We suggest that 3DISCO is the preferable clearing method for native and tissue engineered skeletal muscle tissue.
Collapse
Affiliation(s)
- L Decroix
- Tissue Engineering Lab, Department of Development and Regeneration , KU Leuven campus Kulak, Kortrijk
| | | | | | | | | |
Collapse
|
12
|
Aoyagi Y, Kawakami R, Osanai H, Hibi T, Nemoto T. A rapid optical clearing protocol using 2,2'-thiodiethanol for microscopic observation of fixed mouse brain. PLoS One 2015; 10:e0116280. [PMID: 25633541 PMCID: PMC4310605 DOI: 10.1371/journal.pone.0116280] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/06/2014] [Indexed: 12/16/2022] Open
Abstract
Elucidation of neural circuit functions requires visualization of the fine structure of neurons in the inner regions of thick brain specimens. However, the tissue penetration depth of laser scanning microscopy is limited by light scattering and/or absorption by the tissue. Recently, several optical clearing reagents have been proposed for visualization in fixed specimens. However, they require complicated protocols or long treatment times. Here we report the effects of 2,2'-thiodiethanol (TDE) solutions as an optical clearing reagent for fixed mouse brains expressing a yellow fluorescent protein. Immersion of fixed brains in TDE solutions rapidly (within 30 min in the case of 400-µm-thick fixed brain slices) increased their transparency and enhanced the penetration depth in both confocal and two-photon microscopy. In addition, we succeeded in visualizing dendritic spines along single dendrites at deep positions in fixed thick brain slices. These results suggest that our proposed protocol using TDE solution is a rapid and useful method for optical clearing of fixed specimens expressing fluorescent proteins.
Collapse
Affiliation(s)
- Yuka Aoyagi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryosuke Kawakami
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hisayuki Osanai
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Terumasa Hibi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
13
|
Abstract
Rhodopsin is a cilia-specific GPCR essential for vision. Rhodopsin mislocalization is associated with blinding diseases called retinal ciliopathies. The mechanism by which rhodopsin mislocalizes in rod photoreceptor neurons is not well understood. Therefore, we investigated the roles of trafficking signals in rhodopsin mislocalization. Rhodopsin and its truncation mutants were fused to a photoconvertible fluorescent protein, Dendra2, and expressed in Xenopus laevis rod photoreceptors. Photoconversion of Dendra2 causes a color change from green to red, enabling visualization of the dynamic events associated with rhodopsin trafficking and renewal. We found that rhodopsin mislocalization is a facilitated process for which a signal located within 322-326 aa (CCGKN) is essential. An additional signal within 327-336 aa further facilitated the mislocalization. This collective mistrafficking signal confers toxicity to rhodopsin and causes mislocalization when the VXPX cilia-targeting motif is absent. We also determined that the VXPX motif neutralizes this mistrafficking signal, enhances ciliary targeting at least 10-fold, and accelerates trafficking of post-Golgi vesicular structures. In the absence of the VXPX motif, mislocalized rhodopsin is actively cleared through secretion of vesicles into the extracellular milieu. Therefore, this study unveiled the multiple roles of trafficking signals in rhodopsin localization and renewal.
Collapse
|
14
|
Parra SG, Vesuna SS, Murray TA, Levene MJ. Multiphoton microscopy of cleared mouse brain expressing YFP. J Vis Exp 2012:e3848. [PMID: 23023035 DOI: 10.3791/3848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Multiphoton microscopy of intrinsic fluorescence and second harmonic generation (SHG) of whole mouse organs is made possible by optically clearing the organ before imaging.(1,2) However, for organs that contain fluorescent proteins such as GFP and YFP, optical clearing protocols that use methanol dehydration and clear using benzyl alcohol:benzyl benzoate (BABB) while unprotected from light(3) do not preserve the fluorescent signal. The protocol presented here is a novel way in which to perform whole organ optical clearing on mouse brain while preserving the fluorescence signal of YFP expressed in neurons. Altering the optical clearing protocol such that the organ is dehydrated using an ethanol graded series has been found to reduce the damage to the fluorescent proteins and preserve their fluorescent signal for multiphoton imaging.(4) Using an optimized method of optical clearing with ethanol-based dehydration and clearing by BABB while shielded from light, we show high-resolution multiphoton images of yellow fluorescent protein (YFP) expression in the neurons of a mouse brain more than 2 mm beneath the tissue surface.
Collapse
Affiliation(s)
- Sonia G Parra
- Department of Biomedical Engineering, Yale University, CT, USA
| | | | | | | |
Collapse
|
15
|
Wilson JW, Samineni P, Warren WS, Fischer MC. Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope. BIOMEDICAL OPTICS EXPRESS 2012; 3:854-62. [PMID: 22567580 PMCID: PMC3342192 DOI: 10.1364/boe.3.000854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/01/2012] [Accepted: 04/03/2012] [Indexed: 05/18/2023]
Abstract
Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context.
Collapse
Affiliation(s)
- Jesse W. Wilson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Prathyush Samineni
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Martin C. Fischer
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
16
|
Abstract
The number of applications using optical tomography has significantly increased over the past decade. A literature research providing this term as keyword gives 26 hits for 1990, 719 for 2000, and 9,202 for 2010. With an increasing number of applications, the number of different imaging modalities is also increasing. This review summarizes recent developments in tomographic methods for scattering and nonscattering samples. These two different cases of optical tomography are typically represented by biomedical imaging and atmospheric tomography, representing high- and low-scattering samples, respectively. An essential prerequisite for tomographic analyses is an understanding of light propagation in different media, which allows for the development of specific reconstruction algorithms for the different tomographic tasks.
Collapse
Affiliation(s)
- Christoph Haisch
- Institute of Hydrochemistry, Technische Universität München, D-81377 Munich, Germany.
| |
Collapse
|
17
|
McGinty J, Taylor HB, Chen L, Bugeon L, Lamb JR, Dallman MJ, French PMW. In vivo fluorescence lifetime optical projection tomography. BIOMEDICAL OPTICS EXPRESS 2011; 2:1340-50. [PMID: 21559145 PMCID: PMC3087590 DOI: 10.1364/boe.2.001340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/21/2011] [Accepted: 04/21/2011] [Indexed: 05/21/2023]
Abstract
We demonstrate the application of fluorescence lifetime optical projection tomography (FLIM-OPT) to in vivo imaging of lysC:GFP transgenic zebrafish embryos (Danio rerio). This method has been applied to unambiguously distinguish between the fluorescent protein (GFP) signal in myeloid cells from background autofluorescence based on the fluorescence lifetime. The combination of FLIM, an inherently ratiometric method, in conjunction with OPT results in a quantitative 3-D tomographic technique that could be used as a robust method for in vivo biological and pharmaceutical research, for example as a readout of Förster resonance energy transfer based interactions.
Collapse
Affiliation(s)
- James McGinty
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ, UK
| | - Harriet B. Taylor
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Lingling Chen
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ, UK
| | - Laurence Bugeon
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Jonathan R. Lamb
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Margaret J. Dallman
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
- Centre for Integrative Systems Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Paul M. W. French
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
18
|
Kumar S, Alibhai D, Margineanu A, Laine R, Kennedy G, McGinty J, Warren S, Kelly D, Alexandrov Y, Munro I, Talbot C, Stuckey DW, Kimberly C, Viellerobe B, Lacombe F, Lam EWF, Taylor H, Dallman MJ, Stamp G, Murray EJ, Stuhmeier F, Sardini A, Katan M, Elson DS, Neil MAA, Dunsby C, French PMW. FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ. Chemphyschem 2011; 12:609-26. [PMID: 21337485 PMCID: PMC3084521 DOI: 10.1002/cphc.201000874] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/07/2010] [Indexed: 11/10/2022]
Abstract
A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy. For cell-based assays, an exemplar application reading out protein aggregation using FLIM FRET is presented, and the potential for multiple simultaneous FLIM (FRET) readouts in microscopy is illustrated.
Collapse
Affiliation(s)
- Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Miao Q, Hayenga J, Meyer MG, Neumann T, Nelson AC, Seibel EJ. Resolution improvement in optical projection tomography by the focal scanning method. OPTICS LETTERS 2010; 35:3363-5. [PMID: 20967067 DOI: 10.1364/ol.35.003363] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Optical projection tomography (OPT) requires the depth of field (DOF) of the lens to cover at least half of the sample. There is a trade-off between obtaining high resolution with a high-NA lens and obtaining large DOF with a low-NA lens. The DOF of a high-NA objective lens can be extended by scanning its focal plane through the sample. We call this extended DOF image a "pseudoprojection." Images reconstructed from these pseudoprojections have isometric resolution, which can be the same as the lateral resolution of the high-NA objective. The focal scanning method produces an over 10× improvement in OPT resolution.
Collapse
Affiliation(s)
- Qin Miao
- Department of Bioengineering, University of Washington, 1705 Northeast Pacific Street, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Wen X, Tuchin VV, Luo Q, Zhu D. Controling the scattering of intralipid by using optical clearing agents. Phys Med Biol 2009; 54:6917-30. [PMID: 19887711 DOI: 10.1088/0031-9155/54/22/011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Optical clearing agents (OCAs) with high refractive indices and hyperosmolarity can enhance the penetration of light in tissues by reducing scattering in tissues. However, the mechanism of tissue optical clearing is not much clear for the complex interaction between tissues and OCAs. In this work, Intralipid was mixed with different concentrations of OCAs, i.e. dimethyl sulfoxide (DMSO), glycerol, 1,4-butanediol, 1,2-propanediol, poly-ethylene glycol 200 (PEG200) and poly-ethylene glycol 400 (PEG400). Except for PEG200 and PEG400 that make aggregation of particles, the others kept the mixture uniform. The reduced scattering coefficients of uniform mixtures were predicted with Mie theory and measured by a commercially available spectrophotometer with an integrating sphere. The results show that all of the OCAs used enhance the optical clearing effect of Intralipid. If OCAs do not change the structure of Intralipid, Mie theory prediction matches well with the measurements. And the higher the refractive index of OCA, the smaller the reduced scattering coefficient. A simple formula deduced can quantitatively predict the optical clearing effect caused by OCAs. This work is helpful for clarifying the mechanism of tissue optical clearing, which will make the effect of optical clearing of tissue predictable and controllable.
Collapse
Affiliation(s)
- Xiang Wen
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology Wuhan People's Republic of China
| | | | | | | |
Collapse
|
21
|
Bui AK, McClure RA, Chang J, Stoianovici C, Hirshburg J, Yeh AT, Choi B. Revisiting optical clearing with dimethyl sulfoxide (DMSO). Lasers Surg Med 2009; 41:142-8. [PMID: 19226579 DOI: 10.1002/lsm.20742] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Functional optical characterization of disease progression and response to therapy suffers from loss of spatial resolution and imaging depth due to scattering. Here we report on the ability of dimethyl sulfoxide (DMSO) alone to reduce the optical scattering of skin. We observed a threefold reduction in the scattering of skin with topical DMSO application. With an in vivo window chamber model, we observed a threefold increase in light transmittance through the preparation and enhanced visualization of subsurface microvasculature. Collectively, our data demonstrate the potential of DMSO alone to mitigate effects of scattering, which we expect will improve molecular imaging studies.
Collapse
Affiliation(s)
- Albert K Bui
- School of Biological Sciences, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Tseng SJ, Lee YH, Chen ZH, Lin HH, Lin CY, Tang SC. Integration of optical clearing and optical sectioning microscopy for three-dimensional imaging of natural biomaterial scaffolds in thin sections. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:044004. [PMID: 19725716 DOI: 10.1117/1.3158998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The intrinsic turbidity of scaffolds formed by natural biomaterials such as collagen fibers prevents high-resolution light microscopy in depth. In this research, we have developed a new method of using light microscopy for penetrative three-dimensional (3-D) visualization of scaffolds formed by collagen, chitosan, or cellulose. First, we applied an optical-clearing solution, FocusClear, to permeate and reduce the turbidity of the scaffolds. The improved photon penetration allowed fluorophores for efficient excitation and emission in the FocusClear solution. Confocal microscopy was applied to achieve cellular-level resolution up to 350 microm for both the fibroblast/collagen and the osteoblast/chitosan constructs and micrometer-level resolution up to 40 microm for the cellulose membrane. The depth of imaging of the cellulose membrane was further improved to 80 microm using two-photon microscopy. Significantly, these voxel-based confocal/two-photon micrographs allowed postrecording image processing via Amira projection algorithms for 3-D visualization and analysis of the scanned region. Although this optical method remains limited in viewing block scaffolds in thin sections, our approach provides a noninvasive way to microscopically examine the scaffold structure, which would be a valuable tool to studying biomaterials and their interactions with the molecule/cell of interest within the scaffold in an integrated fashion.
Collapse
Affiliation(s)
- S-Ja Tseng
- National Tsing Hua University, Department of Chemical Engineering, 101 Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Doran SJ. The history and principles of optical computed tomography for scanning 3-D radiation dosimeters: 2008 update. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1742-6596/164/1/012020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Smith RM, Matiukas A, Zemlin CW, Pertsov AM. Nondestructive optical determination of fiber organization in intact myocardial wall. Microsc Res Tech 2009; 71:510-6. [PMID: 18393296 DOI: 10.1002/jemt.20579] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mapping the myocardial fiber organization is important for assessing the electrical and mechanical properties of normal and diseased hearts. Current methods to determine the fiber organization have several limitations: histological sectioning mechanically distorts the tissue and is labor-intensive, while diffusion tensor imaging has low spatial resolution and requires expensive MRI scanners. Here, we utilized optical clearing, a fluorescent dye, and confocal microscopy to create three-dimensional reconstructions of the myocardial fiber organization of guinea pig and mouse hearts. We have optimized the staining and clearing procedure to allow for the nondestructive imaging of whole hearts with a thickness up to 3.5 mm. Myocardial fibers could clearly be identified at all depths in all preparations. We determined the change of fiber orientation across strips of guinea pig left ventricular wall. Our study confirms the qualitative result that there is a steady counterclockwise fiber rotation across the ventricular wall. Quantitatively, we found a total fiber rotation of 105.7+/-14.9 degrees (mean+/-standard error of the mean); this value lies within the range reported by previous studies. These results show that optical clearing, in combination with a fluorescent dye and confocal microscopy, is a practical and accurate method for determining myocardial fiber organization.
Collapse
Affiliation(s)
- Rebecca M Smith
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
25
|
Abstract
The complete connectional map (connectome) of a neural circuit is essential for understanding its structure and function. Such maps have only been obtained in Caenorhabditis elegans. As an attempt at solving mammalian circuits, we reconstructed the connectomes of six interscutularis muscles from adult transgenic mice expressing fluorescent proteins in all motor axons. The reconstruction revealed several organizational principles of the neuromuscular circuit. First, the connectomes demonstrate the anatomical basis of the graded tensions in the size principle. Second, they reveal a robust quantitative relationship between axonal caliber, length, and synapse number. Third, they permit a direct comparison of the same neuron on the left and right sides of the same vertebrate animal, and reveal significant structural variations among such neurons, which contrast with the stereotypy of identified neurons in invertebrates. Finally, the wiring length of axons is often longer than necessary, contrary to the widely held view that neural wiring length should be minimized. These results show that mammalian muscle function is implemented with a variety of wiring diagrams that share certain global features but differ substantially in anatomical form. This variability may arise from the dominant role of synaptic competition in establishing the final circuit. Conventionally, the organization of a neural circuit is studied by sparsely labeling its constituent neurons and pooling data from multiple samples. If significant variation exists among circuits, this approach may not answer how each neuron integrates into the circuit's functional organization. An alternative is to solve the complete wiring diagram (connectome) of each instantiation of the circuit, which would enable the identification and characterization of each neuron and its relationship with all others. We obtained six connectomes from the same muscle in adult transgenic mice expressing fluorescent protein in motor axons. Certain quantitative features were found to be common to each connectome, but the branching structure of each axon was unique, including the left and right copies of the same neuron in the same animal. We also found that axonal arbor length is often not minimized, contrary to expectation. Thus mammalian muscle function is implemented with a variety of wiring diagrams that share certain global features but differ substantially in anatomical form, even within a common genetic background. Reconstruction of the complete set of motor axons innervating a muscle reveals wiring variability, even among corresponding neurons on the left and right sides of the same animal.
Collapse
|
26
|
Kim E, Bowsher J, Thomas AS, Sakhalkar H, Dewhirst M, Oldham M. Improving the quantitative accuracy of optical-emission computed tomography by incorporating an attenuation correction: application to HIF1 imaging. Phys Med Biol 2008; 53:5371-83. [PMID: 18765891 DOI: 10.1088/0031-9155/53/19/007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared approximately 24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within approximately 4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and revealed highly inhomogeneous vasculature perfusion within the tumour. Optical-ECT emission images yielded high-resolution 3D images of the fluorescent protein distribution in the tumour. Attenuation-uncorrected optical-ECT images showed clear loss of signal in regions of high attenuation, including regions of high perfusion, where attenuation is increased by increased vascular ink stain. Application of attenuation correction showed significant changes in an apparent expression of fluorescent proteins, confirming the importance of the attenuation correction. In conclusion, this work presents the first development and application of an attenuation correction for optical-ECT imaging. The results suggest that successful attenuation correction for optical-ECT is feasible and is essential for quantitatively accurate optical-ECT imaging.
Collapse
Affiliation(s)
- E Kim
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
27
|
Oldham M, Sakhalkar H, Oliver T, Allan Johnson G, Dewhirst M. Optical clearing of unsectioned specimens for three-dimensional imaging via optical transmission and emission tomography. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:021113. [PMID: 18465962 PMCID: PMC2746042 DOI: 10.1117/1.2907968] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical computed tomography (optical-CT) and optical emission computed tomography (optical-ECT) are new techniques that enable unprecedented high-resolution 3-D multimodal imaging of tissue structure and function. Applications include imaging macroscopic gene expression and microvasculature structure in unsectioned biological specimens up to 8 cm(3). A key requisite for these imaging techniques is effective sample preparation including optical clearing, which enables light transport through the sample while preserving the signal (either light absorbing stain or fluorescent proteins) in representative form. We review recent developments in optical-CT and optical-ECT, and compatible "fluorescence-friendly" optical clearing protocols.
Collapse
Affiliation(s)
- Mark Oldham
- Duke University Medical Center, Department of Radiation Oncology, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|