1
|
Ko M, Yang K, Ahn YC, Ju SG, Oh D, Kim YB, Kwon DY, Park S, Lee K. Dosimetric Comparison and Selection Criteria of Intensity-Modulated Proton Therapy and Intensity-Modulated Radiation Therapy for Adaptive Re-Plan in T3-4 Nasopharynx Cancer Patients. Cancers (Basel) 2024; 16:3402. [PMID: 39410022 PMCID: PMC11476283 DOI: 10.3390/cancers16193402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Proton therapy requires caution when treating patients with targets near neural structures. Intuitive and quantitative guidelines are needed to support decision-making concerning the treatment modality. This study compared dosimetric profiles of intensity-modulated proton therapy (IMPT) and intensity-modulated radiation therapy (IMRT) using helical tomotherapy (HT) for adaptive re-planning in cT3-4 nasopharyngeal cancer (NPCa) patients, aiming to establish criteria for selecting appropriate treatment modalities. METHODS HT and IMPT plans were generated for 28 cT3-4 NPCa patients undergoing definitive radiotherapy. Dosimetric comparisons were performed for target coverage and high-priority organs at risk (OARs). The correlation between dosimetric parameters and RT modality selection was analyzed with the target OAR distances. RESULTS Target coverages were similar, while IMPT achieved better dose spillage. HT was more favorable for brainstem D1, optic chiasm Dmax, optic nerves Dmax, and p-cord D1. IMPT showed advantages for oral cavity Dmean. Actually, 14 IMPT and 14 HT plans were selected as adaptive plans, with IMPT allocated to most cT3 patients (92.9% vs. 42.9%, p = 0.013). The shortest distances from the target to neural structures were negatively correlated with OAR doses. Receiver operating characteristic curve analyses were carried out to discover the optimal cut-off values of the shortest distances between the target and the OARs (temporal lobes and brainstem), which were 0.75 cm (AUC = 0.908, specificity = 1.00) and 0.85 cm (AUC = 0.857, specificity = 0.929), respectively. CONCLUSIONS NPCa patients with cT4 tumor or with the shortest distance between the target and critical neural structures < 0.8 cm were suboptimal candidates for IMPT adaptive re-planning. These criteria may improve resource utilization and clinical outcomes.
Collapse
Affiliation(s)
- Mincheol Ko
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea; (M.K.); (K.Y.); (D.O.); (D.Y.K.); (S.P.)
- Department of Bio-Convergence Engineering, Korea University, Seoul 02841, Republic of Korea;
| | - Kyungmi Yang
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea; (M.K.); (K.Y.); (D.O.); (D.Y.K.); (S.P.)
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea; (M.K.); (K.Y.); (D.O.); (D.Y.K.); (S.P.)
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea;
| | - Sang Gyu Ju
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea; (M.K.); (K.Y.); (D.O.); (D.Y.K.); (S.P.)
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea; (M.K.); (K.Y.); (D.O.); (D.Y.K.); (S.P.)
| | - Yeong-bi Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea;
| | - Dong Yeol Kwon
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea; (M.K.); (K.Y.); (D.O.); (D.Y.K.); (S.P.)
| | - Seyjoon Park
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea; (M.K.); (K.Y.); (D.O.); (D.Y.K.); (S.P.)
| | - Kisung Lee
- Department of Bio-Convergence Engineering, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
2
|
Mein S, Wuyckens S, Li X, Both S, Carabe A, Vera MC, Engwall E, Francesco F, Graeff C, Gu W, Hong L, Inaniwa T, Janssens G, de Jong B, Li T, Liang X, Liu G, Lomax A, Mackie T, Mairani A, Mazal A, Nesteruk KP, Paganetti H, Pérez Moreno JM, Schreuder N, Soukup M, Tanaka S, Tessonnier T, Volz L, Zhao L, Ding X. Particle arc therapy: Status and potential. Radiother Oncol 2024; 199:110434. [PMID: 39009306 DOI: 10.1016/j.radonc.2024.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation. In this work, perspectives from the European Society for Radiotherapy and Oncology (ESTRO) 2022 physics workshop on particle arc therapy are reported. This outlook provides an outline and prospective vision for the path forward to clinically deliverable proton, carbon, and other ion arc treatments. Through the collaboration among industry, academic, and clinical research and development, the scientific landscape and outlook for particle arc therapy are presented here to help our community understand the physics, radiobiology, and clinical principles. The work is presented in three main sections: (i) treatment planning, (ii) treatment delivery, and (iii) clinical outlook.
Collapse
Affiliation(s)
- Stewart Mein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sophie Wuyckens
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Macarena Chocan Vera
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | | | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Hong
- Ion Beam Applications SA, Louvain-la-Neuve, Belgium
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | | | - Bas de Jong
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Antony Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; ETH, Department of Physics, Zürich, Switzerland
| | - Thomas Mackie
- Department of Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | - Konrad P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | | | | | | | - Sodai Tanaka
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Lewei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA.
| |
Collapse
|
3
|
Gomà C, Henkner K, Jäkel O, Lorentini S, Magro G, Mirandola A, Placidi L, Togno M, Vidal M, Vilches-Freixas G, Wulff J, Safai S. ESTRO-EPTN radiation dosimetry guidelines for the acquisition of proton pencil beam modelling data. Phys Imaging Radiat Oncol 2024; 31:100621. [PMID: 39220113 PMCID: PMC11364130 DOI: 10.1016/j.phro.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Proton therapy (PT) is an advancing radiotherapy modality increasingly integrated into clinical settings, transitioning from research facilities to hospital environments. A critical aspect of the commissioning of a proton pencil beam scanning delivery system is the acquisition of experimental beam data for accurate beam modelling within the treatment planning system (TPS). These guidelines describe in detail the acquisition of proton pencil beam modelling data. First, it outlines the intrinsic characteristics of a proton pencil beam-energy distribution, angular-spatial distribution and particle number. Then, it lists the input data typically requested by TPSs. Finally, it describes in detail the set of experimental measurements recommended for the acquisition of proton pencil beam modelling data-integrated depth-dose curves, spot maps in air, and reference dosimetry. The rigorous characterization of these beam parameters is essential for ensuring the safe and precise delivery of proton therapy treatments.
Collapse
Affiliation(s)
- Carles Gomà
- Institute of Cancer and Blood Diseases, Hospital Clínic Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Catalan Health Service, Barcelona, Spain
| | - Katrin Henkner
- Heidelberg Ion Beam Therapy Center at the Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center at the Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefano Lorentini
- Medical Physics Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Giuseppe Magro
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Marie Vidal
- Institut Méditerranéen de Protonthérapie - Centre Antoine Lacassagne, Nice, France
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- University Hospital Essen, Essen, Germany
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
4
|
Simard M, Robertson DG, Fullarton R, Royle G, Beddar S, Collins-Fekete CA. Integrated-mode proton radiography with 2D lateral projections. Phys Med Biol 2024; 69:054001. [PMID: 38241716 DOI: 10.1088/1361-6560/ad209d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Integrated-mode proton radiography leading to water equivalent thickness (WET) maps is an avenue of interest for motion management, patient positioning, andin vivorange verification. Radiographs can be obtained using a pencil beam scanning setup with a large 3D monolithic scintillator coupled with optical cameras. Established reconstruction methods either (1) involve a camera at the distal end of the scintillator, or (2) use a lateral view camera as a range telescope. Both approaches lead to limited image quality. The purpose of this work is to propose a third, novel reconstruction framework that exploits the 2D information provided by two lateral view cameras, to improve image quality achievable using lateral views. The three methods are first compared in a simulated Geant4 Monte Carlo framework using an extended cardiac torso (XCAT) phantom and a slanted edge. The proposed method with 2D lateral views is also compared with the range telescope approach using experimental data acquired with a plastic volumetric scintillator. Scanned phantoms include a Las Vegas (contrast), 9 tissue-substitute inserts (WET accuracy), and a paediatric head phantom. Resolution increases from 0.24 (distal) to 0.33 lp mm-1(proposed method) on the simulated slanted edge phantom, and the mean absolute error on WET maps of the XCAT phantom is reduced from 3.4 to 2.7 mm with the same methods. Experimental data from the proposed 2D lateral views indicate a 36% increase in contrast relative to the range telescope method. High WET accuracy is obtained, with a mean absolute error of 0.4 mm over 9 inserts. Results are presented for various pencil beam spacing ranging from 2 to 6 mm. This work illustrates that high quality proton radiographs can be obtained with clinical beam settings and the proposed reconstruction framework with 2D lateral views, with potential applications in adaptive proton therapy.
Collapse
Affiliation(s)
- Mikaël Simard
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Daniel G Robertson
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic Arizona, 5881 E Mayo Blvd, Phoenix, AZ, United States of America
| | - Ryan Fullarton
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sam Beddar
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | | |
Collapse
|
5
|
Geoghegan T, Patwardhan K, Ying Q, Nelson N, Yu J, Gutierrez A, Hill P, Flynn R, Hyer D. Design, testing and characterization of a proton central axis alignment device for the dynamic collimation system. Biomed Phys Eng Express 2023; 9:10.1088/2057-1976/acdad5. [PMID: 37267924 PMCID: PMC10330655 DOI: 10.1088/2057-1976/acdad5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
Objective. Proton therapy conformity has improved over the years by evolving from passive scattering to spot scanning delivery technologies with smaller proton beam spot sizes. Ancillary collimation devices, such the Dynamic Collimation System (DCS), further improves high dose conformity by sharpening the lateral penumbra. However, as spot sizes are reduced, collimator positional errors play a significant impact on the dose distributions and hence accurate collimator to radiation field alignment is critical.Approach. The purpose of this work was to develop a system to align and verify coincidence between the center of the DCS and the proton beam central axis. The Central Axis Alignment Device (CAAD) is composed of a camera and scintillating screen-based beam characterization system. Within a light-tight box, a 12.3-megapixel camera monitors a P43/Gadox scintillating screen via a 45° first-surface mirror. When a collimator trimmer of the DCS is placed in the uncalibrated center of the field, the proton radiation beam continuously scans a 7×7 cm2square field across the scintillator and collimator trimmer while a 7 s exposure is acquired. From the relative positioning of the trimmer to the radiation field, the true center of the radiation field can be calculated.Main results.The CAAD can calculate the offset between the proton beam radiation central axis and the DCS central axis within 0.054 mm accuracy and 0.075 mm reproducibility.Significance.Using the CAAD, the DCS is now able to be aligned accurately to the proton radiation beam central axis and no longer relies on an x-ray source in the gantry head which is only validated to within 1.0 mm of the proton beam.
Collapse
Affiliation(s)
- Theodore Geoghegan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Kaustubh Patwardhan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Qi Ying
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Nicholas Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, United States of America
| | - Jen Yu
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, United States of America
| | - Alonso Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, United States of America
| | - Patrick Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, United States of America
| | - Ryan Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Daniel Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| |
Collapse
|
6
|
Hrinivich WT, Li H, Tran A, Acharya S, Ladra MM, Sheikh K. Clinical Characterization of a Table Mounted Range Shifter Board for Synchrotron-Based Intensity Modulated Proton Therapy for Pediatric Craniospinal Irradiation. Cancers (Basel) 2023; 15:cancers15112882. [PMID: 37296845 DOI: 10.3390/cancers15112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Purpose: To report our design, manufacturing, commissioning and initial clinical experience with a table-mounted range shifter board (RSB) intended to replace the machine-mounted range shifter (MRS) in a synchrotron-based pencil beam scanning (PBS) system to reduce penumbra and normal tissue dose for image-guided pediatric craniospinal irradiation (CSI). Methods: A custom RSB was designed and manufactured from a 3.5 cm thick slab of polymethyl methacrylate (PMMA) to be placed directly under patients, on top of our existing couch top. The relative linear stopping power (RLSP) of the RSB was measured using a multi-layer ionization chamber, and output constancy was measured using an ion chamber. End-to-end tests were performed using the MRS and RSB approaches using an anthropomorphic phantom and radiochromic film measurements. Cone beam CT (CBCT) and 2D planar kV X-ray image quality were compared with and without the RSB present using image quality phantoms. CSI plans were produced using MRS and RSB approaches for two retrospective pediatric patients, and the resultant normal tissue doses were compared. Results: The RLSP of the RSB was found to be 1.163 and provided computed penumbra of 6.9 mm in the phantom compared to 11.8 mm using the MRS. Phantom measurements using the RSB demonstrated errors in output constancy, range, and penumbra of 0.3%, -0.8%, and 0.6 mm, respectively. The RSB reduced mean kidney and lung dose compared to the MRS by 57.7% and 46.3%, respectively. The RSB decreased mean CBCT image intensities by 86.8 HU but did not significantly impact CBCT or kV spatial resolution providing acceptable image quality for patient setup. Conclusions: A custom RSB for pediatric proton CSI was designed, manufactured, modeled in our TPS, and found to significantly reduce lateral proton beam penumbra compared to a standard MRS while maintaining CBCT and kV image-quality and is in routine use at our center.
Collapse
Affiliation(s)
- William T Hrinivich
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Anh Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Sahaja Acharya
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Matthew M Ladra
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Khadija Sheikh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| |
Collapse
|
7
|
Nabha R, De Saint-Hubert M, Marichal J, Esser J, Van Hoey O, Bäumer C, Verbeek N, Struelens L, Sterpin E, Tabury K, Marek L, Granja C, Timmermann B, Vanhavere F. Biophysical characterization of collimated and uncollimated fields in pencil beam scanning proton therapy. Phys Med Biol 2023; 68. [PMID: 36821866 DOI: 10.1088/1361-6560/acbe8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Objective. The lateral dose fall-off in proton pencil beam scanning (PBS) technique remains the preferred choice for sparing adjacent organs at risk as opposed to the distal edge due to the proton range uncertainties and potentially high relative biological effectiveness. However, because of the substantial spot size along with the scattering in the air and in the patient, the lateral penumbra in PBS can be degraded. Combining PBS with an aperture can result in a sharper dose fall-off, particularly for shallow targets.Approach. The aim of this work was to characterize the radiation fields produced by collimated and uncollimated 100 and 140 MeV proton beams, using Monte Carlo simulations and measurements with a MiniPIX-Timepix detector. The dose and the linear energy transfer (LET) were then coupled with publishedin silicobiophysical models to elucidate the potential biological effects of collimated and uncollimated fields.Main results. Combining an aperture with PBS reduced the absorbed dose in the lateral fall-off and out-of-field by 60%. However, the results also showed that the absolute frequency-averaged LET (LETF) values increased by a maximum of 3.5 keVμm-1in collimated relative to uncollimated fields, while the dose-averaged LET (LETD) increased by a maximum of 7 keVμm-1. Despite the higher LET values produced by collimated fields, the predicted DNA damage yields remained lower, owing to the large dose reduction.Significance. This work demonstrated the dosimetric advantages of combining an aperture with PBS coupled with lower DNA damage induction. A methodology for calculating dose in water derived from measurements with a silicon-based detector was also presented. This work is the first to demonstrate experimentally the increase in LET caused by combining PBS with aperture, and to assess the potential DNA damage which is the initial step in the cascade of events leading to the majority of radiation-induced biological effects.
Collapse
Affiliation(s)
- Racell Nabha
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Marijke De Saint-Hubert
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | - Johannes Esser
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Olivier Van Hoey
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Christian Bäumer
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.,TU Dortmund University, Department of Physics, Dortmund, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nico Verbeek
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Lara Struelens
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Edmond Sterpin
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.,UCLouvain, Institut de Recherche Expérimentale et Clinique, MIRO Lab, Brussels, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | | | - Beate Timmermann
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Particle Therapy, University Hospital Essen, Essen, Germany
| | - Filip Vanhavere
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| |
Collapse
|
8
|
Behrends C, Bäumer C, Verbeek NG, Wulff J, Timmermann B. Optimization of proton pencil beam positioning in collimated fields. Med Phys 2023; 50:2540-2551. [PMID: 36609847 DOI: 10.1002/mp.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The addition of static or dynamic collimator systems to the pencil beam scanning delivery technique increases the number of options for lateral field shaping. The collimator shape needs to be optimized together with the intensity modulation of spots. PURPOSE To minimize the proton field's lateral penumbra by investigating the fundamental relations between spot and collimating aperture edge position. METHODS Analytical approaches describing the effect of spot position on the resulting spot profile are presented. The theoretical description is then compared with Monte Carlo simulations in TOPAS and in the RayStation treatment planning system, as well as with radiochromic film measurements at a clinical proton therapy facility. In the model, one single spot profile is analyzed for various spot positions in air. Further, irradiation setups in water with different energies, the combination with a range shifter, and two-dimensional proton fields were investigated in silico. RESULTS The further the single spot is placed beyond the collimating aperture edge ('overscanning'), the sharper the relative lateral dose fall-off and thus the lateral penumbra. Overscanning up to 5 mm $5\,\text{mm}$ reduced the lateral penumbra by about 20% on average after a propagation of 13 cm $13\,\text{cm}$ in air. This benefit from overscanning is first predicted by the analytical proofs and later verified by simulations and measurements. Corresponding analyses in water confirm the benefit in lateral penumbra with spot position optimization as observed theoretically and in air. The combination of spot overscanning with fluence modulation facilitated an additional improvement. CONCLUSIONS The lateral penumbra of single spots in collimated scanned proton fields can be improved by the method of spot overscanning. This suggests a better sparing of proximal organs at risk in smaller water depths at higher energies, especially in the plateau of the depth dose distribution. All in all, spot overscanning in collimated scanned proton fields offers particular potential in combination with techniques such as fluence modulation or dynamic collimation for optimizing the lateral penumbra to spare normal tissue.
Collapse
Affiliation(s)
- Carina Behrends
- West German Proton Therapy Centre Essen (WPE), Essen, Germany.,Department of Physics, TU Dortmund University, Dortmund, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), Essen, Germany.,Department of Physics, TU Dortmund University, Dortmund, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nico Gerd Verbeek
- West German Proton Therapy Centre Essen (WPE), Essen, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany.,Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Department of Particle Therapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
9
|
Togno M, Nesteruk KP, Schäfer R, Psoroulas S, Meer D, Grossmann M, Christensen JB, Yukihara EG, Lomax AJ, Weber DC, Safai S. Ultra-high dose rate dosimetry for pre-clinical experiments with mm-small proton fields. Phys Med 2022; 104:101-111. [PMID: 36395638 DOI: 10.1016/j.ejmp.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To characterize an experimental setup for ultra-high dose rate (UHDR) proton irradiations, and to address the challenges of dosimetry in millimetre-small pencil proton beams. METHODS At the PSI Gantry 1, high-energy transmission pencil beams can be delivered to biological samples and detectors up to a maximum local dose rate of ∼9000 Gy/s. In the presented setup, a Faraday cup is used to measure the delivered number of protons up to ultra-high dose rates. The response of transmission ion-chambers, as well as of different field detectors, was characterized over a wide range of dose rates using the Faraday cup as reference. RESULTS The reproducibility of the delivered proton charge was better than 1 % in the proposed experimental setup. EBT3 films, Al2O3:C optically stimulated luminescence detectors and a PTW microDiamond were used to validate the predicted dose. Transmission ionization chambers showed significant volume ion-recombination (>30 % in the tested conditions) which can be parametrized as a function of the maximum proton current density. Over the considered range, EBT3 films, inorganic scintillator-based screens and the PTW microDiamond were demonstrated to be dose rate independent within ±3 %, ±1.8 % and ±1 %, respectively. CONCLUSIONS Faraday cups are versatile dosimetry instruments that can be used for dose estimation, field detector characterization and on-line dose verification for pre-clinical experiments in UHDR proton pencil beams. Among the tested detectors, the commercial PTW microDiamond was found to be a suitable option to measure real time the dosimetric properties of narrow pencil proton beams for dose rates up to 2.2 kGy/s.
Collapse
Affiliation(s)
- M Togno
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland.
| | - K P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - R Schäfer
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - S Psoroulas
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - D Meer
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - M Grossmann
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - J B Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institut, Villigen, Switzerland
| | - E G Yukihara
- Department of Radiation Safety and Security, Paul Scherrer Institut, Villigen, Switzerland
| | - A J Lomax
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland; Department of Physics, ETH Zurich, Zurich, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| |
Collapse
|
10
|
Holmes J, Shen J, Patel SH, Wong WW, Foote RL, Bues M, Liu W. Collimating individual beamlets in pencil beam scanning proton therapy, a dosimetric investigation. Front Oncol 2022; 12:1031340. [PMID: 36439436 PMCID: PMC9692234 DOI: 10.3389/fonc.2022.1031340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 03/26/2024] Open
Abstract
The purpose of this work is to investigate collimating individual proton beamlets from a dosimetric perspective and to introduce a new device concept, the spot scanning aperture (SSA). The SSA consists of a thin aperture with a small cylindrical opening attached to a robotics system, which allows the aperture to follow and align with individual beamlets during spot delivery. Additionally, a range shifter is incorporated (source-side) for treating shallow depths. Since the SSA trims beamlets spot by spot, the patient-facing portion of the device only needs to be large enough to trim a single proton beamlet. The SSA has been modelled in an open-source Monte-Carlo-based dose engine (MCsquare) to characterize its dosimetric properties in water at depths between 0 and 10 cm while varying the following parameters: the aperture material, thickness, distance to the water phantom, distance between the aperture and attached range shifter, and the aperture opening radius. Overall, the SSA greatly reduced spot sizes for all the aperture opening radii that were tested (1 - 4 mm), especially in comparison with the extended range shifter (ranger shifter placed at 30 cm from patient); greater than 50% when placed less than 10 cm away from the patient at depths in water less than 50 mm. The peak to entrance dose ratio and linear energy transfer was found to depend on the thickness of the aperture and therefore the aperture material. Neutron production rates were also investigated and discussed.
Collapse
Affiliation(s)
- Jason Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Samir H. Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
11
|
Technical aspects of proton minibeam radiation therapy: Minibeam generation and delivery. Phys Med 2022; 100:64-71. [PMID: 35750002 DOI: 10.1016/j.ejmp.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy that combines the normal tissue sparing of sub-millimetric, spatially fractionated beams with the improved ballistics of protons. This may allow a safe dose escalation in the tumour and has already proven to provide a remarkable increase of the therapeutic index for high-grade gliomas in animal experiments. One of the main challenges in pMBRT concerns the generation of minibeams and the implementation in a clinical environment. This article reviews the different approaches for generating minibeams, using mechanical collimators and focussing magnets, and discusses the technical aspects of the implementation and delivery of pMBRT.
Collapse
|
12
|
Argota-Perez R, Sharma MB, Elstrøm UV, Møller DS, Grau C, Jensen K, Holm AIS, Korreman SS. Dose and robustness comparison of nominal, daily and accumulated doses for photon and proton treatment of sinonasal cancer. Radiother Oncol 2022; 173:102-108. [PMID: 35667574 DOI: 10.1016/j.radonc.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The aim was to evaluate and compare the dosimetric effect and robustness towards day-to-day anatomical and setup variations in the delivered dose for photon and proton treatments of sinonasal cancer (SNC) patients. MATERIALS AND METHODS Photon (VMAT) and proton (IMPT) plans were optimized retrospectively for 24 SNC patients. Synthetic CTs (synCT) were obtained by deforming the planning CT (pCT) to the anatomy of every daily cone-beam CT. Both VMAT and IMPT plans were recalculated on the synCTs. The recalculated daily dose was accumulated over the whole treatment on the pCT. Target coverage and dose to organs and risk (OARs) were evaluated for all patients for the nominal, daily and accumulated dose distribution. RESULTS In general, dose to OARs farther away from the target, including brain, chiasm and contralateral optic nerve, was lower for proton plans than photon plans. Whereas, OARs in proximity of the target received a lower dose for photon plans. For proton plans, the target coverage (volume of CTV receiving 95% of prescribed dose), V95%, fell below 99% for 9/24 patients in one or more fractions. For photon plans, 4/24 patients had one or more fractions where V95% fell below 99%. For accumulated doses, V95% was below 99% only in two cases, but above 98% for all patients. CONCLUSION Photon and proton treatment have different strengths regarding OAR sparing. The robustness was high for both treatment modalities. Patient selection for either proton or photon radiation therapy of SNC patients should be based on a case-by-case comparison.
Collapse
Affiliation(s)
- R Argota-Perez
- Department of Oncology, Aarhus University Hospital, Denmark
| | - M B Sharma
- Department of Oncology, Aarhus University Hospital, Denmark
| | - U V Elstrøm
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - D S Møller
- Department of Oncology, Aarhus University Hospital, Denmark
| | - C Grau
- Department of Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - K Jensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - A I S Holm
- Department of Oncology, Aarhus University Hospital, Denmark.
| | - S S Korreman
- Department of Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
13
|
Depauw N, Kooy HM, Daartz J, Bussiere M, Batin E, Madden T, Williams M, Schuemann J, Clasie BM. Implementation of apertures in a proton pencil-beam dose algorithm. Biomed Phys Eng Express 2022; 8. [PMID: 35158343 DOI: 10.1088/2057-1976/ac550b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/14/2022] [Indexed: 11/11/2022]
Abstract
The use of field-specific apertures, routine in scattered or uniform-scanned proton fields, are still a necessity in pencil-beam scanned (PBS) fields to sharpen the penumbral edge at low energies and in high fraction dose application beyond that achievable with small spot size. We describe a model implemented in our clinical pencil-beam algorithm that models the insertion of a shaped aperture, including shapes adapted per energy layer such as may be achieved with a multi-leaf collimator. The model decomposes the spot transport into discrete steps. The first step transport a uniform intensity field of high-resolution sub-pencil-beams at the layer energy through the medium. This transport only considers primary scattering in both the patient and an optional range-shifter. The second step models the aperture areas and edge penumbral transition as a modulation of the uniform intensity. The third step convolves individual steps over the uniform-transported field including the aperture-modified intensities. We also introduce an efficient model based on a Clarkson sector integration for nuclear scattered halo protons. This avoids the explicit modeling of long range halo protons to the detriment of computational efficiency in calculation and optimization. We demonstrate that the aperture effect is primarily due to in-patient and shifter scattering with a small contribution from the apparent beam source position. The model provides insight into the primary physics contributions to the penumbra and the nuclear halo. The model allowed us to fully deploy our PBS capacity at our two-gantry center without which PBS treatments would have been inferior compared to scattered fields with apertures. Finally, Monte Carlo calculations have (nearly) replaced phenomenological pencil-beam models for collimated fields. Phenomenological models do, however, allow exposition of underlying clinical phenomena and closer connection to representative clinical observables.
Collapse
Affiliation(s)
- Nicolas Depauw
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, UNITED STATES
| | - Hanne M Kooy
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, UNITED STATES
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, UNITED STATES
| | - Marc Bussiere
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, UNITED STATES
| | - Estelle Batin
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, UNITED STATES
| | - Thomas Madden
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, UNITED STATES
| | - Michael Williams
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, UNITED STATES
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, UNITED STATES
| | - Benjamin M Clasie
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, UNITED STATES
| |
Collapse
|
14
|
Geoghegan T, Patwardhan K, Nelson N, Hill P, Flynn R, Smith B, Hyer D. Mechanical Characterization and Validation of the Dynamic Collimation System Prototype for Proton Radiotherapy. J Med Device 2022; 16:021013. [DOI: 10.1115/1.4053722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract
Radiation therapy is integral to cancer treatments for more than half of patients. Pencil beam scanning (PBS) proton therapy is the latest radiation therapy technology that uses a beam of protons that are magnetically steered and delivered to the tumor. One of the limiting factors of PBS accuracy is the beam cross-sectional size, similar to how a painter is only as accurate as the size of their brush allows. To address this, collimators can be used to shape the beam along the tumor edge to minimize the dose spread outside of the tumor. Under development is a dynamic collimation system (DCS) that uses two pairs of nickel trimmers that collimate the beam at the tumor periphery, limiting dose from spilling into healthy tissue. Herein, we establish the dosimetric and mechanical acceptance criteria for the DCS based on a functioning prototype and Monte Carlo methods, characterize the mechanical accuracy of the prototype, and validate that the acceptance criteria are met. From Monte Carlo simulations, we found that the trimmers must be positioned within ±0.5mm and ±1.0° for the dose distributions to pass our gamma analysis. We characterized the trimmer positioners at jerk values up to 400 m/s3 and validated their accuracy to 50 µm. We measured and validated the rotational trimmer accuracy to ±0.5° with a FARO® ScanArm. Lastly, we calculated time penalties associated with the DCS and found that the additional time required to treat one field using the DCS varied from 25-52 seconds.
Collapse
Affiliation(s)
- Theodore Geoghegan
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr., Iowa City, IA 52242
| | - Kaustubh Patwardhan
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr., Iowa City, IA 52242
| | - Nicholas Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705 USA
| | - Patrick Hill
- Department of Human Oncology, School of Medicine & Public Health, University of Wisconsin - Madison, 600 Highland Avenue, K4/B82, Madison, WI 53792
| | - Ryan Flynn
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr., Iowa City, IA 52242
| | - Blake Smith
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr., Iowa City, IA 52242
| | - Daniel Hyer
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr., Iowa City, IA 52242
| |
Collapse
|
15
|
Loap P, De Marzi L, Almeida CE, Barcellini A, Bradley J, de Santis MC, Dendale R, Jimenez R, Orlandi E, Kirova Y. Hadrontherapy techniques for breast cancer. Crit Rev Oncol Hematol 2021; 169:103574. [PMID: 34958916 DOI: 10.1016/j.critrevonc.2021.103574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
Radiotherapy plays a key role in breast cancer treatment, and recent technical advances have been made to improve the therapeutic window by limiting the risk of radiation-induced toxicity or by increasing tumor control. Hadrontherapy is a form a radiotherapy relying on particle beams; compared with photon beams, particle beams have specific physical, radiobiological and immunological properties, which can be valuable in diverse clinical situations. To date, available hadrontherapy techniques for breast cancer irradiation include proton therapy, carbon ion radiation therapy, fast neutron therapy and boron neutron capture therapy. This review analyzes the current rationale and level of evidence for each hadrontherapy technique for breast cancer.
Collapse
Affiliation(s)
- Pierre Loap
- Proton Therapy Center, Institut Curie, Orsay, France.
| | | | - Carlos Eduardo Almeida
- Department of Radiological Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Julie Bradley
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, United States
| | | | - Remi Dendale
- Proton Therapy Center, Institut Curie, Orsay, France
| | - Rachel Jimenez
- Massachusetts General Hospital, Boston, MA, United States
| | - Ester Orlandi
- National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Youlia Kirova
- Proton Therapy Center, Institut Curie, Orsay, France
| |
Collapse
|
16
|
Huang YH, Fang C, Yang T, Cao L, Zhang G, Qu B, Zhang Y, Wang Z, Xu S. A systematic study of independently-tuned room-specific PBS beam model in a beam-matched multiroom proton therapy system. Radiat Oncol 2021; 16:206. [PMID: 34715894 PMCID: PMC8555324 DOI: 10.1186/s13014-021-01932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background In the existing application of beam-matched multiroom proton therapy system, the model based on the commissioning data from the leading treatment room was used as the shared model. The purpose of this study is to investigate the ability of independently-tuned room-specific beam models of beam-matched gantries to reproduce the agreement between gantries’ performance when considering the errors introduced by the modeling process. Methods Raw measurements of two gantries’ dosimetric characteristics were quantitatively compared to ensure their agreement after initially beam-matched. Two gantries’ beam model parameters, as well as the model-based computed dosimetric characteristics, were analyzed to study the introduced errors and gantries’ post-modeling consistency. We forced two gantries to share the same beam model. The model-sharing patient-specific quality assurance (QA) tasks were retrospectively performed with 36 cancer patients to study the clinical impact of beam model discrepancies. Results Intra-gantry comparisons demonstrate that the modeling process introduced the errors to a certain extent indeed, which made the model-based reproduced results deviate from the raw measurements. Among them, the deviation introduced to the IDD curves was generally larger than that to the beam spots during modeling. Cross-gantry comparisons show that, from the beam model perspective, the introduced deviations deteriorated the high agreement of the dosimetric characteristics originally shown between two beam-matched gantries, but the cross-gantry discrepancy was still within the clinically acceptable tolerance. In model-sharing patient-specific QA, for the particular gantry, the beam model usage for intensity-modulated proton therapy (IMPT) QA plan generation had no significant effect on the actual delivering performance. All reached a high level of 95.0% passing rate with a 3 mm/3% criterion. Conclusions It was preliminary recognized that among beam-matched gantries, the independently-tuned room-specific beam model from any gantry is reasonable to be chosen as the shared beam model without affecting the treatment efficacy.
Collapse
Affiliation(s)
- Yu-Hua Huang
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China.,School of Physics, Beihang University, Beijing, 100191, China
| | - Chunfeng Fang
- Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China
| | - Tao Yang
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.,Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China
| | - Lin Cao
- Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China
| | - Gaolong Zhang
- School of Physics, Beihang University, Beijing, 100191, China
| | - Baolin Qu
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Yihang Zhang
- School of Physics, Beihang University, Beijing, 100191, China
| | - Zishen Wang
- Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China
| | - Shouping Xu
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China. .,Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China.
| |
Collapse
|
17
|
Loap P, Vitolo V, Barcellini A, De Marzi L, Mirandola A, Fiore MR, Vischioni B, Jereczek-Fossa BA, Girard N, Kirova Y, Orlandi E. Hadrontherapy for Thymic Epithelial Tumors: Implementation in Clinical Practice. Front Oncol 2021; 11:738320. [PMID: 34707989 PMCID: PMC8543015 DOI: 10.3389/fonc.2021.738320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Radiation therapy is part of recommendations in the adjuvant settings for advanced stage or as exclusive treatment in unresectable thymic epithelial tumors (TETs). However, first-generation techniques delivered substantial radiation doses to critical organs at risk (OARs), such as the heart or the lungs, resulting in noticeable radiation-induced toxicity. Treatment techniques have significantly evolved for TET irradiation, and modern techniques efficiently spare normal surrounding tissues without negative impact on tumor coverage and consequently local control or patient survival. Considering its dosimetric advantages, hadrontherapy (which includes proton therapy and carbon ion therapy) has proved to be worthwhile for TET irradiation in particular for challenging clinical situations such as cardiac tumoral involvement. However, clinical experience for hadrontherapy is still limited and mainly relies on small-size proton therapy studies. This critical review aims to analyze the current status of hadrontherapy for TET irradiation to implement it at a larger scale.
Collapse
Affiliation(s)
- Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France.,Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, Paris, France.,Institut Curie, Paris Sciences & Lettres (PSL) Research University, University Paris Saclay, laboratoire d'Imagerie Translationnelle en Oncologie, Institut National de la Santé et de la Recherche Médicale (INSERM LITO), Orsay, France
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Division of Radiotherapy, Istituto Europeo di Oncologia (IEO) European Institute of Oncology Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France.,University Paris Saint-Quentin, Versailles, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
18
|
Fleury E, Trnková P, Spruijt K, Herault J, Lebbink F, Heufelder J, Hrbacek J, Horwacik T, Kajdrowicz T, Denker A, Gerard A, Hofverberg P, Mamalui M, Slopsema R, Pignol J, Hoogeman M. Characterization of the HollandPTC proton therapy beamline dedicated to uveal melanoma treatment and an interinstitutional comparison. Med Phys 2021; 48:4506-4522. [PMID: 34091930 PMCID: PMC8457201 DOI: 10.1002/mp.15024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Eye-dedicated proton therapy (PT) facilities are used to treat malignant intraocular lesions, especially uveal melanoma (UM). The first commercial ocular PT beamline from Varian was installed in the Netherlands. In this work, the conceptual design of the new eyeline is presented. In addition, a comprehensive comparison against five PT centers with dedicated ocular beamlines is performed, and the clinical impact of the identified differences is analyzed. MATERIAL/METHODS The HollandPTC eyeline was characterized. Four centers in Europe and one in the United States joined the study. All centers use a cyclotron for proton beam generation and an eye-dedicated nozzle. Differences among the chosen ocular beamlines were in the design of the nozzle, nominal energy, and energy spectrum. The following parameters were collected for all centers: technical characteristics and a set of distal, proximal, and lateral region measurements. The measurements were performed with detectors available in-house at each institution. The institutions followed the International Atomic Energy Agency (IAEA) Technical Report Series (TRS)-398 Code of Practice for absolute dose measurement, and the IAEA TRS-398 Code of Practice, its modified version or International Commission on Radiation Units and Measurements Report No. 78 for spread-out Bragg peak normalization. Energy spreads of the pristine Bragg peaks were obtained with Monte Carlo simulations using Geant4. Seven tumor-specific case scenarios were simulated to evaluate the clinical impact among centers: small, medium, and large UM, located either anteriorly, at the equator, or posteriorly within the eye. Differences in the depth dose distributions were calculated. RESULTS A pristine Bragg peak of HollandPTC eyeline corresponded to the constant energy of 75 MeV (maximal range 3.97 g/cm2 in water) with an energy spread of 1.10 MeV. The pristine Bragg peaks for the five participating centers varied from 62.50 to 104.50 MeV with an energy spread variation between 0.10 and 0.70 MeV. Differences in the average distal fall-offs and lateral penumbrae (LPs) (over the complete set of clinically available beam modulations) among all centers were up to 0.25 g/cm2 , and 0.80 mm, respectively. Average distal fall-offs of the HollandPTC eyeline were 0.20 g/cm2 , and LPs were between 1.50 and 2.15 mm from proximal to distal regions, respectively. Treatment time, around 60 s, was comparable among all centers. The virtual source-to-axis distance of 120 cm at HollandPTC was shorter than for the five participating centers (range: 165-350 cm). Simulated depth dose distributions demonstrated the impact of the different beamline characteristics among institutions. The largest difference was observed for a small UM located at the posterior pole, where a proximal dose between two extreme centers was up to 20%. CONCLUSIONS HollandPTC eyeline specifications are in accordance with five other ocular PT beamlines. Similar clinical concepts can be applied to expect the same high local tumor control. Dosimetrical properties among the six institutions induce most likely differences in ocular radiation-related toxicities. This interinstitutional comparison could support further research on ocular post-PT complications. Finally, the findings reported in this study could be used to define dosimetrical guidelines for ocular PT to unify the concepts among institutions.
Collapse
Affiliation(s)
- Emmanuelle Fleury
- Department of RadiotherapyErasmus MC Cancer Institute, University Medical Center RotterdamThe Netherlands
- Holland Proton Therapy CenterDelftThe Netherlands
| | - Petra Trnková
- Department of RadiotherapyErasmus MC Cancer Institute, University Medical Center RotterdamThe Netherlands
- Departement of Radiation OncologyMedical University of ViennaViennaAustria
| | - Kees Spruijt
- Holland Proton Therapy CenterDelftThe Netherlands
| | - Joël Herault
- Departement of Radiation OncologyCentre Antoine LacassagneNiceFrance
| | | | - Jens Heufelder
- Helmholtz‐Zentrum Berlin für Materialien und EnergieBerlinGermany
- Department of OphthalmologyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Jan Hrbacek
- Paul Scherrer Institute Center for Proton TherapyVilligenSwitzerland
| | - Tomasz Horwacik
- Institute of Nuclear PhysicsPolish Academy of SciencesKrakówPoland
| | | | - Andrea Denker
- Helmholtz‐Zentrum Berlin für Materialien und EnergieBerlinGermany
| | - Anaïs Gerard
- Departement of Radiation OncologyCentre Antoine LacassagneNiceFrance
| | - Petter Hofverberg
- Departement of Radiation OncologyCentre Antoine LacassagneNiceFrance
| | - Maria Mamalui
- Department of Radiation OncologyUniversity of FloridaGainesvilleFloridaUSA
| | - Roelf Slopsema
- Department of Radiation OncologyEmory Proton Therapy CenterAtlantaGeorgiaUSA
| | | | - Mischa Hoogeman
- Department of RadiotherapyErasmus MC Cancer Institute, University Medical Center RotterdamThe Netherlands
- Holland Proton Therapy CenterDelftThe Netherlands
| |
Collapse
|
19
|
Vidal M, Moignier C, Patriarca A, Sotiropoulos M, Schneider T, De Marzi L. Future technological developments in proton therapy - A predicted technological breakthrough. Cancer Radiother 2021; 25:554-564. [PMID: 34272182 DOI: 10.1016/j.canrad.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
In the current spectrum of cancer treatments, despite high costs, a lack of robust evidence based on clinical outcomes or technical and radiobiological uncertainties, particle therapy and in particular proton therapy (PT) is rapidly growing. Despite proton therapy being more than fifty years old (first proposed by Wilson in 1946) and more than 220,000 patients having been treated with in 2020, many technological challenges remain and numerous new technical developments that must be integrated into existing systems. This article presents an overview of on-going technical developments and innovations that we felt were most important today, as well as those that have the potential to significantly shape the future of proton therapy. Indeed, efforts have been done continuously to improve the efficiency of a PT system, in terms of cost, technology and delivery technics, and a number of different developments pursued in the accelerator field will first be presented. Significant developments are also underway in terms of transport and spatial resolution achievable with pencil beam scanning, or conformation of the dose to the target: we will therefore discuss beam focusing and collimation issues which are important parameters for the development of these techniques, as well as proton arc therapy. State of the art and alternative approaches to adaptive PT and the future of adaptive PT will finally be reviewed. Through these overviews, we will finally see how advances in these different areas will allow the potential for robust dose shaping in proton therapy to be maximised, probably foreshadowing a future era of maturity for the PT technique.
Collapse
Affiliation(s)
- M Vidal
- Centre Antoine-Lacassagne, Fédération Claude Lalanne, 227, avenue de la Lanterne, 06200 Nice, France
| | - C Moignier
- Centre François Baclesse, Department of Medical Physics, Centre de protonthérapie de Normandie, 14000 Caen, France
| | - A Patriarca
- Institut Curie, PSL Research University, Radiation oncology department, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, 91898 Orsay, France
| | - M Sotiropoulos
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France
| | - T Schneider
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France
| | - L De Marzi
- Institut Curie, PSL Research University, Radiation oncology department, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, 91898 Orsay, France; Institut Curie, PSL Research University, University Paris Saclay, Inserm LITO, Campus universitaire, 91898 Orsay, France.
| |
Collapse
|
20
|
Hyer DE, Bennett LC, Geoghegan TJ, Bues M, Smith BR. Innovations and the Use of Collimators in the Delivery of Pencil Beam Scanning Proton Therapy. Int J Part Ther 2021; 8:73-83. [PMID: 34285937 PMCID: PMC8270095 DOI: 10.14338/ijpt-20-00039.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose The development of collimating technologies has become a recent focus in pencil beam scanning (PBS) proton therapy to improve the target conformity and healthy tissue sparing through field-specific or energy-layer–specific collimation. Given the growing popularity of collimators for low-energy treatments, the purpose of this work was to summarize the recent literature that has focused on the efficacy of collimators for PBS and highlight the development of clinical and preclinical collimators. Materials and Methods The collimators presented in this work were organized into 3 categories: per-field apertures, multileaf collimators (MLCs), and sliding-bar collimators. For each case, the system design and planning methodologies are summarized and intercompared from their existing literature. Energy-specific collimation is still a new paradigm in PBS and the 2 specific collimators tailored toward PBS are presented including the dynamic collimation system (DCS) and the Mevion Adaptive Aperture. Results Collimation during PBS can improve the target conformity and associated healthy tissue and critical structure avoidance. Between energy-specific collimators and static apertures, static apertures have the poorest dose conformity owing to collimating only the largest projection of a target in the beam's eye view but still provide an improvement over uncollimated treatments. While an external collimator increases secondary neutron production, the benefit of collimating the primary beam appears to outweigh the risk. The greatest benefit has been observed for low- energy treatment sites. Conclusion The consensus from current literature supports the use of external collimators in PBS under certain conditions, namely low-energy treatments or where the nominal spot size is large. While many recent studies paint a supportive picture, it is also important to understand the limitations of collimation in PBS that are specific to each collimator type. The emergence and paradigm of energy-specific collimation holds many promises for PBS proton therapy.
Collapse
Affiliation(s)
- Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Laura C Bennett
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | | | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Blake R Smith
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
21
|
Horst F, Schardt D, Iwase H, Schuy C, Durante M, Weber U. Physical characterization of 3He ion beams for radiotherapy and comparison with 4He. Phys Med Biol 2021; 66. [PMID: 33730702 DOI: 10.1088/1361-6560/abef88] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
There is increasing interest in using helium ions for radiotherapy, complementary to protons and carbon ions. A large number of patients were treated with4He ions in the US heavy ion therapy project and novel4He ion treatment programs are under preparation, for instance in Germany and Japan.3He ions have been proposed as an alternative to4He ions because the acceleration of3He is technically less difficult than4He. In particular, beam contaminations have been pointed out as a potential safety issue for4He ion beams. This motivated a series of experiments with3He ion beams at Gesellschaft für Schwerionenforschung (GSI), Darmstadt. Measured3He Bragg curves and fragmentation data in water are presented in this work. Those experimental data are compared with FLUKA Monte Carlo simulations. The physical characteristics of3He ion beams are compared to those of4He, for which a large set of data became available in recent years from the preparation work at the Heidelberger Ionenstrahl-Therapiezentrum (HIT). The dose distributions (spread out Bragg peaks, lateral profiles) that can be achieved with3He ions are found to be competitive to4He dose distributions. The effect of beam contaminations on4He depth dose distribution is also addressed. It is concluded that3He ions can be a viable alternative to4He, especially for future compact therapy accelerator designs and upgrades of existing ion therapy facilities.
Collapse
Affiliation(s)
- Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| | - Dieter Schardt
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| | - Hiroshi Iwase
- KEK, Radiation Science, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Festkörperphysik, D-64289 Darmstadt, Germany
| | - Uli Weber
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| |
Collapse
|
22
|
Indelicato DJ, Rotondo RL, Mailhot Vega RB, Holtzman AL, Looi WS, Morris CG, Sandler ES, Aldana PR, Bradley JA. Local Control After Proton Therapy for Pediatric Chordoma. Int J Radiat Oncol Biol Phys 2021; 109:1406-1413. [PMID: 33253819 DOI: 10.1016/j.ijrobp.2020.11.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE Due to the location and high dose required for disease control, pediatric chordomas are theoretically well-suited for treatment with proton therapy, but their low incidence limits the clinical outcome data available in the literature. We sought to report the efficacy and toxicity of proton therapy among a single-institution cohort. METHODS AND MATERIALS Between 2008 and 2019, 29 patients with a median age of 14.8 years (range, 3.8-21.8) received passive-scattered proton therapy for nonmetastatic chordoma. No patient received prior irradiation. Twenty-four tumors arose in the clivus/cervical spine region and 5 in the lumbosacral spine. Twenty-six tumors demonstrated classic well-differentiated histology and 3 were dedifferentiated or not otherwise specified. Approximately half of the tumors underwent specialized testing: 14 were brachyury-positive and 10 retained INI-1. Three patients had locally recurrent tumors after surgery alone (n = 2) or surgery + chemotherapy (n = 1), and 17 patients had gross disease at the time of radiation. The median radiation dose was 73.8 Gy relative biological effectivness (range, 69-75.6). RESULTS With a median follow-up of 4.3 years (range, 1.0-10.7), the 5-year estimates of local control, progression-free survival, and overall survival rates were 85%, 82%, and 86%, respectively. No disease progression was observed beyond 3 years. Excluding 3 patients with dedifferentiated/not-otherwise-specified chordoma, the 5-year local control, progression-free survival, and overall survival rates were 92%, 92%, and 91%, respectively. Serious toxicities included 3 patients with hardware failure or related infection requiring revision surgery, 2 patients with hormone deficiency, and 2 patients with Eustachian tube dysfunction causing chronic otitis media. No patient experienced brain stem injury, myelopathy, vision loss, or hearing loss after radiation. CONCLUSIONS In pediatric patients with chordoma, proton therapy is associated with a low risk of serious toxicity and high efficacy, particularly in well-differentiated tumors. Complete resection may be unnecessary for local control, and destabilizing operations requiring instrumentation may result in additional complications after therapy.
Collapse
Affiliation(s)
- Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida.
| | - Ronny L Rotondo
- Department of Radiation Oncology, University of Kansas, Kansas City, Kansas
| | - Raymond B Mailhot Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Adam L Holtzman
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Wen S Looi
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Christopher G Morris
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Eric S Sandler
- Department of Pediatrics, Nemours Childrens Specialty Clinic, Jacksonville, Florida
| | - Philipp R Aldana
- Department of Neurosurgery, University of Florida College of Medicine, Jacksonville, Florida
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| |
Collapse
|
23
|
Grewal HS, Ahmad S, Jin H. Characterization of penumbra sharpening and scattering by adaptive aperture for a compact pencil beam scanning proton therapy system. Med Phys 2021; 48:1508-1519. [PMID: 33580550 DOI: 10.1002/mp.14771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/12/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To quantitatively access penumbra sharpening and scattering by adaptive aperture (AA) under various beam conditions and clinical cases for a Mevion S250i compact pencil beam scanning proton therapy system. METHODS First, in-air measurements were performed using a scintillation detector for single spot profile and lateral penumbra for five square field sizes (3 × 3 to 18 × 18 cm2 ), three energies (33.04, 147.36, and 227.16 MeV), and three snout positions (5, 15, and 33.6 cm) with Open and AA field. Second, treatment plans were generated in RayStation treatment planning system (TPS) for various combination of target size (3- and 10-cm cube), target depth (5, 10, and 15 cm) and air gap (5-20 cm) for both Open and AA field. These plans were delivered to EDR2 films in the solid water and penumbra reduction by AA was quantified. Third, the effect of the AA scattered protons on the surface dose was studied at 5 mm depth by EDR2 film and the RayStation TPS computation. Finally, dosimetric advantage of AA over Open field was studied for five brain and five prostate cases using the TPS simulation. RESULTS The spot size changed dramatically from 3.8 mm at proton beam energy of 227.15 MeV to 29.4 mm at energy 33.04 MeV. In-air measurements showed that AA substantially reduced the lateral penumbra by 30% to 60%. The EDR2 film measurements in solid water presented the maximum penumbra reduction of 10 to 14 mm depending on the target size. The maximum increase of 25% in field edge dose at 5 mm depth as compared to central axis was observed. The substantial penumbra reduction by AA produced less dose to critical structures for all the prostate and brain cases. CONCLUSIONS Adaptive aperture sharpens the penumbra by factor of two to three depending upon the beam condition. The absolute penumbra reduction with AA was more noticeable for shallower target, smaller target, and larger air gap. The AA-scattered protons contributed to increase in surface dose. Clinically, AA reduced the doses to critical structures.
Collapse
Affiliation(s)
- Hardev S Grewal
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 800 NE 10th street SCC L100, Oklahoma City, OK, 73104, USA.,Oklahoma Proton Center, 5901 W Memorial Rd, Oklahoma City, OK, 73142, USA
| | - Salahuddin Ahmad
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 800 NE 10th street SCC L100, Oklahoma City, OK, 73104, USA
| | - Hosang Jin
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 800 NE 10th street SCC L100, Oklahoma City, OK, 73104, USA
| |
Collapse
|
24
|
Loap P, Scher N, Goudjil F, Kirova Y, Girard N, Cao KI. Proton Beam Therapy for Thymic Carcinoma with Pericardial Involvement. Int J Part Ther 2021; 7:65-70. [PMID: 33604417 PMCID: PMC7886270 DOI: 10.14338/ijpt-20-00023.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/23/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose Thymic malignancies are the most common anterior mediastinal tumors. Advanced thymic carcinoma treatment relies on chemotherapy and definitive radiation therapy when possible. However, pericardial involvement is problematic for radiation therapy treatment planning owing to significant cardiac radiation exposure. We report the first case of definitive proton beam therapy (PBT) for an advanced thymic carcinoma with pericardial invasion. Materials and Methods We report the case of a 69-year-old patient treated with definitive radiation therapy for a stage IVB thymic carcinoma with pericardial invasion. Mean doses delivered to critical organs at risk were compared between deep inspiration breath-hold (DIBH) volumetric modulated arc therapy (VMAT) and DIBH-PBT. Results When compared to DIBH-VMAT, DIBH-PBT reduced the mean doses delivered to the heart by 3.72 Gy (19.0% dose reduction), to the right lung by 5.9 Gy (41.7% dose reduction), to the left lung by 3.63 Gy (19.0% dose reduction), and to the esophagus by 3.57 Gy (21.3% dose reduction). Despite an early mediastinal relapse after 3.0 months, our patient is still alive after a 14-month follow-up, without any radiation-induced cardiac adverse events and is undergoing pembrolizumab-based immunotherapy. Conclusion Proton beam therapy is an option for definitive irradiation of thymic malignancies invading the pericardium; in this situation, PBT reduces doses to the heart and may help to reduce cardiotoxicity when compared with photon techniques.
Collapse
Affiliation(s)
- Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Nathaniel Scher
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Farid Goudjil
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Nicolas Girard
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Kim I Cao
- Department of Radiation Oncology, Institut Curie, Paris, France
| |
Collapse
|
25
|
Kueng R, Mueller S, Loebner HA, Frei D, Volken W, Aebersold DM, Stampanoni MFM, Fix MK, Manser P. TriB-RT: Simultaneous optimization of photon, electron and proton beams. Phys Med Biol 2021; 66:045006. [PMID: 32413883 DOI: 10.1088/1361-6560/ab936f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a novel treatment planning process (TPP) with simultaneous optimization of modulated photon, electron and proton beams for improved treatment plan quality in radiotherapy. METHODS A framework for fluence map optimization of Monte Carlo (MC) calculated beamlet dose distributions is developed to generate treatment plans consisting of photon, electron and spot scanning proton fields. Initially, in-house intensity modulated proton therapy (IMPT) plans are compared to proton plans created by a commercial treatment planning system (TPS). A triple beam radiotherapy (TriB-RT) plan is generated for an exemplary academic case and the dose contributions of the three particle types are investigated. To investigate the dosimetric potential, a TriB-RT plan is compared to an in-house IMPT plan for two clinically motivated cases. Benefits of TriB-RT for a fixed proton beam line with a single proton field are investigated. RESULTS In-house optimized IMPT are of at least equal or better quality than TPS-generated proton plans, and MC-based optimization shows dosimetric advantages for inhomogeneous situations. Concerning TriB-RT, for the academic case, the resulting plan shows substantial contribution of all particle types. For the clinically motivated case, improved sparing of organs at risk close to the target volume is achieved compared to IMPT (e.g. myelon and brainstem [Formula: see text] -37%) at cost of an increased low dose bath (healthy tissue V 10% +22%). In the scenario of a fixed proton beam line, TriB-RT plans are able to compensate the loss in degrees of freedom to substantially improve plan quality compared to a single field proton plan. CONCLUSION A novel TPP which simultaneously optimizes photon, electron and proton beams was successfully developed. TriB-RT shows the potential for improved treatment plan quality and is especially promising for cost-effective single-room proton solutions with a fixed beamline in combination with a conventional linac delivering photon and electron fields.
Collapse
Affiliation(s)
- R Kueng
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gerlach S, Pinto M, Kurichiyanil N, Grau C, Hérault J, Hillbrand M, Poulsen PR, Safai S, Schippers JM, Schwarz M, Søndergaard CS, Tommasino F, Verroi E, Vidal M, Yohannes I, Schreiber J, Parodi K. Beam characterization and feasibility study for a small animal irradiation platform at clinical proton therapy facilities. Phys Med Biol 2020; 65:245045. [DOI: 10.1088/1361-6560/abc832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Rana S, Storey M, Manthala Padannayil N, Shamurailatpam DS, Bennouna J, George J, Chang J. Investigating the utilization of beam-specific apertures for the intensity-modulated proton therapy (IMPT) head and neck cancer plans. Med Dosim 2020; 46:e7-e11. [PMID: 33246881 DOI: 10.1016/j.meddos.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/11/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Intensity-modulated proton therapy (IMPT) planning for the head and neck (HN) cancer often requires the use of the range shifter, which can increase the lateral penumbrae of the pencil proton beam in the patient, thus leading to an increase in unnecessary dose to the organs at risks (OARs) in proximity to the target volumes. The primary goal of the current study was to investigate the dosimetric benefits of utilizing beam-specific apertures for the IMPT HN cancer plans. The current retrospective study included computed tomography datasets of 10 unilateral HN cancer patients. The clinical target volume (CTV) was divided into low-risk CTV1 and high-risk CTV2. Total dose prescriptions to the CTV1 and CTV2 were 54 Gy(RBE) and 70 Gy(RBE), respectively, with a fractional dose of 2 Gy(RBE). All treatment plans were robustly optimized (patient setup uncertainty = 3 mm; range uncertainty = 3.5%) on the CTVs. For each patient, 2 sets of plans were generated: (1) without beam-specific aperture (WOBSA), and (2) with beam-specific aperture (WBSA). Specifically, both the WOBSA and WBSA of the given patient used identical beam angles, air gap, optimization structures, optimization constraints, and optimization settings. Target coverage and homogeneity index were comparable in both the WOBSA and WBSA plans with no statistical significance (p > 0.05). On average, the mean dose in WBSA plans was reduced by 12.1%, 2.9%, 3.0%, 3.8%, and 5.2% for the larynx, oral cavity, parotids, superior pharyngeal constrictor muscle, and inferior pharyngeal constrictor muscle, respectively. The dosimetric results of the OARs were found to be statistically significant (p < 0.05). The use of the beam-specific apertures did not deteriorate the coverage and homogeneity in the target volume and allowed for a reduction in mean dose to the OARs with an average difference up to 12.1%.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, Oklahoma Proton Center, Oklahoma City, OK 73142, USA; Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Mark Storey
- Department of Radiation Oncology, Oklahoma Proton Center, Oklahoma City, OK 73142, USA
| | | | | | - Jaafar Bennouna
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Jerry George
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - John Chang
- Department of Radiation Oncology, Oklahoma Proton Center, Oklahoma City, OK 73142, USA
| |
Collapse
|
28
|
Su Z, Indelicato DJ, Mailhot RB, Bradley JA. Impact of different treatment techniques for pediatric Ewing sarcoma of the chest wall: IMRT, 3DCPT, and IMPT with/without beam aperture. J Appl Clin Med Phys 2020; 21:100-107. [PMID: 32268008 PMCID: PMC7324690 DOI: 10.1002/acm2.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose To evaluate the dosimetric differences between photon intensity‐modulated radiation therapy (IMRT) plans, 3D conformal proton therapy (3DCPT), and intensity‐modulated proton therapy (IMPT) plans and to investigate the dosimetric impact of different beam spot size and beam apertures in IMPT for pediatric Ewing sarcoma of the chest wall. Methods and Materials Six proton pediatric patients with Ewing sarcoma in the upper, middle, and lower thoracic spine regions as well as upper lumbar spine region were treated with 3DCPT and retrospectively planned with photon IMRT and IMPT nozzles of different beam spot sizes with/without beam apertures. The plan dose distributions were compared both on target conformity and homogeneity, and on organs‐at‐risk (OARs) sparing using QUANTEC metrics of the lung, heart, liver, and kidney. The total integral doses of healthy tissue of all plans were also evaluated. Results Target conformity and homogeneity indices are generally better for the IMPT plans with beam aperture. Doses to the lung, heart, and liver for all patients are substantially lower with the 3DPT and IMPT plans than those of IMRT plans. In the IMPT plans with large spot without beam aperture, some OAR doses are higher than those of 3DCPT plans. The integral dose of each photon IMRT plan ranged from 2 to 4.3 times of proton plans. Conclusion Compared to IMRT, proton therapy delivers significant lower dose to almost all OARs and much lower healthy tissue integral dose. Compared to 3DCPT, IMPT with small beam spot size or using beam aperture has better dose conformity to the target.
Collapse
Affiliation(s)
- Zhong Su
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA.,University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA.,University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Raymond B Mailhot
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA.,University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA.,University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| |
Collapse
|
29
|
Geoghegan TJ, Nelson NP, Flynn RT, Hill PM, Rana S, Hyer DE. Design of a focused collimator for proton therapy spot scanning using Monte Carlo methods. Med Phys 2020; 47:2725-2734. [PMID: 32170750 DOI: 10.1002/mp.14139] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE When designing a collimation system for pencil beam spot scanning proton therapy, a decision must be made whether or not to rotate, or focus, the collimator to match beamlet deflection as a function of off-axis distance. If the collimator is not focused, the beamlet shape and fluence will vary as a function of off-axis distance due to partial transmission through the collimator. In this work, we quantify the magnitude of these effects and propose a focused dynamic collimation system (DCS) for use in proton therapy spot scanning. METHODS This study was done in silico using a model of the Miami Cancer Institute's (MCI) IBA Proteus Plus system created in Geant4-based TOPAS. The DCS utilizes rectangular nickel trimmers mounted on rotating sliders that move in synchrony with the pencil beam to provide focused collimation at the edge of the target. Using a simplified setup of the DCS, simulations were performed at various off-axis locations corresponding to beam deflection angles ranging from 0° to 2.5°. At each off-axis location, focused (trimmer rotated) and unfocused (trimmer not rotated) simulations were performed. In all simulations, a 4 cm water equivalent thickness range shifter was placed upstream of the collimator, and a voxelized water phantom that scored dose was placed downstream, each with 4 cm airgaps. RESULTS Increasing the beam deflection angle for an unfocused trimmer caused the collimated edge of the beamlet profile to shift 0.08-0.61 mm from the baseline 0° simulation. There was also an increase in low-dose regions on the collimated edge ranging from 14.6% to 192.4%. Lastly, the maximum dose, D max , was 0-5% higher for the unfocused simulations. With a focused trimmer design, the profile shift and dose increases were all eliminated. CONCLUSIONS We have shown that focusing a collimator in spot scanning proton therapy reduces dose at the collimated edge compared to conventional, unfocused collimation devices and presented a simple, mechanical design for achieving focusing for a range of source-to-collimator distances.
Collapse
Affiliation(s)
- Theodore J Geoghegan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Nicholas P Nelson
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Patrick M Hill
- Department of Human Oncology, University of Wisconsin, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Suresh Rana
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| |
Collapse
|
30
|
Vogel J, Carmona R, Ainsley CG, Lustig RA. The Promise of Proton Therapy for Central Nervous System Malignancies. Neurosurgery 2020; 84:1000-1010. [PMID: 30476191 DOI: 10.1093/neuros/nyy454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/28/2018] [Indexed: 11/15/2022] Open
Abstract
Radiation therapy plays a significant role in management of benign and malignant diseases of the central nervous system. Patients may be at risk of acute and late toxicity from radiation therapy due to dose deposition in critical normal structures. In contrast to conventional photon delivery techniques, proton therapy is characterized by Bragg peak dose deposition which results in decreased exit dose beyond the target and greater sparing of normal structure which may reduce the rate of late toxicities from treatment. Dosimetric studies have demonstrated reduced dose to normal structures using proton therapy as compared to photon therapy. In addition, clinical studies are being reported demonstrating safety, feasibility, and low rates of acute toxicity. Technical challenges in proton therapy remain, including full understanding of depth of proton penetration and the biological activity in the distal Bragg peak. In addition, longer clinical follow-up is required to demonstrate reduction in late toxicities as compared to conventional photon-based radiation techniques. In this review, we summarize the current clinical literature and areas of active investigation in proton therapy for adult central nervous system malignancies.
Collapse
Affiliation(s)
- Jennifer Vogel
- Department of Rad-iation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ruben Carmona
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| | - Christopher G Ainsley
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| | - Robert A Lustig
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
31
|
Lomax AJ. Myths and realities of range uncertainty. Br J Radiol 2020; 93:20190582. [PMID: 31778317 PMCID: PMC7066970 DOI: 10.1259/bjr.20190582] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/01/2019] [Accepted: 11/24/2019] [Indexed: 12/25/2022] Open
Abstract
Range uncertainty is a much discussed topic in proton therapy. Although a very real aspect of proton therapy, its magnitude and consequences are sometimes misunderstood or overestimated. In this article, the sources and consequences of range uncertainty are reviewed, a number of myths associated with the effect discussed with the aim of putting range uncertainty into clinical context and attempting to de-bunk some of the more exaggerated claims made as to its consequences.
Collapse
Affiliation(s)
- Antony John Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Switzerland and Department of Physics, ETH Zurich, Switzerland
| |
Collapse
|
32
|
Schreuder AN, Shamblin J. Proton therapy delivery: what is needed in the next ten years? Br J Radiol 2020; 93:20190359. [PMID: 31692372 PMCID: PMC7066946 DOI: 10.1259/bjr.20190359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/10/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022] Open
Abstract
Proton radiation therapy has been used clinically since 1952, and major advancements in the last 10 years have helped establish protons as a major clinical modality in the cancer-fighting arsenal. Technologies will always evolve, but enough major breakthroughs have been accomplished over the past 10 years to allow for a major revolution in proton therapy. This paper summarizes the major technology advancements with respect to beam delivery that are now ready for mass implementation in the proton therapy space and encourages vendors to bring these to market to benefit the cancer population worldwide. We state why these technologies are essential and ready for implementation, and we discuss how future systems should be designed to accommodate their required features.
Collapse
Affiliation(s)
- Andries N. Schreuder
- Provision Center for Proton therapy – Knoxville, 6450 Provision Cares way, Knoxville, TN 37909, USA
| | - Jacob Shamblin
- ProNova Solutions, LLC, 330 Pellissippi Place, Maryville, TN 37804, USA
| |
Collapse
|
33
|
Yamada M, Sato H, Ieko Y, Miyasaka Y, Kanai T, Yano N, Ono T, Akamatsu H, Harada M, Ichikawa M, Teranishi Y, Kikuchi Y, Nemoto K. In silico comparison of the dosimetric impacts of a greater omentum spacer for abdominal and pelvic tumors in carbon-ion, proton and photon radiotherapy. Radiat Oncol 2019; 14:207. [PMID: 31752932 PMCID: PMC6868713 DOI: 10.1186/s13014-019-1411-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose The purpose of this study was to compare carbon-ion (C-ion), proton and photon radiotherapy (RT) plans with regard to dose reduction of the gastrointestinal (GI) tract by using a greater omentum spacer (GO spacer). Methods We retrospectively retrieved data for ten patients who received the GO spacer as surgical spacer placement for abdominal and pelvic tumors. Simulation plans were created on pre-spacer Computed Tomography (CT) and post-spacer CT for C-ion RT, proton RT and photon RT to compare the dose of the GI tract. The plans were normalized so that at least 95% of the planning target volume (PTV) received 70 Gy (relative biological effectiveness equivalent) delivered in 35 fractions. All plans were created with the lowest possible dose to the GI tract under conditions that meet the dose constraints for the PTV and spinal cord (maximum dose < 45 Gy). The part of the GI tract to be evaluated was defined as that most adjacent to the PTV. C-ion RT plans and proton RT plans were calculated by a spot scanning technique, and photon RT plans were calculated employing by fixed-field intensity-modulated radiation therapy. Results D2 cc and V10–70 of the GI tract were significantly lower on post-spacer plans than on pre-spacer plans for all three RT modalities. Regarding post-spacer plans, D2 cc of the GI tract was significantly lower on C-ion RT plans and proton RT plans than on photon RT plans (C-ion vs photon p = 0.001, proton vs photon p = 0.002). However, there was no significant difference between C-ion RT plans and proton RT plans for D2 cc of the GI tract (C-ion vs proton p = 0.992). In the photon RT plan for one patient, D2 cc of the GI tract did not meet < 50 Gy. Conclusions The GO spacer shows a significant dose reduction effect on the GI tract.
Collapse
Affiliation(s)
- Masayoshi Yamada
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan.
| | - Hiraku Sato
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Yoshiro Ieko
- Department of Heavy Particle Medical Science, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Yuya Miyasaka
- Department of Heavy Particle Medical Science, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Takayuki Kanai
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Natsuko Yano
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Takashi Ono
- Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, 7-172, Yatsuyamada, Koriyama, Fukushima, Japan
| | - Hiroko Akamatsu
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Mayumi Harada
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Mayumi Ichikawa
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Yasushi Teranishi
- Department of General Surgery, Southern Tohoku Proton Therapy Center, 7-172, Yatsuyamada, Koriyama, Fukushima, Japan
| | - Yasuhiro Kikuchi
- Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, 7-172, Yatsuyamada, Koriyama, Fukushima, Japan
| | - Kenji Nemoto
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| |
Collapse
|
34
|
Wang M, Zheng J, Song Y, Zeng X, Li M, Zhang W, Wang P, Shen J. Monte Carlo Simulation Using TOPAS for Gas Chamber Design of PBS Nozzle in Superconducting Proton Therapy Facility. NUCL TECHNOL 2019. [DOI: 10.1080/00295450.2019.1670011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ming Wang
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Jinxing Zheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Yuntao Song
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Xianhu Zeng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Ming Li
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Wuquan Zhang
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Pengyu Wang
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Junsong Shen
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
35
|
Iwata H, Toshito T, Hayashi K, Yamada M, Omachi C, Nakajima K, Hattori Y, Hashimoto S, Kuroda Y, Okumura Y, Mizoe JE, Ogino H, Shibamoto Y. Proton therapy for non-squamous cell carcinoma of the head and neck: planning comparison and toxicity. JOURNAL OF RADIATION RESEARCH 2019; 60:612-621. [PMID: 31147697 PMCID: PMC6805978 DOI: 10.1093/jrr/rrz036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Indexed: 05/20/2023]
Abstract
To investigate optimal treatment planning using proton beams for non-squamous cell carcinoma of the head and neck (NSCHN), the dose distributions of plans involving pencil beam scanning (PBS) with or without a patient-specific aperture system (PSAS), passive-scattering proton therapy (PSPT) and X-ray intensity-modulated radiotherapy (IMRT) were compared. As clinical results, toxicities of PBS with PSAS, including changes in quality of life, were reported. Between April 2014 and August 2016, a total of 30 patients were treated using PBS with PSAS. In 20 patients selected at random, the dose distributions of PBS with or without the PSAS, PSPT and IMRT plans were compared. Neutron exposure by proton therapy was calculated using a Monte Carlo simulation. Toxicities were scored according to CTCAE ver. 4.0. Patients completed EORTC quality of life survey forms (QLQ-C30 and QLQ-HN35) before and 0-12 months after proton therapy. The 95% conformity number of PBS with the PSAS plan was the best, and significant differences were detected among the four plans (P < 0.05, Bonferroni tests). Neutron generation by PSAS was ~1.1-fold higher, but was within an acceptable level. No grade 3 or higher acute dermatitis was observed. Pain, appetite loss and increased weight loss were more likely at the end of treatment, but recovered by the 3 month follow-up and returned to the pretreatment level at the 12 month follow-up. PBS with PSAS reduced the penumbra and improved dose conformity in the planning target volume. PBS with PSAS was tolerated well for NSCHN.
Collapse
Affiliation(s)
- Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
- Corresponding author: Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508 Japan. Tel: +81 52-991-8577; Fax: +81 52-991-8599; E-mail:
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Kensuke Hayashi
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Maho Yamada
- Department of Radiation Therapy, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Chihiro Omachi
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Yukiko Hattori
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Shingo Hashimoto
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Yo Kuroda
- Department of Otorhinolaryngology, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Yoshihide Okumura
- Department of Oral and Maxillofacial Surgery, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Jun-etsu Mizoe
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
- Osaka Heavy Ion Therapy Center, 3-1-10 Otemae, chuo-ku, Osaka, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
36
|
Bäumer C, Fuentes C, Janson M, Matic A, Timmermann B, Wulff J. Stereotactical fields applied in proton spot scanning mode with range shifter and collimating aperture. ACTA ACUST UNITED AC 2019; 64:155003. [DOI: 10.1088/1361-6560/ab2ae7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Poel R, Stuessi Lobmaier A, Andratschke N, Unkelbach J, Tanadini-Lang S, Guckenberger M, Foerster R. Dosimetric comparison of protons vs photons in re-irradiation of intracranial meningioma. Br J Radiol 2019; 92:20190113. [PMID: 31264474 DOI: 10.1259/bjr.20190113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Re-irradiation of recurrent intracranial meningiomas represents a major challenge due to dose limits of critical structures and the necessity of sufficient dose coverage of the recurrent tumor for local control. The aim of this study was to investigate dosimetric differences between pencil beam scanning protons (PBS) and volumetric modulated arc therapy (VMAT) photons for intracranial re-irradiation of meningiomas. METHODS Nine patients who received an initial dose >50 Gy for intracranial meningioma and who were re-irradiated for recurrence were selected for plan comparison. A volumetric modulated arc therapy photon and a pencil beam scanning proton plan were generated (prescription dose: 15 × 3 Gy) based on the targets used in the re-irradiation treatment. RESULTS In all cases, where the cumulative dose exceeded 100 or 90 Gy, these high dose volumes were larger for the proton plans. The integral doses were significantly higher in all photon plans (reduction with protons: 48.6%, p < 0.01). In two cases (22.2%), organ at risk (OAR) sparing was superior with the proton plan. In one case (11.1%), the photon plan showed a dosimetric advantage. In the remaining six cases (66.7%), we found no clinically relevant differences in dose to the OARs. CONCLUSIONS The dosimetric results of the accumulated dose for a re-irradiation with protons and with photons were very similar. The photon plans had a steeper dose falloff directly outside the target and were superior in minimizing the high dose volumes. The proton plans achieved a lower integral dose. Clinically relevant OAR sparing was extremely case specific. The optimal treatment modality should be assessed individually. ADVANCES IN KNOWLEDGE Dose sparing in re-irradiation of intracranial meningiomas with protons or photons is highly case specific and the optimal treatment modality needs to be assessed on an individual basis.
Collapse
Affiliation(s)
- Robert Poel
- 1 Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.,2 Center for Proton Therapy, Paul Scherer Institute (PSI), Villingen, Switzerland
| | | | - Nicolaus Andratschke
- 1 Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- 1 Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Robert Foerster
- 1 Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Ueno K, Matsuura T, Hirayama S, Takao S, Ueda H, Matsuo Y, Yoshimura T, Umegaki K. Physical and biological impacts of collimator-scattered protons in spot-scanning proton therapy. J Appl Clin Med Phys 2019; 20:48-57. [PMID: 31237090 PMCID: PMC6612695 DOI: 10.1002/acm2.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 11/29/2022] Open
Abstract
To improve the penumbra of low‐energy beams used in spot‐scanning proton therapy, various collimation systems have been proposed and used in clinics. In this paper, focused on patient‐specific brass collimators, the collimator‐scattered protons' physical and biological effects were investigated. The Geant4 Monte Carlo code was used to model the collimators mounted on the scanning nozzle of the Hokkaido University Hospital. A systematic survey was performed in water phantom with various‐sized rectangular targets; range (5–20 cm), spread‐out Bragg peak (SOBP) (5–10 cm), and field size (2 × 2–16 × 16 cm2). It revealed that both the range and SOBP dependences of the physical dose increase had similar trends to passive scattering methods, that is, it increased largely with the range and slightly with the SOBP. The physical impact was maximized at the surface (3%–22% for the tested geometries) and decreased with depth. In contrast, the field size (FS) dependence differed from that observed in passive scattering: the increase was high for both small and large FSs. This may be attributed to the different phase‐space shapes at the target boundary between the two dose delivery methods. Next, the biological impact was estimated based on the increase in dose‐averaged linear energy transfer (LETd) and relative biological effectiveness (RBE). The LETd of the collimator‐scattered protons were several keV/μm higher than that of unscattered ones; however, since this large increase was observed only at the positions receiving a small scattered dose, the overall LETd increase was negligible. As a consequence, the RBE increase did not exceed 0.05. Finally, the effects on patient geometries were estimated by testing two patient plans, and a negligible RBE increase (0.9% at most in the critical organs at surface) was observed in both cases. Therefore, the impact of collimator‐scattered protons is almost entirely attributed to the physical dose increase, while the RBE increase is negligible.
Collapse
Affiliation(s)
- Koki Ueno
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shusuke Hirayama
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Seishin Takao
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Hideaki Ueda
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Matsuo
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takaaki Yoshimura
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kikuo Umegaki
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
39
|
Maes D, Regmi R, Taddei P, Bloch C, Bowen S, Nevitt A, Leuro E, Wong T, Rosenfeld A, Saini J. Parametric characterization of penumbra reduction for aperture-collimated pencil beam scanning (PBS) proton therapy. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab0953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Winterhalter C, Meier G, Oxley D, Weber DC, Lomax AJ, Safai S. Contour scanning, multi-leaf collimation and the combination thereof for proton pencil beam scanning. Phys Med Biol 2018; 64:015002. [PMID: 30523928 DOI: 10.1088/1361-6560/aaf2e8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In proton therapy, the lateral fall-off is often used to spare critical organs. It is therefore crucial to improve the penumbra for proton pencil beam scanning. However, previous work has shown that collimation may not be necessary for depths of >15 cm in water. As such, in this work we investigate the effectiveness of a thin multi leaf collimator (just thick enough to completely stop protons with ranges of <15 cm in water) for energy layer specific collimation in patient geometries, when applied in combination with both grid and contour scanned PBS proton therapy. For this, an analytical model of collimated beam shapes, based solely on data available in the treatment planning system, has been included in the optimization, with the resulting optimised plans then being recalculated using Monte Carlo in order to most accurately simulate the full physics effects of the collimator. For grid based scanning, energy specific collimation has been found to reduce the V30 outside the PTV by 19.8% for an example patient when compared to the same pencil beam placement without collimation. V30 could be even reduced by a further 5.6% when combining collimation and contour scanning. In addition, mixed plans, consisting of contour scanning for deep fields (max range >15 cm WER) and collimated contour scanning for superficial fields (<15 cm), have been created for four patients, by which V30 could be reduced by 0.8% to 8.0% and the mean dose to the brain stem by 1.5% to 3.3%. Target dose homogeneity however is not substantially different when compared to the best un-collimated scenario. In conclusion, we demonstrate the potential advantages of a thin, multi leaf collimator in combination with contour scanning for energy layer specific collimation in PBS proton therapy.
Collapse
Affiliation(s)
- Carla Winterhalter
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland. Physics Department, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Lomax A. What will the medical physics of proton therapy look like 10 yr from now? A personal view. Med Phys 2018; 45:e984-e993. [DOI: 10.1002/mp.13206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 07/29/2018] [Accepted: 08/31/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Antony Lomax
- Centre for Proton Therapy Paul Scherrer Institute 5232 Villigen Aargau Switzerland
| |
Collapse
|
42
|
Farr JB, Flanz JB, Gerbershagen A, Moyers MF. New horizons in particle therapy systems. Med Phys 2018; 45:e953-e983. [DOI: 10.1002/mp.13193] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 05/28/2018] [Accepted: 07/14/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jonathan B. Farr
- Department of Medical Physics Applications of Detectors and Accelerators to Medicine SA 1217 Geneva Switzerland
| | - Jacob B. Flanz
- Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School Boston MAUSA
| | - Alexander Gerbershagen
- Department of Engineering European Organization for Nuclear Research (CERN) 1211 Geneva 23 Switzerland
| | - Michael F. Moyers
- Department of Medical Physics Shanghai Proton and Heavy Ion Center Shanghai 201315 China
| |
Collapse
|
43
|
Kim DH, Park S, Jo K, Cho S, Shin E, Lim DH, Pyo H, Han Y, Suh TS. Investigations of line scanning proton therapy with dynamic multi-leaf collimator. Phys Med 2018; 55:47-55. [DOI: 10.1016/j.ejmp.2018.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
|
44
|
Farr JB, Moskvin V, Lukose RC, Tuomanen S, Tsiamas P, Yao W. Development, commissioning, and evaluation of a new intensity modulated minibeam proton therapy system. Med Phys 2018; 45:4227-4237. [PMID: 30009481 DOI: 10.1002/mp.13093] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To invent, design, construct, and commission an intensity modulated minibeam proton therapy system (IMMPT) without the need for physical collimation and to compare its resulting conformity to a conventional IMPT system. METHODS A proton therapy system (Hitachi, Ltd, Hitachi City, Japan; Model: Probeat-V) was specially modified to produce scanned minibeams without collimation. We performed integral depth dose acquisitions and calibrations using a large diameter parallel-plate ionization chamber in a scanning water phantom (PTW, Freiburg, Germany; Models: Bragg Peak ionization chamber, MP3-P). Spot size and shape was measured using radiochromic film (Ashland Advanced Materials, Bridgewater NJ; Type: EBT3), and a synthetic diamond diode type scanned point by point in air (PTW Models: MicroDiamond, MP3-P). The measured data were used as inputs to generate a Monte Carlo-based model for a commercial radiotherapy planning system (TPS) (Varian Medical Systems, Inc., Palo Alto, CA; Model: Eclipse v13.7.15). The regular ProBeat-V system (sigma ~2.5 mm) TPS model was available for comparison. A simulated base of skull case with small and medium targets proximal to brainstem was planned for both systems and compared. RESULTS The spot sigma is determined to be 1.4 mm at 221 MeV at the isocenter and below 1 mm at proximal distances. Integral depth doses were indistinguishable from the standard spot commissioning data. The TPS fit the spot profiles closely, giving a residual error maximum of 2.5% in the spot penumbra tails (below 5% of maximum) from the commissioned energies 69.4 to 221.3 MeV. The resulting IMMPT plans were more conformal than the IMPT plans due to a sharper dose gradient (90-10%) 1.5 mm smaller for the small target, and 1.3 mm for the large target, at a representative central axial water equivalent depth of 7 cm. CONCLUSIONS We developed, implemented, and tested a new IMMPT system. The initial results look promising in cases where treatments can benefit from additional dose sparing to neighboring sensitive structures.
Collapse
Affiliation(s)
- J B Farr
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - V Moskvin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - R C Lukose
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - S Tuomanen
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - P Tsiamas
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - W Yao
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| |
Collapse
|
45
|
Michiels S, Barragán AM, Souris K, Poels K, Crijns W, Lee JA, Sterpin E, Nuyts S, Haustermans K, Depuydt T. Patient-specific bolus for range shifter air gap reduction in intensity-modulated proton therapy of head-and-neck cancer studied with Monte Carlo based plan optimization. Radiother Oncol 2018; 128:161-166. [DOI: 10.1016/j.radonc.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 09/09/2017] [Indexed: 12/25/2022]
|
46
|
Bäumer C, Janson M, Timmermann B, Wulff J. Collimated proton pencil-beam scanning for superficial targets: impact of the order of range shifter and aperture. ACTA ACUST UNITED AC 2018; 63:085020. [DOI: 10.1088/1361-6560/aab79c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Vogel J, Both S, Kirk M, Chao HH, Bagatell R, Li Y, Womer R, Balamuth N, Reilly A, Kurtz G, Lustig R, Tochner Z, Hill-Kayser C. Proton therapy for pediatric head and neck malignancies. Pediatr Blood Cancer 2018; 65. [PMID: 29058370 DOI: 10.1002/pbc.26858] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Pediatric head and neck malignancies are managed with intensive multimodality therapy. Proton beam therapy (PBT) may reduce toxicity by limiting exposure of normal tissue to radiation. In this study, we report acute toxicities and early outcomes following PBT for pediatric head and neck malignancies. MATERIALS AND METHODS Between 2010 and 2016, pediatric patients with nonhematologic malignancies of the head and neck were treated with PBT. Clinical and dosimetric data were abstracted from the medical record and treatment planning system with institutional review board approval. RESULTS Sixty-nine consecutive pediatric patients were treated with proton-based radiotherapy for head and neck malignancies. Thirty-five were treated for rhabdomyosarcoma to a median dose of 50.4 Gy relative biological effectiveness [RBE]. Ten patients were treated for Ewing sarcoma to a median dose of 55.8 Gy[RBE]. Twenty-four patients were treated for other histologies to a median dose of 63.0 Gy[RBE]. Grade 3 oral mucositis, anorexia, and dysphagia were reported to be 4, 22, and 7%, respectively. Actuarial 1-year freedom from local recurrence was 92% (95% CI 80-97). Actuarial 1-year overall survival was 93% (95% CI 79-98) in the entire cohort. Oral cavity mucositis was significantly correlated with oral cavity dose (D80 and D50 [P < 0.05], where D80 and D50 are dose to 50% of the volume and dose to 80% of the volume, respectively). CONCLUSIONS In this study, we report low rates of acute toxicity in a cohort of pediatric patients with head and neck malignancies. PBT appears safe for this patient population, with local control rates similar to historical reports. Longer follow-up will be required to evaluate late toxicity and long-term disease control.
Collapse
Affiliation(s)
- Jennifer Vogel
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefan Both
- Medical Physics Department, University Medical Center Groningen, Groningen, The Netherlands
| | - Maura Kirk
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hann-Hsiang Chao
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rochelle Bagatell
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yimei Li
- Department of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Richard Womer
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Naomi Balamuth
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Anne Reilly
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Goldie Kurtz
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Lustig
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zelig Tochner
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christine Hill-Kayser
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Winterhalter C, Lomax A, Oxley D, Weber DC, Safai S. A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy. Phys Med Biol 2018; 63:025022. [PMID: 29324441 DOI: 10.1088/1361-6560/aaa2ad] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The lateral fall-off is crucial for sparing organs at risk in proton therapy. It is therefore of high importance to minimize the penumbra for pencil beam scanning (PBS). Three optimisation approaches are investigated: edge-collimated uniformly weighted spots (collimation), pencil beam optimisation of uncollimated pencil beams (edge-enhancement) and the optimisation of edge collimated pencil beams (collimated edge-enhancement). To deliver energies below 70 MeV, these strategies are evaluated in combination with the following pre-absorber methods: field specific fixed thickness pre-absorption (fixed), range specific, fixed thickness pre-absorption (automatic) and range specific, variable thickness pre-absorption (variable). All techniques are evaluated by Monte Carlo simulated square fields in a water tank. For a typical air gap of 10 cm, without pre-absorber collimation reduces the penumbra only for water equivalent ranges between 4-11 cm by up to 2.2 mm. The sharpest lateral fall-off is achieved through collimated edge-enhancement, which lowers the penumbra down to 2.8 mm. When using a pre-absorber, the sharpest fall-offs are obtained when combining collimated edge-enhancement with a variable pre-absorber. For edge-enhancement and large air gaps, it is crucial to minimize the amount of material in the beam. For small air gaps however, the superior phase space of higher energetic beams can be employed when more material is used. In conclusion, collimated edge-enhancement combined with the variable pre-absorber is the recommended setting to minimize the lateral penumbra for PBS. Without collimator, it would be favourable to use a variable pre-absorber for large air gaps and an automatic pre-absorber for small air gaps.
Collapse
Affiliation(s)
- C Winterhalter
- Centre for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Proton therapy for locally advanced breast cancer: A systematic review of the literature. Cancer Treat Rev 2017; 63:19-27. [PMID: 29197746 DOI: 10.1016/j.ctrv.2017.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Radiation therapy plays a major role in the management of adjuvant breast cancer with nodal involvement, with an iatrogenic increase of cardio-vascular risk. Photon therapy, even with intensity modulation, has the downsides of high mean heart dose and heterogeneous target coverage, particularly in the case of internal mammary irradiation. This systematic review of the literature aims to evaluate proton therapy in locally advanced breast cancer. MATERIAL AND METHODS PubMed was searched for original full-text articles with the following search terms: «Proton Therapy» and «Breast Cancer». On-going trials were collected using the words "Breast Cancer" and "Protons". RESULTS 13 articles met the criteria: 6 with passive proton therapy (Double Scattering), 5 with Pencil Beam Scanning (PBS) and 2 with a combination of both. Proton therapy offered a better target coverage than photons, even compared with intensity modulation radiation therapy (including static or rotational IMRT or tomotherapy). With proton therapy, volumes receiving 95% of the dose were around 98%, with low volumes receiving 105% of the dose. Proton therapy often decreased mean heart dose by a factor of 2 or 3, i.e. 1 Gy with proton therapy versus 3 Gy with conventional 3D, and 6 Gy for IMRT. Lungs were better spared with proton therapy than with photon therapy. Cutaneous toxicity observed with double scattering is improved with PBS. CONCLUSION Proton therapy reduces mean heart dose in breast cancer irradiation, probably reducing late cardio-vascular toxicity. Large clinical studies will likely confirm a clinical benefit of proton therapy.
Collapse
|
50
|
Kim DH, Cho S, Jo K, Shin E, Hong CS, Park S, Lim DH, Han Y, Suh TS, Kim J. Abstract ID: 29 Assessment of neutron dose equivalent during line scanning proton therapy using dynamic multi-leaf collimator. Phys Med 2017. [DOI: 10.1016/j.ejmp.2017.09.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|