1
|
Hsu JC, Lau KC, Barragan D, Mossburg KJ, Cormode DP, Maidment ADA. Influence of Acquisition Parameters on Silver Sulfide Nanoparticle Contrast in Photon-Counting Digital Mammography: A Phantom Study. ACS APPLIED NANO MATERIALS 2024; 7:4805-4813. [PMID: 39882402 PMCID: PMC11774497 DOI: 10.1021/acsanm.3c05431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Photon-counting mammography is an emerging modality that allows for spectral imaging and provides a differentiation of material compositions. The development of photon-counting mammography-specific contrast agents has yet to be explored. In this study, the contrast, sensitivity, and organ dose between silver sulfide nanoparticles (Ag2S-NPs) and a clinically approved iodinated agent (iopamidol) were investigated using a contrast-embedded gradient ramp phantom and a prototype scanner. For a given agent, the signal intensity increased with concentration, tube voltage (kV), and high bin fraction, while remaining constant with the tube current exposure time product (mAs). Moreover, Ag2S-NPs produced significantly stronger contrast and improved sensitivity compared to iodine, especially when imaged at lower tube energies. Therefore, the use of photon-counting techniques and a silver-based contrast agent may markedly increase the contrast and contrast-to-noise ratios or reduce the radiation dose for contrast-enhanced mammography. Silver may be better suited than iodine for contrast agent development for spectral photon-counting mammography.
Collapse
Affiliation(s)
- Jessica C Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kristen C Lau
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Diego Barragan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katherine J Mossburg
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew D A Maidment
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Xue M, Zhang M, Li S, Zou Y, Zhu Q. Automated pipeline for breast cancer diagnosis using US assisted diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:6072-6087. [PMID: 38021111 PMCID: PMC10659805 DOI: 10.1364/boe.502244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Ultrasound (US)-guided diffuse optical tomography (DOT) is a portable and non-invasive imaging modality for breast cancer diagnosis and treatment response monitoring. However, DOT data pre-processing and imaging reconstruction often require labor intensive manual processing which hampers real-time diagnosis. In this study, we aim at providing an automated US-assisted DOT pre-processing, imaging and diagnosis pipeline to achieve near real-time diagnosis. We have developed an automated DOT pre-processing method including motion detection, mismatch classification using deep-learning approach, and outlier removal. US-lesion information needed for DOT reconstruction was extracted by a semi-automated lesion segmentation approach combined with a US reading algorithm. A deep learning model was used to evaluate the quality of the reconstructed DOT images and a two-step deep-learning model developed earlier is implemented to provide final diagnosis based on US imaging features and DOT measurements and imaging results. The presented US-assisted DOT pipeline accurately processed the DOT measurements and reconstruction and reduced the procedure time to 2 to 3 minutes while maintained a comparable classification result with manually processed dataset.
Collapse
Affiliation(s)
- Minghao Xue
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Menghao Zhang
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Shuying Li
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yun Zou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Yun S, Kim Y, Kim H, Lee S, Jeong U, Lee H, Choi YW, Cho S. Three-compartment-breast (3CB) prior-guided diffuse optical tomography based on dual-energy digital breast tomosynthesis (DBT). BIOMEDICAL OPTICS EXPRESS 2021; 12:4837-4851. [PMID: 34513228 PMCID: PMC8407844 DOI: 10.1364/boe.431244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 05/18/2023]
Abstract
Diffuse optical tomography (DOT) is a non-invasive functional imaging modality that uses near-infrared (NIR) light to measure the oxygenation state and the concentration of hemoglobin. By complementarily using DOT with other anatomical imaging modalities, physicians can diagnose more accurately through additional functional image information. In breast imaging, diagnosis of dense breasts is often challenging because the bulky fibrous tissues may hinder the correct tumor characterization. In this work, we proposed a three-compartment-breast (3CB) decomposition-based prior-guided optical tomography for enhancing DOT image quality. We conjectured that the 3CB prior would lead to improvement of the spatial resolution and also of the contrast of the reconstructed tumor image, particularly for the dense breasts. We conducted a Monte-Carlo simulation to acquire dual-energy X-ray projections of a realistic 3D numerical breast phantom and performed digital breast tomosynthesis (DBT) for setting up a 3CB model. The 3CB prior was then used as a structural guide in DOT image reconstruction. The proposed method resulted in the higher spatial resolution of the recovered tumor even when the tumor is surrounded by the fibroglandular tissues compared with the typical two-composition-prior method or the standard Tikhonov regularization method.
Collapse
Affiliation(s)
- Sungho Yun
- Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Yejin Kim
- Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyeongseok Kim
- Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Republic of Korea
- KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea
| | - Seoyoung Lee
- Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Uijin Jeong
- Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hoyeon Lee
- Department of Radiation and Oncology, MGH, Boston 02114, USA
| | - Young-wook Choi
- Korea Electrotechnology Research Institute, Ansan 15588, Republic of Korea
| | - Seungryong Cho
- Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Republic of Korea
- KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea
- KAIST Institutes for ITC and HST, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Breast density measured volumetrically in a clinical environment: cross-sectional study with photon counting technology. Breast Cancer Res Treat 2019; 179:755-762. [DOI: 10.1007/s10549-019-05502-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
|
5
|
Makeev A, Ikejimba LC, Salad J, Glick SJ. Objective assessment of task performance: a comparison of two FFDM detectors using an anthropomorphic breast phantom. J Med Imaging (Bellingham) 2019; 6:043503. [PMID: 31646153 DOI: 10.1117/1.jmi.6.4.043503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Current digital mammography systems primarily employ one of two types of detectors: indirect conversion, typically using a cesium-iodine scintillator integrated with an amorphous silicon photodiode matrix, or direct conversion, using a photoconductive layer of amorphous selenium (a-Se) combined with thin-film transistor array. The goal of this study was to evaluate a methodology for objectively assessing image quality to compare human observer task performance in detecting microcalcification clusters and extended mass-like lesions achieved with different detector types. The proposed assessment methodology uses a novel anthropomorphic breast phantom fabricated with ink-jet printing. In addition to human observer detection performance, standard linear metrics such as modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were also measured to assess image quality. An Analogic Anrad AXS-2430 a-Se detector used in a commercial FFDM/DBT system and a Teledyne Dalsa Xineos-2329 with CMOS pixel readout were evaluated and compared. The DQE of each detector was similar over a range of exposures. Similar task performance in detecting microcalcifications and masses was observed between the two detectors over a range of clinically applicable dose levels, with some perplexing differences in the detection of microcalcifications at the lowest dose measurement. The evaluation approach presented seems promising as a new technique for objective assessment of breast imaging technology.
Collapse
Affiliation(s)
- Andrey Makeev
- Food and Drug Administration, Silver Spring, Maryland, United States
| | - Lynda C Ikejimba
- Food and Drug Administration, Silver Spring, Maryland, United States
| | - Jesse Salad
- George Washington University, Washington DC, United States
| | - Stephen J Glick
- Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
6
|
Evaluation of photon-counting spectral mammography for classification of breast microcalcifications. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
A Review of the Role of Augmented Intelligence in Breast Imaging: From Automated Breast Density Assessment to Risk Stratification. AJR Am J Roentgenol 2019; 212:259-270. [DOI: 10.2214/ajr.18.20391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Fredenberg E, Willsher P, Moa E, Dance DR, Young KC, Wallis MG. Measurement of breast-tissue x-ray attenuation by spectral imaging: fresh and fixed normal and malignant tissue. Phys Med Biol 2018; 63:235003. [PMID: 30465547 DOI: 10.1088/1361-6560/aaea83] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. In mammography, measurement of breast density, dose estimation, and differentiation between cysts and solid tumours are example applications requiring accurate data on tissue attenuation. Published attenuation data are, however, sparse and cover a relatively wide range. To supplement available data we have previously measured the attenuation of cyst fluid and solid lesions using photon-counting spectral mammography. The present study aims to measure the attenuation of normal adipose and glandular tissue, and to measure the effect of formalin fixation, a major uncertainty in published data. A total of 27 tumour specimens, seven fibro-glandular tissue specimens, and 15 adipose tissue specimens were included. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, from which x-ray attenuation as a function of energy can be derived. The spread in attenuation between samples was relatively large, partly because of natural variation. The variation of malignant and glandular tissue was similar, whereas that of adipose tissue was lower. Formalin fixation slightly altered the attenuation of malignant and glandular tissue, whereas the attenuation of adipose tissue was not significantly affected. The difference in attenuation between fresh tumour tissue and cyst fluid was smaller than has previously been measured for fixed tissue, but the difference was still significant and discrimination of these two tissue types is still possible. The difference between glandular and malignant tissue was close-to significant; it is reasonable to expect a significant difference with a larger set of samples. We believe that our studies have contributed to lower the overall uncertainty of breast tissue attenuation in the literature due to the relatively large sample sets, the novel measurement method, and by clarifying the difference between fresh and fixed tissue.
Collapse
Affiliation(s)
- Erik Fredenberg
- Philips Research, Knarrarnäsgatan 7, 164 85 Kista, Sweden. Philips Health Systems, Mammography Solutions, Torshamnsgatan 30A, 164 40 Kista, Sweden. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
9
|
Ghammraoui B, Badal A, Glick SJ. Feasibility of estimating volumetric breast density from mammographic x-ray spectra using a cadmium telluride photon-counting detector. Med Phys 2018; 45:3604-3613. [PMID: 29862520 DOI: 10.1002/mp.13031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Mammographic density of glandular breast tissue has a masking effect that can reduce lesion detection accuracy and is also a strong risk factor for breast cancer. Therefore, accurate quantitative estimation of breast density is clinically important. In this study, we investigate experimentally the feasibility of quantifying volumetric breast density with spectral mammography using a CdTe-based photon-counting detector. METHODS To demonstrate proof-of-principle, this study was carried out using the single pixel Amptek XR-100T-CdTe detector. The total number of x rays recorded by the detector from a single pencil-beam projection through 50%/50% of adipose/glandular mass fraction-equivalent phantoms was measured. Material decomposition assuming two, four, and eight energy bins was then applied to characterize the inspected phantom into adipose and glandular using log-likelihood estimation, taking into account the polychromatic source, the detector response function, and the energy-dependent attenuation. RESULTS Measurement tests were carried out for different doses, kVp settings, and different breast sizes. For dose of 1 mGy and above, the percent relative root mean square (RMS) errors of the estimated breast density was measured below 7% for all three phantom studies. It was also observed that some decrease in RMS errors was achieved using eight energy bins. For 3 and 4 cm thick phantoms, performance at 40 and 45 kVp showed similar performance. However, it was observed that 45 kVp showed better performance for a phantom thickness of 6 cm at low dose levels due to increased statistical variation at lower photon count levels with 40 kVp. CONCLUSION The results of the current study suggest that photon-counting spectral mammography systems using CdTe detectors have the potential to be used for accurate quantification of volumetric breast density on a pixel-to-pixel basis, with an RMS error of less than 7%.
Collapse
Affiliation(s)
- Bahaa Ghammraoui
- Office of Science and Engineering Laboratories, CDRH, U.S. Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| | - Andreu Badal
- Office of Science and Engineering Laboratories, CDRH, U.S. Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| | - Stephen J Glick
- Office of Science and Engineering Laboratories, CDRH, U.S. Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| |
Collapse
|
10
|
Deng B, Lundqvist M, Fang Q, Carp SA. Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2018; 9:1130-1150. [PMID: 29541508 PMCID: PMC5846518 DOI: 10.1364/boe.9.001130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 05/18/2023]
Abstract
Near-infrared diffuse optical tomography (NIR-DOT) is an emerging technology that offers hemoglobin based, functional imaging tumor biomarkers for breast cancer management. The most promising clinical translation opportunities are in the differential diagnosis of malignant vs. benign lesions, and in early response assessment and guidance for neoadjuvant chemotherapy. Accurate quantification of the tissue oxy- and deoxy-hemoglobin concentration across the field of view, as well as repeatability during longitudinal imaging in the context of therapy guidance, are essential for the successful translation of NIR-DOT to clinical practice. The ill-posed and ill-condition nature of the DOT inverse problem makes this technique particularly susceptible to model errors that may occur, for example, when the experimental conditions do not fully match the assumptions built into the image reconstruction process. To evaluate the susceptibility of DOT images to experimental errors that might be encountered in practice for a parallel-plate NIR-DOT system, we simulated 7 different types of errors, each with a range of magnitudes. We generated simulated data by using digital breast phantoms derived from five actual mammograms of healthy female volunteers, to which we added a 1-cm tumor. After applying each of the experimental error types and magnitudes to the simulated measurements, we reconstructed optical images with and without structural prior guidance and assessed the overall error in the total hemoglobin concentrations (HbT) and in the HbT contrast between the lesion and surrounding area vs. the best-case scenarios. It is found that slight in-plane probe misalignment and plate rotation did not result in large quantification errors. However, any out-of-plane probe tilting could result in significant deterioration in lesion contrast. Among the error types investigated in this work, optical images were the least likely to be impacted by breast shape inaccuracies but suffered the largest deterioration due to cross-talk between signal channels. However, errors in optical images could be effectively controlled when experimental parameters were properly estimated during data acquisition and accounted for in the image processing procedure. Finally, optical images recovered using structural priors were, in general, less susceptible to experimental errors; however, lesion contrasts were more sensitive to errors when tumor locations were used as a priori info. Findings in this simulation study can provide guidelines for system design and operation in optical breast imaging studies.
Collapse
Affiliation(s)
- Bin Deng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Mats Lundqvist
- Philips Healthcare, Torshamnsgatan 30A, 164 40 Kista, Sweden
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| |
Collapse
|
11
|
Berggren K, Cederström B, Lundqvist M, Fredenberg E. Characterization of photon-counting multislit breast tomosynthesis. Med Phys 2017; 45:549-560. [DOI: 10.1002/mp.12684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Karl Berggren
- Physics of Medical Imaging; Royal Institute of Technology; AlbaNova University Center; 106 91 Stockholm Sweden
- Philips Mammography Solutions; 164 40 Kista Sweden
| | | | | | | |
Collapse
|
12
|
Pavia Y, Brambilla A, Rebuffel V, Freud N, Létang JM, Verger L. Breast density and iodine quantification in spectral mammography. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa8f59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Ding H, Molloi S. Quantitative contrast-enhanced spectral mammography based on photon-counting detectors: A feasibility study. Med Phys 2017; 44:3939-3951. [PMID: 28432828 PMCID: PMC5553693 DOI: 10.1002/mp.12296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/27/2023] Open
Abstract
PURPOSE To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. MATERIALS AND METHODS A computer simulation model was developed to evaluate the performance of a photon-counting spectral mammography system in the application of contrast-enhanced spectral mammography. A figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and prefiltrations for breasts of various thicknesses and densities. Experimental phantom studies were also performed using a beam energy of 40 kVp and a splitting energy of 34 keV with 3 mm Al prefiltration. A two-step calibration method was investigated to quantify the iodine mass thickness, and was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy log-weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known value to characterize the quantification accuracy and precision. RESULTS The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy between 42 and 46 kVp with a splitting energy at 34 keV. The optimal tube voltage decreased as the breast thickness or the Al prefiltration increased. The proposed quantification method was able to measure iodine mass thickness on phantoms of various thicknesses and densities with high accuracy. The root-mean-square (RMS) error for cm-scale lesion phantoms was estimated to be 0.20 mg/cm2 . The precision of the technique, characterized by the standard deviation of the measurements, was estimated to be 0.18 mg/cm2 . The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. CONCLUSION The results of this study suggest that iodine mass thickness for cm-scale lesions can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differential power for malignancy.
Collapse
Affiliation(s)
- Huanjun Ding
- Department of Radiological SciencesUniversity of CaliforniaIrvineCA92697USA
| | - Sabee Molloi
- Department of Radiological SciencesUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
14
|
Johansson H, von Tiedemann M, Erhard K, Heese H, Ding H, Molloi S, Fredenberg E. Breast-density measurement using photon-counting spectral mammography. Med Phys 2017; 44:3579-3593. [DOI: 10.1002/mp.12279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/12/2017] [Accepted: 03/23/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Henrik Johansson
- Philips Health Systems; Mammography Solutions; Torshamnsgatan 30A 164 40 Kista Sweden
| | - Miriam von Tiedemann
- Philips Health Systems; Mammography Solutions; Torshamnsgatan 30A 164 40 Kista Sweden
| | - Klaus Erhard
- Philips Research; Röntgenstrasse 24-26 22335 Hamburg Germany
| | - Harald Heese
- Philips Research; Röntgenstrasse 24-26 22335 Hamburg Germany
| | - Huanjun Ding
- Department of Radiological Sciences; University of California; Irvine CA 92697 USA
| | - Sabee Molloi
- Department of Radiological Sciences; University of California; Irvine CA 92697 USA
| | - Erik Fredenberg
- Philips Health Systems; Mammography Solutions; Torshamnsgatan 30A 164 40 Kista Sweden
| |
Collapse
|
15
|
Cho HM, Ding H, Kumar N, Sennung D, Molloi S. Calibration phantoms for accurate water and lipid density quantification using dual energy mammography. Phys Med Biol 2017; 62:4589-4603. [DOI: 10.1088/1361-6560/aa6f31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Ghammraoui B, Glick SJ. Investigating the feasibility of classifying breast microcalcifications using photon-counting spectral mammography: A simulation study. Med Phys 2017; 44:2304-2311. [DOI: 10.1002/mp.12230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 11/11/2022] Open
Affiliation(s)
- Bahaa Ghammraoui
- Office of Science and Engineering Laboratories; CDRH; U.S. Food and Drug Administration; Silver Spring MD 20993-0002 USA
| | - Stephen J. Glick
- Office of Science and Engineering Laboratories; CDRH; U.S. Food and Drug Administration; Silver Spring MD 20993-0002 USA
| |
Collapse
|
17
|
Arboleda C, Wang Z, Koehler T, Martens G, Van Stevendaal U, Bartels M, Villanueva-Perez P, Roessl E, Stampanoni M. Sensitivity-based optimization for the design of a grating interferometer for clinical X-ray phase contrast mammography. OPTICS EXPRESS 2017; 25:6349-6364. [PMID: 28380987 DOI: 10.1364/oe.25.006349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An X-ray grating interferometer (GI) suitable for clinical mammography must comply with quite strict dose, scanning time and geometry limitations, while being able to detect tumors, microcalcifications and other abnormalities. Such a design task is not straightforward, since obtaining optimal phase-contrast and dark-field signals with clinically compatible doses and geometrical constraints is remarkably challenging. In this work, we present a wave propagation based optimization that uses the phase and dark-field sensitivities as figures of merit. This method was used to calculate the optimal interferometer designs for a commercial mammography setup. Its accuracy was validated by measuring the visibility of polycarbonate samples of different thicknesses on a Talbot-Lau interferometer installed on this device and considering some of the most common grating imperfections to be able to reproduce the experimental values. The optimization method outcomes indicate that small grating pitches are required to boost sensitivity in such a constrained setup and that there is a different optimal scenario for each signal type.
Collapse
|
18
|
Lee Y, Lee S, Kang S, Eom J. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Ding H, Sennung D, Cho HM, Molloi S. Quantification of breast lesion compositions using low-dose spectral mammography: A feasibility study. Med Phys 2016; 43:5527. [PMID: 27782705 PMCID: PMC5035310 DOI: 10.1118/1.4962481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 01/15/2023] Open
Abstract
PURPOSE The positive predictive power for malignancy can potentially be improved, if the chemical compositions of suspicious breast lesions can be reliably measured in screening mammography. The purpose of this study is to investigate the feasibility of quantifying breast lesion composition, in terms of water and lipid contents, with spectral mammography. METHODS Phantom and tissue samples were imaged with a spectral mammography system based on silicon-strip photon-counting detectors. Dual-energy calibration was performed for material decomposition, using plastic water and adipose-equivalent phantoms as the basis materials. The step wedge calibration phantom consisted of 20 calibration configurations, which ranged from 2 to 8 cm in thickness and from 0% to 100% in plastic water density. A nonlinear rational fitting function was used in dual-energy calibration of the imaging system. Breast lesion phantoms, made from various combinations of plastic water and adipose-equivalent disks, were embedded in a breast mammography phantom with a heterogeneous background pattern. Lesion phantoms with water densities ranging from 0% to 100% were placed at different locations of the heterogeneous background phantom. The water density in the lesion phantoms was measured using dual-energy material decomposition. The thickness and density of the background phantom were varied to test the accuracy of the decomposition technique in different configurations. In addition, an in vitro study was also performed using mixtures of lean and fat bovine tissue of 25%, 50%, and 80% lean weight percentages as the background. Lesions were simulated by using breast lesion phantoms, as well as small bovine tissue samples, composed of carefully weighed lean and fat bovine tissues. The water densities in tissue samples were measured using spectral mammography and compared to measurement using chemical decomposition of the tissue. RESULTS The thickness of measured and known water contents was compared for various lesion configurations. There was a good linear correlation between the measured and the known values. The root-mean-square errors in water thickness measurements were 0.3 and 0.2 mm for the plastic phantom and bovine tissue backgrounds, respectively. CONCLUSIONS The results indicate that spectral mammography can be used to accurately characterize breast lesion composition in terms of their equivalent water and lipid contents.
Collapse
Affiliation(s)
- Huanjun Ding
- Department of Radiological Sciences, University of California, Irvine, California 92697
| | - David Sennung
- Department of Radiological Sciences, University of California, Irvine, California 92697
| | - Hyo-Min Cho
- Department of Radiological Sciences, University of California, Irvine, California 92697
| | - Sabee Molloi
- Department of Radiological Sciences, University of California, Irvine, California 92697
| |
Collapse
|
20
|
Lau S, Ng KH, Abdul Aziz YF. Volumetric breast density measurement: sensitivity analysis of a relative physics approach. Br J Radiol 2016; 89:20160258. [PMID: 27452264 DOI: 10.1259/bjr.20160258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise. METHODS 3317 raw digital mammograms were processed with Volpara(®) (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images. RESULTS Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p < 0.0001). Maximum shifts in the mean (1.2%) and median (1.1%) VBD of the study population occurred when CBT was varied. CONCLUSION Volpara was robust to expected clinical variations, with errors in most investigated parameters giving limited changes in results, although extreme variations in CBT and kVp could lead to greater errors. ADVANCES IN KNOWLEDGE Despite Volpara's robustness, rigorous quality control is essential to keep the parameter errors within reasonable bounds. Volpara appears robust within those bounds, albeit for more advanced applications such as tracking density change over time, it remains to be seen how accurate the measures need to be.
Collapse
Affiliation(s)
- Susie Lau
- 1 Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,2 University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwan Hoong Ng
- 1 Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,2 University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yang Faridah Abdul Aziz
- 1 Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,2 University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Winkel RR, von Euler-Chelpin M, Nielsen M, Petersen K, Lillholm M, Nielsen MB, Lynge E, Uldall WY, Vejborg I. Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case-control study. BMC Cancer 2016; 16:414. [PMID: 27387546 PMCID: PMC4936245 DOI: 10.1186/s12885-016-2450-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/21/2016] [Indexed: 01/12/2023] Open
Abstract
Background Mammographic density is a well-established risk factor for breast cancer. We investigated the association between three different methods of measuring density or parenchymal pattern/texture on digitized film-based mammograms, and examined to what extent textural features independently and jointly with density can improve the ability to identify screening women at increased risk of breast cancer. Methods The study included 121 cases and 259 age- and time matched controls based on a cohort of 14,736 women with negative screening mammograms from a population-based screening programme in Denmark in 2007 (followed until 31 December 2010). Mammograms were assessed using the Breast Imaging-Reporting and Data System (BI-RADS) density classification, Tabár’s classification on parenchymal patterns and a fully automated texture quantification technique. The individual and combined association with breast cancer was estimated using binary logistic regression to calculate Odds Ratios (ORs) and the area under the receiver operating characteristic (ROC) curves (AUCs). Results Cases showed significantly higher BI-RADS and texture scores on average than controls (p < 0.001). All three methods were individually able to segregate women into different risk groups showing significant ORs for BI-RADS D3 and D4 (OR: 2.37; 1.32–4.25 and 3.93; 1.88–8.20), Tabár’s PIII and PIV (OR: 3.23; 1.20–8.75 and 4.40; 2.31–8.38), and the highest quartile of the texture score (3.04; 1.63–5.67). AUCs for BI-RADS, Tabár and the texture scores (continuous) were 0.63 (0.57–0–69), 0.65 (0.59–0–71) and 0.63 (0.57–0–69), respectively. Combining two or more methods increased model fit in all combinations, demonstrating the highest AUC of 0.69 (0.63-0.74) when all three methods were combined (a significant increase from standard BI-RADS alone). Conclusion Our findings suggest that the (relative) amount of fibroglandular tissue (density) and mammographic structural features (texture/parenchymal pattern) jointly can improve risk segregation of screening women, using information already available from normal screening routine, in respect to future personalized screening strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2450-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rikke Rass Winkel
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark.
| | - My von Euler-Chelpin
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, DK-1014, Copenhagen K, Denmark
| | - Mads Nielsen
- Department of Computer Sciences, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark.,Biomediq, Fruebjergvej 3, DK-2100, Copenhagen Ø, Denmark
| | - Kersten Petersen
- Department of Computer Sciences, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | | | - Michael Bachmann Nielsen
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Elsebeth Lynge
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, DK-1014, Copenhagen K, Denmark
| | - Wei Yao Uldall
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Ilse Vejborg
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
22
|
Fredenberg E, Kilburn-Toppin F, Willsher P, Moa E, Danielsson M, Dance DR, Young KC, Wallis MG. Measurement of breast-tissue x-ray attenuation by spectral mammography: solid lesions. Phys Med Biol 2016; 61:2595-612. [PMID: 26961507 DOI: 10.1088/0031-9155/61/7/2595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to distinguish between cysts and solid tumours at mammography screening would be highly desirable to reduce recalls, but the development requires knowledge of the x-ray attenuation for cysts and tumours. We have previously measured the attenuation of cyst fluid using photon-counting spectral mammography. Data on x-ray attenuation for solid breast lesions are available in the literature, but cover a relatively wide range, likely caused by natural spread between samples, random measurement errors, and different experimental conditions. In this study, we have adapted a previously developed spectral method to measure the linear attenuation of solid breast lesions. A total of 56 malignant and 5 benign lesions were included in the study. The samples were placed in a holder that allowed for thickness measurement. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The spread in equivalent material thicknesses was relatively large between samples, which is likely to be caused mainly by natural variation and only to a minor extent by random measurement errors and sample inhomogeneity. No significant difference in attenuation was found between benign and malignant solid lesions. The separation between cyst-fluid and tumour attenuation was, however, significant, which suggests it may be possible to distinguish cystic from solid breast lesions, and the results lay the groundwork for a clinical trial. In addition, the study adds a relatively large sample set to the published data and may contribute to a reduction in the overall uncertainty in the literature.
Collapse
Affiliation(s)
- Erik Fredenberg
- Philips Health Systems, Mammography Solutions, Smidesvägen 5, 171 41 Solna, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ng KH, Lau S. Vision 20/20: Mammographic breast density and its clinical applications. Med Phys 2015; 42:7059-77. [PMID: 26632060 DOI: 10.1118/1.4935141] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Kwan-Hoong Ng
- Department of Biomedical Imaging and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Susie Lau
- Department of Biomedical Imaging and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Molloi S, Ducote JL, Ding H, Feig SA. Postmortem validation of breast density using dual-energy mammography. Med Phys 2015; 41:081917. [PMID: 25086548 DOI: 10.1118/1.4890295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. METHODS Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. RESULTS Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. CONCLUSIONS The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.
Collapse
Affiliation(s)
- Sabee Molloi
- Department of Radiological Sciences, University of California, Irvine, California 92697
| | - Justin L Ducote
- Department of Radiological Sciences, University of California, Irvine, California 92697
| | - Huanjun Ding
- Department of Radiological Sciences, University of California, Irvine, California 92697
| | - Stephen A Feig
- Department of Radiological Sciences, University of California, Irvine, California 92697
| |
Collapse
|
25
|
Molloi S, Ding H, Feig S. Breast density evaluation using spectral mammography, radiologist reader assessment, and segmentation techniques: a retrospective study based on left and right breast comparison. Acad Radiol 2015; 22:1052-9. [PMID: 26031229 DOI: 10.1016/j.acra.2015.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/18/2022]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study was to compare the precision of mammographic breast density measurement using radiologist reader assessment, histogram threshold segmentation, fuzzy C-mean segmentation, and spectral material decomposition. MATERIALS AND METHODS Spectral mammography images from a total of 92 consecutive asymptomatic women (aged 50-69 years) who presented for annual screening mammography were retrospectively analyzed for this study. Breast density was estimated using 10 radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and spectral material decomposition. The breast density correlation between left and right breasts was used to assess the precision of these techniques to measure breast composition relative to dual-energy material decomposition. RESULTS In comparison to the other techniques, the results of breast density measurements using dual-energy material decomposition showed the highest correlation. The relative standard error of estimate for breast density measurements from left and right breasts using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual-energy material decomposition was calculated to be 1.95, 2.87, 2.07, and 1.00, respectively. CONCLUSIONS The results indicate that the precision of dual-energy material decomposition was approximately factor of two higher than the other techniques with regard to better correlation of breast density measurements from right and left breasts.
Collapse
Affiliation(s)
- Sabee Molloi
- Department of Radiological Sciences, University of California, Medical Sciences I, B-140, Irvine, CA 92697.
| | - Huanjun Ding
- Department of Radiological Sciences, University of California, Medical Sciences I, B-140, Irvine, CA 92697
| | - Stephen Feig
- Department of Radiological Sciences, University of California, Medical Sciences I, B-140, Irvine, CA 92697
| |
Collapse
|
26
|
Berglund J, Johansson H, Lundqvist M, Cederström B, Fredenberg E. Energy weighting improves dose efficiency in clinical practice: implementation on a spectral photon-counting mammography system. J Med Imaging (Bellingham) 2015; 1:031003. [PMID: 26158045 DOI: 10.1117/1.jmi.1.3.031003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 11/14/2022] Open
Abstract
In x-ray imaging, contrast information content varies with photon energy. It is, therefore, possible to improve image quality by weighting photons according to energy. We have implemented and evaluated so-called energy weighting on a commercially available spectral photon-counting mammography system. The technique was evaluated using computer simulations, phantom experiments, and analysis of screening mammograms. The CNR benefit of energy weighting for a number of relevant target-background combinations measured by the three methods fell in the range of 2.2 to 5.2% when using optimal weight factors. This translates to a potential dose reduction at constant CNR in the range of 4.5 to 11%. We expect the choice of weight factor in practical implementations to be straightforward because (1) the CNR improvement was not very sensitive to weight, (2) the optimal weight was similar for all investigated target-background combinations, (3) aluminum/PMMA phantoms were found to represent clinically relevant tasks well, and (4) the optimal weight could be calculated directly from pixel values in phantom images. Reasonable agreement was found between the simulations and phantom measurements. Manual measurements on microcalcifications and automatic image analysis confirmed that the CNR improvement was detectable in energy-weighted screening mammograms.
Collapse
Affiliation(s)
- Johan Berglund
- Philips Healthcare , Smidesvägen 5, 171 41 Solna, Sweden
| | | | - Mats Lundqvist
- Philips Healthcare , Smidesvägen 5, 171 41 Solna, Sweden
| | | | | |
Collapse
|
27
|
Deng B, Brooks DH, Boas DA, Lundqvist M, Fang Q. Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography. BIOMEDICAL OPTICS EXPRESS 2015. [PMID: 26203367 PMCID: PMC4505695 DOI: 10.1364/boe.6.002366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Multi-spectral near-infrared diffuse optical tomography (DOT) is capable of providing functional tissue assessment that can complement structural mammographic images for more comprehensive breast cancer diagnosis. To take full advantage of the readily available sub-millimeter resolution structural information in a multi-modal imaging setting, an efficient x-ray/optical joint image reconstruction model has been proposed previously to utilize anatomical information from a mammogram as a structural prior. In this work, we develop a complex digital breast phantom (available at http://openjd.sf.net/digibreast) based on direct measurements of fibroglandular tissue volume fractions using dual-energy mammographic imaging of a human breast. We also extend our prior-guided reconstruction algorithm to facilitate the recovery of breast tumors, and perform a series of simulation-based studies to systematically evaluate the impact of lesion sizes and contrasts, tissue background, mesh resolution, inaccurate priors, and regularization parameters, on the recovery of breast tumors using multi-modal DOT/x-ray measurements. Our studies reveal that the optical property estimation error can be reduced by half by utilizing structural priors; the minimum detectable tumor size can also be reduced by half when prior knowledge regarding the tumor location is provided. Moreover, our algorithm is shown to be robust to false priors on tumor location.
Collapse
Affiliation(s)
- Bin Deng
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Dana H. Brooks
- BSPIRAL group and ECE Dept., Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - David A. Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | | | - Qianqian Fang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
28
|
Machida Y, Tozaki M, Yoshida T, Saita A, Yakabe M, Nii K. Feasibility study of a breast density measurement within a direct photon-counting mammography scanner system. Jpn J Radiol 2014; 32:561-7. [PMID: 24838833 DOI: 10.1007/s11604-014-0333-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/09/2014] [Indexed: 01/12/2023]
Abstract
PURPOSE To evaluate the clinical feasibility of breast density measurements by a new application within a direct photon-counting mammography scanner system. MATERIALS AND METHODS A retrospective study of consecutive women who underwent mammography using a direct photon-counting mammography scanner system (MicroDose mammography SI; Philips Digital Mammography Sweden AB) was performed at the authors' institution between September and December 2013. Quantitative volumetric glandularity measurements were performed automatically for each acquired mammographic image using an application (Breast Density Measurement; Philips Digital Mammography Sweden AB). The quantitative volumetric glandularity of each breast was defined as the average values for the mediolateral oblique (MLO) and craniocaudal (CC) mammogram views. RESULTS Of the 44 women who underwent bilateral mammogram acquisitions, the breast density measurements were performed successfully in 40 patients (90.9%). A very good to excellent correlation in the quantitative breast density measurements acquired from the MLO and CC images was obtained in the 40 evaluable patients (R = 0.99). CONCLUSION The calculated volumetric glandularity using this new application should correspond well with the true volumetric density of each breast.
Collapse
Affiliation(s)
- Youichi Machida
- Diagnostic Imaging Center, Kameda Kyobashi Clinic, Tokyo Square Garden 4F, 3-1-1 Kyobashi, Chuo-ku, Tokyo, 104-0031, Japan,
| | | | | | | | | | | |
Collapse
|
29
|
Willner M, Herzen J, Grandl S, Auweter S, Mayr D, Hipp A, Chabior M, Sarapata A, Achterhold K, Zanette I, Weitkamp T, Sztrókay A, Hellerhoff K, Reiser M, Pfeiffer F. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging. Phys Med Biol 2014; 59:1557-71. [PMID: 24614413 DOI: 10.1088/0031-9155/59/7/1557] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method's prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.
Collapse
Affiliation(s)
- M Willner
- Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ding H, Ducote JL, Molloi S. Measurement of breast tissue composition with dual energy cone-beam computed tomography: a postmortem study. Med Phys 2014; 40:061902. [PMID: 23718593 DOI: 10.1118/1.4802734] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. METHODS Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. RESULTS Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. CONCLUSIONS The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.
Collapse
Affiliation(s)
- Huanjun Ding
- Department of Radiological Sciences, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
31
|
Han S, Kang DG. Tissue Cancellation in Dual Energy Mammography Using a Calibration Phantom Customized for Direct Mapping. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:74-84. [PMID: 24043372 DOI: 10.1109/tmi.2013.2280901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An easily implementable tissue cancellation method for dual energy mammography is proposed to reduce anatomical noise and enhance lesion visibility. For dual energy calibration, the images of an imaging object are directly mapped onto the images of a customized calibration phantom. Each pixel pair of the low and high energy images of the imaging object was compared to pixel pairs of the low and high energy images of the calibration phantom. The correspondence was measured by absolute difference between the pixel values of imaged object and those of the calibration phantom. Then the closest pixel pair of the calibration phantom images is marked and selected. After the calibration using direct mapping, the regions with lesion yielded different thickness from the background tissues. Taking advantage of the different thickness, the visibility of cancerous lesions was enhanced with increased contrast-to-noise ratio, depending on the size of lesion and breast thickness. However, some tissues near the edge of imaged object still remained after tissue cancellation. These remaining residuals seem to occur due to the heel effect, scattering, nonparallel X-ray beam geometry and Poisson distribution of photons. To improve its performance further, scattering and the heel effect should be compensated.
Collapse
|
32
|
Fredenberg E, Dance DR, Willsher P, Moa E, von Tiedemann M, Young KC, Wallis MG. Measurement of breast-tissue x-ray attenuation by spectral mammography: first results on cyst fluid. Phys Med Biol 2013; 58:8609-20. [PMID: 24254377 DOI: 10.1088/0031-9155/58/24/8609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to better characterize cysts at mammography screening would be highly desirable to reduce recalls, but the development is hampered by the lack of attenuation data for cysts. We have developed a method to measure x-ray attenuation of tissue samples using a prototype photon-counting spectral mammography unit. The method was applied to measure the attenuation of 50 samples of breast cyst fluid and 50 samples of water. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The attenuation of cyst fluid was found to be significantly different from water. There was a relatively large natural spread between different samples of cyst fluid, whereas the homogeneity of each individual sample was found to be good; the variation within samples did not reach above the quantum noise floor. The spectral method proved stable between several measurements on the same sample. Further, chemical analysis and elemental attenuation calculation were used to validate the spectral measurement on a subset of the samples. The two methods agreed within the precision of the elemental attenuation calculation over the mammographic energy range.
Collapse
|
33
|
High mammographic density in women of Ashkenazi Jewish descent. Breast Cancer Res 2013; 15:R40. [PMID: 23668689 PMCID: PMC4053164 DOI: 10.1186/bcr3424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/13/2013] [Indexed: 11/21/2022] Open
Abstract
Introduction Percent mammographic density (PMD) adjusted for age and body mass index is one of the strongest risk factors for breast cancer and is known to be approximately 60% heritable. Here we report a finding of an association between genetic ancestry and adjusted PMD. Methods We selected self-identified Caucasian women in the California Pacific Medical Center Research Institute Cohort whose screening mammograms placed them in the top or bottom quintiles of age-adjusted and body mass index-adjusted PMD. Our final dataset included 474 women with the highest adjusted PMD and 469 with the lowest genotyped on the Illumina 1 M platform. Principal component analysis (PCA) and identity-by-descent analyses allowed us to infer the women's genetic ancestry and correlate it with adjusted PMD. Results Women of Ashkenazi Jewish ancestry, as defined by the first principal component of PCA and identity-by-descent analyses, represented approximately 15% of the sample. Ashkenazi Jewish ancestry, defined by the first principal component of PCA, was associated with higher adjusted PMD (P = 0.004). Using multivariate regression to adjust for epidemiologic factors associated with PMD, including age at parity and use of postmenopausal hormone therapy, did not attenuate the association. Conclusions Women of Ashkenazi Jewish ancestry, based on genetic analysis, are more likely to have high age-adjusted and body mass index-adjusted PMD. Ashkenazi Jews may have a unique set of genetic variants or environmental risk factors that increase mammographic density.
Collapse
|