1
|
Bousse A, Kandarpa VSS, Rit S, Perelli A, Li M, Wang G, Zhou J, Wang G. Systematic Review on Learning-based Spectral CT. ARXIV 2024:arXiv:2304.07588v9. [PMID: 37461421 PMCID: PMC10350100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: dual-energy computed tomography (DECT) and photon-counting computed tomography (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.
Collapse
Affiliation(s)
| | | | - Simon Rit
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France
| | - Alessandro Perelli
- School of Science and Engineering, University of Dundee, DD1 4HN Dundee, U.K
| | - Mengzhou Li
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA 95817 USA
| | - Jian Zhou
- CTIQ, Canon Medical Research USA, Inc., Vernon Hills, IL 60061 USA
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
2
|
Han K, Ryu CH, Lee CL, Han TH. Deep learning-based material decomposition of iodine and calcium in mobile photon counting detector CT. PLoS One 2024; 19:e0306627. [PMID: 39058758 PMCID: PMC11280148 DOI: 10.1371/journal.pone.0306627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Photon-counting detector (PCD)-based computed tomography (CT) offers several advantages over conventional energy-integrating detector-based CT. Among them, the ability to discriminate energy exhibits significant potential for clinical applications because it provides material-specific information. That is, material decomposition (MD) can be achieved through energy discrimination. In this study, deep learning-based material decomposition was performed using live animal data. We propose MD-Unet, which is a deep learning strategy for material decomposition based on an Unet architecture trained with data from three energy bins. To mitigate the data insufficiency, we developed a pretrained model incorporating various simulation data forms and augmentation strategies. Incorporating these approaches into model training results in enhanced precision in material decomposition, thereby enabling the identification of distinct materials at individual pixel locations. The trained network was applied to the acquired animal data to evaluate material decomposition results. Compared with conventional methods, the newly generated MD-Unet demonstrated more accurate material decomposition imaging. Moreover, the network demonstrated an improved material decomposition ability and significantly reduced noise. In addition, they can potentially offer an enhancement level similar to that of a typical contrast agent. This implies that it can acquire images of the same quality with fewer contrast agents administered to patients, thereby demonstrating its significant clinical value.
Collapse
Affiliation(s)
- Kwanhee Han
- Health & Medical Equipment Business Unit, Samsung Electronics, Suwon-si, Gyeonggi-do, Korea
- Department of Digital Media and Communications Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Korea
| | - Chang Ho Ryu
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Korea
| | - Chang-Lae Lee
- Health & Medical Equipment Business Unit, Samsung Electronics, Suwon-si, Gyeonggi-do, Korea
| | - Tae Hee Han
- Department of Semiconductor Systems Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Korea
| |
Collapse
|
3
|
Bousse A, Kandarpa VSS, Rit S, Perelli A, Li M, Wang G, Zhou J, Wang G. Systematic Review on Learning-based Spectral CT. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:113-137. [PMID: 38476981 PMCID: PMC10927029 DOI: 10.1109/trpms.2023.3314131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: dual-energy computed tomography (DECT) and photon-counting computed tomography (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.
Collapse
Affiliation(s)
- Alexandre Bousse
- LaTIM, Inserm UMR 1101, Université de Bretagne Occidentale, 29238 Brest, France
| | | | - Simon Rit
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France
| | - Alessandro Perelli
- Department of Biomedical Engineering, School of Science and Engineering, University of Dundee, DD1 4HN, UK
| | - Mengzhou Li
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, USA
| | - Jian Zhou
- CTIQ, Canon Medical Research USA, Inc., Vernon Hills, 60061, USA
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
4
|
Yu X, Cai A, Liang N, Wang S, Zheng Z, Li L, Yan B. Direct Multi-Material Reconstruction via Iterative Proximal Adaptive Descent for Spectral CT Imaging. Bioengineering (Basel) 2023; 10:470. [PMID: 37106656 PMCID: PMC10136068 DOI: 10.3390/bioengineering10040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Spectral computed tomography (spectral CT) is a promising medical imaging technology because of its ability to provide information on material characterization and quantification. However, with an increasing number of basis materials, the nonlinearity of measurements causes difficulty in decomposition. In addition, noise amplification and beam hardening further reduce image quality. Thus, improving the accuracy of material decomposition while suppressing noise is pivotal for spectral CT imaging. This paper proposes a one-step multi-material reconstruction model as well as an iterative proximal adaptive decent method. In this approach, a proximal step and a descent step with adaptive step size are designed under the forward-backward splitting framework. The convergence analysis of the algorithm is further discussed according to the convexity of the optimization objective function. For simulation experiments with different noise levels, the peak signal-to-noise ratio (PSNR) obtained by the proposed method increases approximately 23 dB, 14 dB, and 4 dB compared to those of other algorithms. Magnified areas of thorax data further demonstrated that the proposed method has a better ability to preserve details in tissues, bones, and lungs. Numerical experiments verify that the proposed method efficiently reconstructed the material maps, and reduced noise and beam hardening artifacts compared with the state-of-the-art methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction. Sci Rep 2021; 11:20818. [PMID: 34675228 PMCID: PMC8531290 DOI: 10.1038/s41598-021-00146-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Here we apply hyperspectral bright field imaging to collect computed tomographic images with excellent energy resolution (~ 1 keV), applying it for the first time to map the distribution of stain in a fixed biological sample through its characteristic K-edge. Conventionally, because the photons detected at each pixel are distributed across as many as 200 energy channels, energy-selective images are characterised by low count-rates and poor signal-to-noise ratio. This means high X-ray exposures, long scan times and high doses are required to image unique spectral markers. Here, we achieve high quality energy-dispersive tomograms from low dose, noisy datasets using a dedicated iterative reconstruction algorithm. This exploits the spatial smoothness and inter-channel structural correlation in the spectral domain using two carefully chosen regularisation terms. For a multi-phase phantom, a reduction in scan time of 36 times is demonstrated. Spectral analysis methods including K-edge subtraction and absorption step-size fitting are evaluated for an ex vivo, single (iodine)-stained biological sample, where low chemical concentration and inhomogeneous distribution can affect soft tissue segmentation and visualisation. The reconstruction algorithms are available through the open-source Core Imaging Library. Taken together, these tools offer new capabilities for visualisation and elemental mapping, with promising applications for multiply-stained biological specimens.
Collapse
|
6
|
Zhang Y, Salehjahromi M, Yu H. Tensor decomposition and non-local means based spectral CT image denoising. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:397-416. [PMID: 31081796 PMCID: PMC7371001 DOI: 10.3233/xst-180413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUNDAs one type of the state-of-the-art detectors, photon counting detectors are used in spectral computed tomography (CT) to classify the received photons into several energy channels and generate multichannel projections simultaneously. However, FBP reconstructed images contain severe noise due to the low photon counts in each energy channel.OBJECTIVEA spectral CT image denoising method based on tensor-decomposition and non-local means (TDNLM) is proposed.METHODSIn a CT image, it is widely accepted that there exists self-similarity over the spatial domain. In addition, because a multichannel CT image is obtained from the same object at different energies, images among different channels are highly correlated. Motivated by these two characteristics of the spectral CT images, tensor decomposition and non-local means are employed to recover fine structures in spectral CT images. Moreover, images in all energy channels are added together to form a high signal-to-noise ratio image, which is applied to encourage the signal preservation of the TDNLM. The combination of TD, NLM and the guidance of a high-quality image enhances the low-dose spectral CT, and a parameter selection strategy is designed to achieve the optimal image quality.RESULTSThe effectiveness of the developed algorithm is validated on both numerical simulations and realistic preclinical applications. The root mean square error (RMSE) and the structural similarity (SSIM) are used to quantitatively assess the image quality. The proposed method successfully restored high-quality images (average RMSE=0.0217 cm-1 and SSIM=0.987) from noisy spectral CT images (average RMSE=0.225 cm-1 and SSIM=0.633). In addition, RMSE of each decomposed material component is also remarkably reduced. Compared to the state-of-the-art iterative spectral CT reconstruction algorithms, the proposed method achieves comparable performance with dramatically reduced computational cost, resulting in a speedup of >50.CONCLUSIONSThe outstanding denoising performance, the high computational efficiency and the adaptive parameter selection strategy make the proposed method practical for spectral CT applications.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA USA
- PingAn Technology, US Research Lab, Palo Alto, CA, USA
| | - Morteza Salehjahromi
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA USA
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA USA
| |
Collapse
|
7
|
Niu S, Zhang Y, Zhong Y, Liu G, Lu S, Zhang X, Hu S, Wang T, Yu G, Wang J. Iterative reconstruction for photon-counting CT using prior image constrained total generalized variation. Comput Biol Med 2018; 103:167-182. [PMID: 30384175 DOI: 10.1016/j.compbiomed.2018.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
In this paper, we present an iterative reconstruction for photon-counting CT using prior image constrained total generalized variation (PICTGV). This work aims to exploit structural correlation in the energy domain to reduce image noise in photon-counting CT with narrow energy bins. This is motived by the fact that the similarity between high-quality full-spectrum image and target image is an important prior knowledge for photon-counting CT reconstruction. The PICTGV method is implemented using a splitting-based fast iterative shrinkage-threshold algorithm (FISTA). Evaluations conducted with simulated and real photon-counting CT data demonstrate that PICTGV method outperforms the existing prior image constrained compressed sensing (PICCS) method in terms of noise reduction, artifact suppression and resolution preservation. In the simulated head data study, the average relative root mean squared error is reduced from 2.3% in PICCS method to 1.2% in PICTGV method, and the average universal quality index increases from 0.67 in PICCS method to 0.76 in PICTGV method. The results show that the present PICTGV method improves the performance of the PICCS method for photon-counting CT reconstruction with narrow energy bins.
Collapse
Affiliation(s)
- Shanzhou Niu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA; School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, China
| | - You Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Yuncheng Zhong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Guoliang Liu
- School of Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Shaohui Lu
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Xile Zhang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100083, China
| | - Shengzhou Hu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, China
| | - Tinghua Wang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, China
| | - Gaohang Yu
- School of Science, Hangzhou Dianzi University, Hangzhou, 310000, China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
| |
Collapse
|
8
|
Guan H, Hagen CK, Olivo A, Anastasio MA. Subspace-based resolution-enhancing image reconstruction method for few-view differential phase-contrast tomography. J Med Imaging (Bellingham) 2018; 5:023501. [PMID: 29963577 DOI: 10.1117/1.jmi.5.2.023501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 05/31/2018] [Indexed: 01/08/2023] Open
Abstract
It is well known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities, such as differential x-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task due to the high-frequency information loss caused by data incompleteness. In this work, a subspace-based reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. By adopting a two-step approach, the proposed method can simultaneously recover high-frequency details within a certain region of interest while suppressing noise and/or artifacts globally. The proposed method is investigated by the use of few-view experimental data acquired by an edge-illumination D-XPCT scanner.
Collapse
Affiliation(s)
- Huifeng Guan
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Charlotte Klara Hagen
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Alessandro Olivo
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Mark A Anastasio
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| |
Collapse
|
9
|
Ducros N, Abascal JFPJ, Sixou B, Rit S, Peyrin F. Regularization of nonlinear decomposition of spectral x-ray projection images. Med Phys 2017; 44:e174-e187. [DOI: 10.1002/mp.12283] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 02/01/2023] Open
Affiliation(s)
- Nicolas Ducros
- Univ Lyon; INSA-Lyon; Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm; CREATIS UMR 5220 Lyon U1206, F69621 France
| | - Juan Felipe Perez-Juste Abascal
- Univ Lyon; INSA-Lyon; Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm; CREATIS UMR 5220 Lyon U1206, F69621 France
| | - Bruno Sixou
- Univ Lyon; INSA-Lyon; Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm; CREATIS UMR 5220 Lyon U1206, F69621 France
| | - Simon Rit
- Univ Lyon; INSA-Lyon; Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm; CREATIS UMR 5220 Lyon U1206, F69621 France
| | - Françoise Peyrin
- Univ Lyon; INSA-Lyon; Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm; CREATIS UMR 5220 Lyon U1206, F69621 France
| |
Collapse
|
10
|
Persson M, Grönberg F. Bias-variance tradeoff in anticorrelated noise reduction for spectral CT. Med Phys 2017; 44:e242-e254. [DOI: 10.1002/mp.12322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mats Persson
- Department of Physics; Royal Institute of Technology; SE-10691 Stockholm Sweden
| | - Fredrik Grönberg
- Department of Physics; Royal Institute of Technology; SE-10691 Stockholm Sweden
| |
Collapse
|
11
|
Schmidt TG, Barber RF, Sidky EY. A Spectral CT Method to Directly Estimate Basis Material Maps From Experimental Photon-Counting Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1808-1819. [PMID: 28436858 PMCID: PMC5604434 DOI: 10.1109/tmi.2017.2696338] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The proposed spectral CT method solves the constrained one-step spectral CT reconstruction (cOSSCIR) optimization problem to estimate basis material maps while modeling the nonlinear X-ray detection process and enforcing convex constraints on the basis map images. In order to apply the optimization-based reconstruction approach to experimental data, the presented method empirically estimates the effective energy-window spectra using a calibration procedure. The amplitudes of the estimated spectra were further optimized as part of the reconstruction process to reduce ring artifacts. A validation approach was developed to select constraint parameters. The proposed spectral CT method was evaluated through simulations and experiments with a photon-counting detector. Basis material map images were successfully reconstructed using the presented empirical spectral modeling and cOSSCIR optimization approach. In simulations, the cOSSCIR approach accurately reconstructed the basis map images (<1% error). In experiments, the proposed method estimated the low-density polyethylene region of the basis maps with 0.5% error in the PMMA image and 4% error in the aluminum image. For the Teflon region, the experimental results demonstrated 8% and 31% error in the PMMA and aluminum basis material maps, respectively, compared with -24% and 126% error without estimation of the effective energy window spectra, with residual errors likely due to insufficient modeling of detector effects. The cOSSCIR algorithm estimated the material decomposition angle to within 1.3 degree error, where, for reference, the difference in angle between PMMA and muscle tissue is 2.1 degrees. The joint estimation of spectral-response scaling coefficients and basis material maps was found to reduce ring artifacts in both a phantom and tissue specimen. The presented validation procedure demonstrated feasibility for the automated determination of algorithm constraint parameters.
Collapse
|
12
|
Spectral CT Material Decomposition in the Presence of Poisson Noise: A Kullback–Leibler Approach. Ing Rech Biomed 2017. [DOI: 10.1016/j.irbm.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Hahn K, Schöndube H, Stierstorfer K, Hornegger J, Noo F. A comparison of linear interpolation models for iterative CT reconstruction. Med Phys 2017; 43:6455. [PMID: 27908185 DOI: 10.1118/1.4966134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Recent reports indicate that model-based iterative reconstruction methods may improve image quality in computed tomography (CT). One difficulty with these methods is the number of options available to implement them, including the selection of the forward projection model and the penalty term. Currently, the literature is fairly scarce in terms of guidance regarding this selection step, whereas these options impact image quality. Here, the authors investigate the merits of three forward projection models that rely on linear interpolation: the distance-driven method, Joseph's method, and the bilinear method. The authors' selection is motivated by three factors: (1) in CT, linear interpolation is often seen as a suitable trade-off between discretization errors and computational cost, (2) the first two methods are popular with manufacturers, and (3) the third method enables assessing the importance of a key assumption in the other methods. METHODS One approach to evaluate forward projection models is to inspect their effect on discretized images, as well as the effect of their transpose on data sets, but significance of such studies is unclear since the matrix and its transpose are always jointly used in iterative reconstruction. Another approach is to investigate the models in the context they are used, i.e., together with statistical weights and a penalty term. Unfortunately, this approach requires the selection of a preferred objective function and does not provide clear information on features that are intrinsic to the model. The authors adopted the following two-stage methodology. First, the authors analyze images that progressively include components of the singular value decomposition of the model in a reconstructed image without statistical weights and penalty term. Next, the authors examine the impact of weights and penalty on observed differences. RESULTS Image quality metrics were investigated for 16 different fan-beam imaging scenarios that enabled probing various aspects of all models. The metrics include a surrogate for computational cost, as well as bias, noise, and an estimation task, all at matched resolution. The analysis revealed fundamental differences in terms of both bias and noise. Task-based assessment appears to be required to appreciate the differences in noise; the estimation task the authors selected showed that these differences balance out to yield similar performance. Some scenarios highlighted merits for the distance-driven method in terms of bias but with an increase in computational cost. Three combinations of statistical weights and penalty term showed that the observed differences remain the same, but strong edge-preserving penalty can dramatically reduce the magnitude of these differences. CONCLUSIONS In many scenarios, Joseph's method seems to offer an interesting compromise between cost and computational effort. The distance-driven method offers the possibility to reduce bias but with an increase in computational cost. The bilinear method indicated that a key assumption in the other two methods is highly robust. Last, strong edge-preserving penalty can act as a compensator for insufficiencies in the forward projection model, bringing all models to similar levels in the most challenging imaging scenarios. Also, the authors find that their evaluation methodology helps appreciating how model, statistical weights, and penalty term interplay together.
Collapse
Affiliation(s)
- Katharina Hahn
- Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen, Germany; Siemens Healthcare, GmbH 91301, Forchheim, Germany; and Department of Radiology, University of Utah, Salt Lake City, Utah 84108
| | | | | | - Joachim Hornegger
- Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen, Germany
| | - Frédéric Noo
- Department of Radiology, University of Utah, Salt Lake City, Utah 84108
| |
Collapse
|
14
|
Dual-contrast agent photon-counting computed tomography of the heart: initial experience. Int J Cardiovasc Imaging 2017; 33:1253-1261. [DOI: 10.1007/s10554-017-1104-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/25/2017] [Indexed: 11/25/2022]
|
15
|
Li B, Lyu Q, Ma J, Wang J. Iterative reconstruction for CT perfusion with a prior-image induced hybrid nonlocal means regularization: Phantom studies. Med Phys 2016; 43:1688. [PMID: 27036567 DOI: 10.1118/1.4943380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In computed tomography perfusion (CTP) imaging, an initial phase CT acquired with a high-dose protocol can be used to improve the image quality of later phase CT acquired with a low-dose protocol. For dynamic regions, signals in the later low-dose CT may not be completely recovered if the initial CT heavily regularizes the iterative reconstruction process. The authors propose a hybrid nonlocal means (hNLM) regularization model for iterative reconstruction of low-dose CTP to overcome the limitation of the conventional prior-image induced penalty. METHODS The hybrid penalty was constructed by combining the NLM of the initial phase high-dose CT in the stationary region and later phase low-dose CT in the dynamic region. The stationary and dynamic regions were determined by the similarity between the initial high-dose scan and later low-dose scan. The similarity was defined as a Gaussian kernel-based distance between the patch-window of the same pixel in the two scans, and its measurement was then used to weigh the influence of the initial high-dose CT. For regions with high similarity (e.g., stationary region), initial high-dose CT played a dominant role for regularizing the solution. For regions with low similarity (e.g., dynamic region), the regularization relied on a low-dose scan itself. This new hNLM penalty was incorporated into the penalized weighted least-squares (PWLS) for CTP reconstruction. Digital and physical phantom studies were performed to evaluate the PWLS-hNLM algorithm. RESULTS Both phantom studies showed that the PWLS-hNLM algorithm is superior to the conventional prior-image induced penalty term without considering the signal changes within the dynamic region. In the dynamic region of the Catphan phantom, the reconstruction error measured by root mean square error was reduced by 42.9% in PWLS-hNLM reconstructed image. CONCLUSIONS The PWLS-hNLM algorithm can effectively use the initial high-dose CT to reconstruct low-dose CTP in the stationary region while reducing its influence in the dynamic region.
Collapse
Affiliation(s)
- Bin Li
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China and Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Qingwen Lyu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and Zhujiang Hospital, Southern Medical University, Guangdong 510280, China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
16
|
Xu Q, Yang D, Tan J, Sawatzky A, Anastasio MA. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction. Med Phys 2016; 43:1849. [PMID: 27036582 DOI: 10.1118/1.4942812] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. METHODS Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. RESULTS The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. CONCLUSIONS The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets.
Collapse
Affiliation(s)
- Qiaofeng Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Deshan Yang
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Jun Tan
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Alex Sawatzky
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
17
|
Liu J, Ding H, Molloi S, Zhang X, Gao H. TICMR: Total Image Constrained Material Reconstruction via Nonlocal Total Variation Regularization for Spectral CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:2578-2586. [PMID: 27392346 PMCID: PMC5805160 DOI: 10.1109/tmi.2016.2587661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This work develops a material reconstruction method for spectral CT, namely Total Image Constrained Material Reconstruction (TICMR), to maximize the utility of projection data in terms of both spectral information and high signal-to-noise ratio (SNR). This is motivated by the following fact: when viewed as a spectrally-integrated measurement, the projection data can be used to reconstruct a total image without spectral information, which however has a relatively high SNR; when viewed as a spectrally-resolved measurement, the projection data can be utilized to reconstruct the material composition, which however has a relatively low SNR. The material reconstruction synergizes material decomposition and image reconstruction, i.e., the direct reconstruction of material compositions instead of a two-step procedure that first reconstructs images and then decomposes images. For material reconstruction with high SNR, we propose TICMR with nonlocal total variation (NLTV) regularization. That is, first we reconstruct a total image using spectrally-integrated measurement without spectral binning, and build the NLTV weights from this image that characterize nonlocal image features; then the NLTV weights are incorporated into a NLTV-based iterative material reconstruction scheme using spectrally-binned projection data, so that these weights serve as a high-SNR reference to regularize material reconstruction. Note that the nonlocal property of NLTV is essential for material reconstruction, since material compositions may have significant local intensity variations although their structural information is often similar. In terms of solution algorithm, TICMR is formulated as an iterative reconstruction method with the NLTV regularization, in which the nonlocal divergence is utilized based on the adjoint relationship. The alternating direction method of multipliers is developed to solve this sparsity optimization problem. The proposed TICMR method was validated using both simulated and experimental data. In comparison with FBP and total-variation-based iterative method, TICMR had improved image quality, e.g., contrast-to-noise ratio and spatial resolution.
Collapse
|
18
|
Gao H. Fused analytical and iterative reconstruction (AIR) via modified proximal forward–backward splitting: a FDK-based iterative image reconstruction example for CBCT. Phys Med Biol 2016; 61:7187-7204. [DOI: 10.1088/0031-9155/61/19/7187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Zeng D, Gao Y, Huang J, Bian Z, Zhang H, Lu L, Ma J. Penalized weighted least-squares approach for multienergy computed tomography image reconstruction via structure tensor total variation regularization. Comput Med Imaging Graph 2016; 53:19-29. [PMID: 27490315 DOI: 10.1016/j.compmedimag.2016.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/13/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022]
Abstract
Multienergy computed tomography (MECT) allows identifying and differentiating different materials through simultaneous capture of multiple sets of energy-selective data belonging to specific energy windows. However, because sufficient photon counts are not available in each energy window compared with that in the whole energy window, the MECT images reconstructed by the analytical approach often suffer from poor signal-to-noise and strong streak artifacts. To address the particular challenge, this work presents a penalized weighted least-squares (PWLS) scheme by incorporating the new concept of structure tensor total variation (STV) regularization, which is henceforth referred to as 'PWLS-STV' for simplicity. Specifically, the STV regularization is derived by penalizing higher-order derivatives of the desired MECT images. Thus it could provide more robust measures of image variation, which can eliminate the patchy artifacts often observed in total variation (TV) regularization. Subsequently, an alternating optimization algorithm was adopted to minimize the objective function. Extensive experiments with a digital XCAT phantom and meat specimen clearly demonstrate that the present PWLS-STV algorithm can achieve more gains than the existing TV-based algorithms and the conventional filtered backpeojection (FBP) algorithm in terms of both quantitative and visual quality evaluations.
Collapse
Affiliation(s)
- Dong Zeng
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuanyuan Gao
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Huang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhaoying Bian
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hua Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijun Lu
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianhua Ma
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
20
|
Jiang X, Van den Broek W, Koch CT. Inverse dynamical photon scattering (IDPS): an artificial neural network based algorithm for three-dimensional quantitative imaging in optical microscopy. OPTICS EXPRESS 2016; 24:7006-18. [PMID: 27136994 DOI: 10.1364/oe.24.007006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Inverse dynamical photon scattering (IDPS), an artificial neural network based algorithm for three-dimensional quantitative imaging in optical microscopy, is introduced. Because the inverse problem entails numerical minimization of an explicit error metric, it becomes possible to freely choose a more robust metric, to introduce regularization of the solution, and to retrieve unknown experimental settings or microscope values, while the starting guess is simply set to zero. The regularization is accomplished through an alternate directions augmented Lagrangian approach, implemented on a graphics processing unit. These improvements are demonstrated on open source experimental data, retrieving three-dimensional amplitude and phase for a thick specimen.
Collapse
|
21
|
Pourmorteza A, Dang H, Siewerdsen JH, Stayman JW. Reconstruction of difference in sequential CT studies using penalized likelihood estimation. Phys Med Biol 2016; 61:1986-2002. [PMID: 26894795 PMCID: PMC4948746 DOI: 10.1088/0031-9155/61/5/1986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Characterization of anatomical change and other differences is important in sequential computed tomography (CT) imaging, where a high-fidelity patient-specific prior image is typically present, but is not used, in the reconstruction of subsequent anatomical states. Here, we introduce a penalized likelihood (PL) method called reconstruction of difference (RoD) to directly reconstruct a difference image volume using both the current projection data and the (unregistered) prior image integrated into the forward model for the measurement data. The algorithm utilizes an alternating minimization to find both the registration and reconstruction estimates. This formulation allows direct control over the image properties of the difference image, permitting regularization strategies that inhibit noise and structural differences due to inconsistencies between the prior image and the current data. Additionally, if the change is known to be local, RoD allows local acquisition and reconstruction, as opposed to traditional model-based approaches that require a full support field of view (or other modifications). We compared the performance of RoD to a standard PL algorithm, in simulation studies and using test-bench cone-beam CT data. The performances of local and global RoD approaches were similar, with local RoD providing a significant computational speedup. In comparison across a range of data with differing fidelity, the local RoD approach consistently showed lower error (with respect to a truth image) than PL in both noisy data and sparsely sampled projection scenarios. In a study of the prior image registration performance of RoD, a clinically reasonable capture ranges were demonstrated. Lastly, the registration algorithm had a broad capture range and the error for reconstruction of CT data was 35% and 20% less than filtered back-projection for RoD and PL, respectively. The RoD has potential for delivering high-quality difference images in a range of sequential clinical scenarios including image-guided surgeries and treatments where accurate and quantitative assessments of anatomical change is desired.
Collapse
Affiliation(s)
- A Pourmorteza
- Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20814, USA
| | - H Dang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J W Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
22
|
Burger M, Sawatzky A, Steidl G. First Order Algorithms in Variational Image Processing. SPLITTING METHODS IN COMMUNICATION, IMAGING, SCIENCE, AND ENGINEERING 2016. [DOI: 10.1007/978-3-319-41589-5_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Amato E, Asero G, Leotta S, Auditore L, Salamone I, Mannino G, Privitera S, Gueli A. Influence of the X-ray beam quality on the dose increment in CT with iodinated contrast medium. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2016; 24:267-278. [PMID: 27002906 DOI: 10.3233/xst-160551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
BACKGROUND In computed tomography (CT), the image contrast is given by the difference in X-ray attenuation in the various tissues of the patient and contrast media are used to enhance image contrast in anatomic regions characterized by similar attenuation coefficients. OBJECTIVE Aim of the present work is to enlarge the range of applicability of the method previously introduced for organ dosimetry in contrast-enhanced CT, by studying the effects of X-ray beam quality on the parameters of the model. Furthermore, an experimental method for the evaluation of the attenuation properties of iodinated solutions is proposed. METHODS Monte Carlo simulations of anthropomorphic phantoms were carried out to determine a bi-parametrical (a and b) analytical relationship between iodine concentration and dose increase in organs of interest as a function of the tube kilo-voltage peak potential (kVp) and filtration. Experimental measurements of increments in Hounsfield Units (HU) were conducted in several CT scanners, at all the kVp available, in order to determine the parameter γ which relates the HU increment with the iodine mass fraction. A cylindrical phantom that can be filled with iodine solutions provided with an axial housing for a pencil ionization chamber was designed and assembled in order to measure the attenuation properties of iodine solutions under irradiation of a CT scanner and to obtain a further validation of Monte Carlo simulations. RESULTS The simulation-derived parameters of the model, a and b, are only slightly dependent upon the tube kilo-voltage peak potential and filtration, while such scanner-dependent features influence mainly the experimentally-derived γ parameter. Relative dose variations registered by the ionization chamber inside the iodine-filled cylindrical phantom decrease when the X-ray mean energy increases, and reaches about 50% for 10 mg/ml of iodine. CONCLUSIONS The dosimetric method for contrast-enhanced CT can be applied to all CT scanners by adopting average simulative parameters and by carrying out a simple measurement with a series of iodine contrast solutions. The novel experimental methodology introduced can provide a direct measurement of iodine attenuation properties.
Collapse
Affiliation(s)
- Ernesto Amato
- Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, University of Messina, Messina, Italy
| | - Grazia Asero
- PH3DRA (Physics for Dating Diagnostic Dosimetry Research and Applications) Laboratories, Department of Physics and Astronomy, University of Catania, Catania, Italy
| | - Salvatore Leotta
- Department of Physics and Earth Sciences, University of Messina, Messina, Italy
| | - Lucrezia Auditore
- Department of Physics and Earth Sciences, University of Messina, Messina, Italy
| | - Ignazio Salamone
- Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, University of Messina, Messina, Italy
- University Hospital "Policlinico Gaetano Martino", Messina, Italy
| | - Giovanni Mannino
- University Hospital "Policlinico - Vittorio Emanuele", Catania, Italy
| | - Salvatore Privitera
- PH3DRA (Physics for Dating Diagnostic Dosimetry Research and Applications) Laboratories, Department of Physics and Astronomy, University of Catania, Catania, Italy
| | - Anna Gueli
- PH3DRA (Physics for Dating Diagnostic Dosimetry Research and Applications) Laboratories, Department of Physics and Astronomy, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Rigie DS, La Rivière PJ. Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization. Phys Med Biol 2015; 60:1741-62. [PMID: 25658985 DOI: 10.1088/0031-9155/60/5/1741] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We explore the use of the recently proposed 'total nuclear variation' (TVN) as a regularizer for reconstructing multi-channel, spectral CT images. This convex penalty is a natural extension of the total variation (TV) to vector-valued images and has the advantage of encouraging common edge locations and a shared gradient direction among image channels. We show how it can be incorporated into a general, data-constrained reconstruction framework and derive update equations based on the first-order, primal-dual algorithm of Chambolle and Pock. Early simulation studies based on the numerical XCAT phantom indicate that the inter-channel coupling introduced by the TVN leads to better preservation of image features at high levels of regularization, compared to independent, channel-by-channel TV reconstructions.
Collapse
Affiliation(s)
- David S Rigie
- Department of Radiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
25
|
Sawatzky A, Xu Q, Schirra CO, Anastasio MA. Proximal ADMM for multi-channel image reconstruction in spectral X-ray CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1657-68. [PMID: 24802167 DOI: 10.1109/tmi.2014.2321098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of spectral X-ray computed tomography (CT) using binned photon-counting detectors has received great attention in recent years and has enabled selective imaging of contrast agents loaded with K-edge materials. A practical issue in implementing this technique is the mitigation of the high-noise levels often present in material-decomposed sinogram data. In this work, the spectral X-ray CT reconstruction problem is formulated within a multi-channel (MC) framework in which statistical correlations between the decomposed material sinograms can be exploited to improve image quality. Specifically, a MC penalized weighted least squares (PWLS) estimator is formulated in which the data fidelity term is weighted by the MC covariance matrix and sparsity-promoting penalties are employed. This allows the use of any number of basis materials and is therefore applicable to photon-counting systems and K-edge imaging. To overcome numerical challenges associated with use of the full covariance matrix as a data fidelity weight, a proximal variant of the alternating direction method of multipliers is employed to minimize the MC PWLS objective function. Computer-simulation and experimental phantom studies are conducted to quantitatively evaluate the proposed reconstruction method.
Collapse
|