1
|
Sulistyawan IGE, Nishimae D, Ishii T, Saijo Y. Singular value decomposition with weighting matrix applied for optical-resolution photoacoustic microscopes. ULTRASONICS 2024; 143:107424. [PMID: 39084109 DOI: 10.1016/j.ultras.2024.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The prestige target selectivity and imaging depth of optical-resolution photoacoustic microscope (OR-PAM) have gained attentions to enable advanced intra-cellular visualizations. However, the broad-band nature of photoacoustic signals is prone to noise and artifacts caused by the inefficient light-to-pressure translation, resulting in poor image quality. The present study foresees application of singular value decomposition (SVD) to effectively extract the photoacoustic signals from these noise and artifacts. Although spatiotemporal SVD succeeded in ultrasound flow signal extraction, the conventional multi frame model is not suitable for data acquired with scanning OR-PAM due to the burden of accessing multiple frames. To utilize SVD on the OR-PAM, this study began with exploring SVD applied on multiple A-lines of photoacoustic signal instead of frames. Upon explorations, an obstacle of uncertain presence of unwanted singular vectors was observed. To tackle this, a data-driven weighting matrix was designed to extract relevant singular vectors based on the analyses of temporal-spatial singular vectors. Evaluation on the extraction capability by the SVD with the weighting matrix showed a superior signal quality with efficient computation against past studies. In summary, this study contributes to the field by providing exploration of SVD applied on A-line signals as well as its practical utilization to distinguish and recover photoacoustic signals from noise and artifact components.
Collapse
Affiliation(s)
| | - Daisuke Nishimae
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Takuro Ishii
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.
| | - Yoshifumi Saijo
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
2
|
Yang YL, Meng ZD, Wang HL, Zheng JR, Tian ZQ, Yi J. Taking Photoacoustic Force into Account in Liquid-Phase Peak Force Infrared Microscopy. J Phys Chem Lett 2024; 15:8233-8239. [PMID: 39102567 DOI: 10.1021/acs.jpclett.4c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The microscopic structure of the material's solid-liquid interface significantly influences its physicochemical properties. Peak force infrared microscopy (PFIR) is a powerful technique for analyzing these interfaces at the nanoscale, revealing crucial structure-activity relationships. PFIR is recognized for its explicit photothermal signal generation mechanism but tends to overlook other photoinduced forces, which can disturb the obtained infrared spectra, thereby reducing spectral signal-to-noise ratio (SNR) and sensitivity. We have developed a multiphysics-coupled theoretical model to assess the magnitudes of various photoinduced forces in PFIR experiments and have found that the magnitude of the photoacoustic force is comparable to that of the photothermal expansion force in a liquid environment. Our calculations show that through simple modulation of the pulse waveform it is possible to effectively suppress the photoacoustic interference, thereby improving the SNR and sensitivity of PFIR. This work aims to alert researchers to the potential for strong photoacoustic interference in liquid-phase PFIR measurements and enhance the performance of PFIR by clarifying the photoinduced forces entangled in the signals.
Collapse
Affiliation(s)
- Yu-Lin Yang
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhao-Dong Meng
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Hai-Long Wang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (iKKEM), Xiamen 361005, China
| | - Jun-Rong Zheng
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (iKKEM), Xiamen 361005, China
| | - Jun Yi
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (iKKEM), Xiamen 361005, China
| |
Collapse
|
3
|
Strohm EM, Sathiyamoorthy K, Bok T, Nusrat O, Kolios MC. Air-Coupled Photoacoustic Detection of Airborne Particulates. INTERNATIONAL JOURNAL OF THERMOPHYSICS 2023; 44:67. [PMID: 36909209 PMCID: PMC9990552 DOI: 10.1007/s10765-023-03169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
In this study, we present a novel method to detect airborne particulates using air-coupled photoacoustics, with a goal toward detecting viral content in respiratory droplets. The peak photoacoustic frequency emitted from micrometer-sized particulates is over 1000 MHz, but at this frequency, the signals are highly attenuated in air. Measurements were taken using a thin planar absorber and ultrasound transducers with peak sensitivity between 50 kHz and 2000 kHz and a 532 nm pulsed laser to determine the optimum detection frequency. 350 kHz to 500 kHz provided the highest amplitude signal while minimizing attenuation in air. To simulate the expulsion of respiratory droplets, an atomizer device was used to spray droplets into open air through a pulsed laser. Droplets were composed of water, water with acridine orange dye, and water with gold nanoparticles. The dye and nanoparticles were chosen due to their similarity in the UV absorption peaks when compared to RNA. Using a 260 nm laser, the average photoacoustic signal from water was the highest, and then the signal decreased with dye or nanoparticles. Increasing absorber concentrations within their respective solutions resulted in a decreasing photoacoustic signal, which is opposite to our expectations. Monte Carlo simulations demonstrated that depending on the droplet dimensions, water droplets focus photons to create a localized fluence elevation. Absorbers within the droplet can inhibit photon travel through the droplet, decreasing the fluence. Photoacoustic signals are created through optical absorption within the droplet, potentially amplified with the localized fluence increase through the droplet focusing effect, with a trade-off in signal amplitude depending on the absorber concentration.
Collapse
Affiliation(s)
- Eric M. Strohm
- Department of Physics, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| | - Krishnan Sathiyamoorthy
- Department of Physics, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| | - Taehoon Bok
- Department of Physics, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| | - Omar Nusrat
- Department of Physics, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| |
Collapse
|
4
|
Ranjan A, Ahmad A, Ahluwalia BS, Melandsø F. Laser-Generated Scholte Waves in Floating Microparticles. SENSORS (BASEL, SWITZERLAND) 2023; 23:1776. [PMID: 36850374 PMCID: PMC9961672 DOI: 10.3390/s23041776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
This study aims to demonstrate the generation and detection of Scholte waves inside polystyrene microparticles. This was proven using both experimental analysis and COMSOL simulation. Microspheres of different sizes were excited optically with a pulsed laser (532 nm), and the acoustic signals were detected using a transducer (40 MHz). On analyzing the laser-generated ultrasound signals, the results obtained experimentally and from COMSOL are in close agreement both in the time and frequency domain. A simplified analysis of Scholte wave generation by laser irradiation for homogeneous, isotropic microspheres is presented. The theoretical wave velocity of the Scholte wave was calculated and found close to our experimental results. A representation of pressure wave motion showing the Scholte wave generation is presented at different times.
Collapse
|
5
|
Lu Z, Acter S, Teo BM, Bishop AI, Tabor RF, Vidallon MLP. Mesoporous, anisotropic nanostructures from bioinspired polymeric catecholamine neurotransmitters and their potential application as photoacoustic imaging agents. J Mater Chem B 2022; 10:9662-9670. [PMID: 36382405 DOI: 10.1039/d2tb01756c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mesoporous polydopamine (PDA) nanobowls, which can be prepared using Pluronic® F-127, ammonia, and 1,3,5-trimethylbenzene (TMB), are one of the most studied anisotropic nanoparticle systems. However, only limited reports on polymerised analogues polynorepinephrine (PNE) and polyepinephrine (PEP) exist. Herein, we present modifications to a one-pot, soft template method, originally applied to make PDA nanobowls, to fabricate new shape-anisotropic nanoparticles (mesoporous nanospheres or "nano-golf balls" and nanobowls) using PNE and PEP for the first time. These modifications include the use of different oil phases (TMB, toluene and o-xylene) and ammonia concentrations to induce anisotropic growth of PDA, PNE, and PEP particles. Moreover, this work features the application of oddly shaped PDA, PNE, and PEP nanoparticles as intravascular photoacoustic imaging enhancers in Intralipid®-India ink-based tissue-mimicking phantoms. Photoacoustic imaging experiments showed that mesoporous nanobowls exhibit stronger enhancement, in comparison to their mesoporous nano-golf ball and nanoaggregate counterparts. The photoacoustic enhancement also followed the general trend PDA > PNE > PEP due to the differences in the rates of polymerisation of the monomers and the optical absorption of the resulting polymers. Lastly, about two- to four-fold enhancement in photoacoustic signals was observed for the mesoporous nanostructures, when compared to smooth nanospheres and their nano-aggregates. These results suggest that shape manipulation can aid in overcoming the inherently lower performance of PNE and PEP as photoacoustic imaging agents, compared to PDA. Since nanomaterials with mesoporous and anisotropic morphologies have significant, unexplored potential with emerging applications, these results set the groundwork for future studies on photoacoustically active oddly shaped PNE- and PEP-based nanosystems.
Collapse
Affiliation(s)
- Zhenzhen Lu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | - Shahinur Acter
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | | |
Collapse
|
6
|
Vidallon MLP, Salimova E, Crawford SA, Teo BM, Tabor RF, Bishop AI. Enhanced photoacoustic imaging in tissue-mimicking phantoms using polydopamine-shelled perfluorocarbon emulsion droplets. ULTRASONICS SONOCHEMISTRY 2022; 86:106041. [PMID: 35617883 PMCID: PMC9136156 DOI: 10.1016/j.ultsonch.2022.106041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 05/05/2023]
Abstract
The current work features process parameters for the ultrasound (25 kHz)-assisted fabrication of polydopamine-shelled perfluorocarbon (PDA/PFC) emulsion droplets with bimodal (modes at 100-600 nm and 1-6 µm) and unimodal (200-600 nm) size distributions. Initial screening of these materials revealed that only PDA/PFC emulsion droplets with bimodal distributions showed photoacoustic signal enhancement due to large size of their optically absorbing PDA shells. Performance of this particular type of emulsion droplets as photoacoustic agents were evaluated in Intralipid®-India ink media, mimicking the optical scattering and absorbanceof various tissuetypes. From these measurements, it was observed that PDA/PFC droplets with bimodal size distributions can enhance the photoacoustic signal of blood-mimicking phantom by up to five folds in various tissue-mimicking phantoms with absorption coefficients from 0.1 to 1.0 cm-1. Furthermore, using the information from enhanced photoacoustic images at 750 nm, the ultimate imaging depth was explored for polydopamine-shelled, perfluorohexane (PDA/PFH) emulsion droplets by photon trajectory simulations in 3D using a Monte Carlo approach. Based on these simulations, maximal tissue imaging depths for PDA/PFH emulsion droplets range from 10 to 40 mm, depending on the tissue type. These results demonstrate for the first time that ultrasonically fabricated PDA/PFC emulsion droplets have great potential as photoacoustic imaging agents that can be complemented with other reported characteristics of PDA/PFC emulsion droplets for extended applications in theranostics and other imaging modalities.
Collapse
Affiliation(s)
| | - Ekaterina Salimova
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Monash Biomedical Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
7
|
Hysi E, Fadhel MN, Wang Y, Sebastian JA, Giles A, Czarnota GJ, Exner AA, Kolios MC. Photoacoustic imaging biomarkers for monitoring biophysical changes during nanobubble-mediated radiation treatment. PHOTOACOUSTICS 2020; 20:100201. [PMID: 32775198 PMCID: PMC7393572 DOI: 10.1016/j.pacs.2020.100201] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 05/04/2023]
Abstract
The development of novel anticancer therapies warrants the parallel development of biomarkers that can quantify their effectiveness. Photoacoustic imaging has the potential to measure changes in tumor vasculature during treatment. Establishing the accuracy of imaging biomarkers requires direct comparisons with gold histological standards. In this work, we explore whether a new class of submicron, vascular disrupting, ultrasonically stimulated nanobubbles enhance radiation therapy. In vivo experiments were conducted on mice bearing prostate cancer tumors. Combined nanobubble plus radiation treatments were compared against conventional microbubbles and radiation alone (single 8 Gy fraction). Acoustic resolution photoacoustic imaging was used to monitor the effects of the treatments 2- and 24-hs post-administration. Histological examination provided metrics of tumor vascularity and tumoral cell death, both of which were compared to photoacoustic-derived biomarkers. Photoacoustic metrics of oxygen saturation reveal a 20 % decrease in oxygenation within 24 h post-treatment. The spectral slope metric could separate the response of the nanobubble treatments from the microbubble counterparts. This study shows that histopathological assessment correlated well with photoacoustic biomarkers of treatment response.
Collapse
Affiliation(s)
- Eno Hysi
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Muhannad N. Fadhel
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Yanjie Wang
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Joseph A. Sebastian
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Anoja Giles
- Deparment of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Gregory J. Czarnota
- Deparment of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Deparment of Medical Biophysics, University of Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Canada
| | - Agata A. Exner
- Department of Radiology, Case Western Reserve University, Cleveland, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, United States
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| |
Collapse
|
8
|
Research on Local Sound Field Control Technology Based on Acoustic Metamaterial Triode Structure. CRYSTALS 2020. [DOI: 10.3390/cryst10030204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell photoacoustic detection faces the problem where the strength of the sound wave signal is so weak that it easily gets interfered by other acoustic signals. A sonic triode model based on an artificial periodic structure is designed by COMSOL Multiphysics 5.3a software (Stockholm, Sweden), and software simulations are conducted. Experiments show that when a sound wave with a specific frequency is input by the sound wave triode, it can produce an energy amplification effect on the sound wave signals of the same frequency and a blocking effect on the sound wave signals of other frequencies. This contrast effect is more obvious after increasing the sound pressure intensity of the input sound wave signal. It can effectively filter out interference sound signals. The study of the acoustic triode model provides a new approach for the acquisition and identification of acoustic signals in cell photoacoustic detection, which can significantly improve the working efficiency and accuracy of cell photoacoustic detection.
Collapse
|
9
|
Fadhel MN, Hysi E, Zalev J, Kolios MC. Photoacoustic simulations of microvascular bleeding: spectral analysis and its application for monitoring vascular-targeted treatments. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31707772 PMCID: PMC7003142 DOI: 10.1117/1.jbo.24.11.116001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/21/2019] [Indexed: 05/04/2023]
Abstract
Solid tumors are typically supplied nutrients by a network of irregular blood vessels. By targeting these vascular networks, it might be possible to hinder cancer growth and metastasis. Vascular disrupting agents induce intertumoral hemorrhaging, making photoacoustic (PA) imaging well positioned to detect bleeding due to its sensitivity to hemoglobin and its various states. We introduce a fractal-based numerical model of intertumoral hemorrhaging to simulate the PA signals from disrupted tumor blood vessels. The fractal model uses bifurcated cylinders to represent vascular trees. To mimic bleeding from blood vessels, hemoglobin diffusion from microvessels was simulated. In the simulations, the PA signals were detected by a linear array transducer (30 MHz center frequency) of four different vascular trees. The power spectrum of each beamformed PA signal was computed and fitted to a straight line within the −6-dB bandwidth of the receiving transducer. The spectral slope and midband fit (MBF) based on the fit decreased by 0.11 dB / MHz and 2.12 dB, respectively, 1 h post bleeding, while the y-intercept increased by 1.21 dB. The results suggest that spectral PA analysis can be used to measure changes in the concentration and spatial distribution of hemoglobin in tissue without the need to resolve individual vessels. The simulations support the feasibility of using PA imaging and spectral analysis in cancer treatment monitoring by detecting microvessel disruption.
Collapse
Affiliation(s)
- Muhannad N. Fadhel
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
| | - Eno Hysi
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
| | - Jason Zalev
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
| | - Michael C. Kolios
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
- Address all correspondence to Michael C. Kolios, E-mail:
| |
Collapse
|
10
|
Fadhel MN, Hysi E, Strohm EM, Kolios MC. Optical and photoacoustic radiofrequency spectroscopic analysis for detecting red blood cell death. JOURNAL OF BIOPHOTONICS 2019; 12:e201800431. [PMID: 31050867 DOI: 10.1002/jbio.201800431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/15/2023]
Abstract
Under stress, red blood cells (RBCs) undergo programmed cell death (eryptosis). One of the signaling molecules for eryptosis, sphingomyelinase (SMase), plays an important role in monitoring the efficacy of vascular targeted cancer therapy. The high optical absorption of erythrocytes coupled with the changes of eryptotic RBCs makes RBCs ideal targets for the photoacoustic (PA) detection and characterization of vascular treatments. In this work, experiments characterizing eryptosis were performed: PA detection of high frequencies (>100 MHz) that enabled analysis at the single-cell level and of low frequencies (21 MHz) that enabled analysis at the RBC ensemble level. Ultrasound spectral analysis was performed on control and SMase-treated RBCs. Spectral unmixing was applied to quantify methemoglobin production as a by-product of RBC death. Validation was performed using a blood gas analyzer and optical spectrometry. Our results indicate that PA radiofrequency spectra could be used to differentiate the biochemically induced morphological changes as RBCs lose their native biconcave shape, and release hemoglobin into the surroundings. Spectral unmixing revealed a 7% increase in methemoglobin content for SMase-treated samples due to the oxidative stress on the RBCs. These findings suggest that PA spectral analysis of RBC death can potentially serve as a biomarker of the efficacy of vascular targeted cancer therapies.
Collapse
Affiliation(s)
- Muhannad N Fadhel
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Eno Hysi
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Eric M Strohm
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
11
|
Liu YH, Xu Y, Liao LD, Chan KC, Thakor NV. A Handheld Real-Time Photoacoustic Imaging System for Animal Neurological Disease Models: From Simulation to Realization. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4081. [PMID: 30469455 PMCID: PMC6263979 DOI: 10.3390/s18114081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
This article provides a guide to design and build a handheld, real-time photoacoustic (PA) imaging system from simulation to realization for animal neurological disease models. A pulsed laser and array-based ultrasound (US) platform were utilized to develop the system for evaluating vascular functions in rats with focal ischemia or subcutaneous tumors. To optimize the laser light delivery, finite element (FE)-based simulation models were developed to provide information regarding light propagation and PA wave generation in soft tissues. Besides, simulations were also conducted to evaluate the ideal imaging resolution of the US system. As a result, a PA C-scan image of a designed phantom in 1% Lipofundin was reconstructed with depth information. Performance of the handheld PA system was tested in an animal ischemia model, which revealed that cerebral blood volume (CBV) changes at the cortical surface could be monitored immediately after ischemia induction. Another experiment on subcutaneous tumors showed the anomalous distribution of the total hemoglobin concentration (HbT) and oxygen saturation (SO₂), while 3D and maximum intensity projection (MIP) PA images of the subcutaneous tumors are also presented in this article. Overall, this system shows promise for monitoring disease progression in vascular functional impairments.
Collapse
Affiliation(s)
- Yu-Hang Liu
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore.
| | - Yu Xu
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Lun-De Liao
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore.
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Kim Chuan Chan
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore.
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Uluc N, Unlu MB, Gulsen G, Erkol H. Extended photoacoustic transport model for characterization of red blood cell morphology in microchannel flow. BIOMEDICAL OPTICS EXPRESS 2018; 9:2785-2809. [PMID: 30258691 PMCID: PMC6154189 DOI: 10.1364/boe.9.002785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
The dynamic response behavior of red blood cells holds the key to understanding red blood cell related diseases. In this regard, an understanding of the physiological functions of erythrocytes is significant before focusing on red blood cell aggregation in the microcirculatory system. In this work, we present a theoretical model for a photoacoustic signal that occurs when deformed red blood cells pass through a microfluidic channel. Using a Green's function approach, the photoacoustic pressure wave is obtained analytically by solving a combined Navier-Stokes and photoacoustic equation system. The photoacoustic wave expression includes determinant parameters for the cell deformability such as plasma viscosity, density, and red blood cell aggregation, as well as involving laser parameters such as beamwidth, pulse duration, and repetition rate. The effects of aggregation on blood rheology are also investigated. The results presented by this study show good agreements with the experimental ones in the literature. The comprehensive analytical solution of the extended photoacoustic transport model including a modified Morse type potential function sheds light on the dynamics of aggregate formation and demonstrates that the profile of a photoacoustic pressure wave has the potential for detecting and characterizing red blood cell aggregation.
Collapse
Affiliation(s)
- Nasire Uluc
- Department of Physics, Bogazici University, 34342 Bebek, Istanbul,
Turkey
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, 34342 Bebek, Istanbul,
Turkey
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8648,
Japan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA,
USA
| | - Gultekin Gulsen
- Department of Radiological Sciences, University of California, Irvine, CA,
USA
| | - Hakan Erkol
- Department of Physics, Bogazici University, 34342 Bebek, Istanbul,
Turkey
| |
Collapse
|
13
|
Hysi E, Wirtzfeld LA, May JP, Undzys E, Li SD, Kolios MC. Photoacoustic signal characterization of cancer treatment response: Correlation with changes in tumor oxygenation. PHOTOACOUSTICS 2017; 5:25-35. [PMID: 28393017 PMCID: PMC5377014 DOI: 10.1016/j.pacs.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/18/2017] [Accepted: 03/13/2017] [Indexed: 05/20/2023]
Abstract
Frequency analysis of the photoacoustic radiofrequency signals and oxygen saturation estimates were used to monitor the in-vivo response of a novel, thermosensitive liposome treatment. The liposome encapsulated doxorubicin (HaT-DOX) releasing it rapidly (<20 s) when the tumor was exposed to mild hyperthermia (43 °C). Photoacoustic imaging (VevoLAZR, 750/850 nm, 40 MHz) of EMT-6 breast cancer tumors was performed 30 min pre- and post-treatment and up to 7 days post-treatment (at 2/5/24 h timepoints). HaT-DOX-treatment responders exhibited on average a 22% drop in oxygen saturation 2 h post-treatment and a decrease (45% at 750 nm and 73% at 850 nm) in the slope of the normalized PA frequency spectra. The spectral slope parameter correlated with treatment-induced hemorrhaging which increased the optical absorber effective size via interstitial red blood cell leakage. Combining frequency analysis and oxygen saturation estimates differentiated treatment responders from non-responders/control animals by probing the treatment-induced structural changes of blood vessel.
Collapse
Affiliation(s)
- Eno Hysi
- Department of Physics, Ryerson University, Toronto, M5 B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Center, St. Michael’s Hospital, Toronto, M5 B 1T8, Canada
| | - Lauren A. Wirtzfeld
- Department of Physics, Ryerson University, Toronto, M5 B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Center, St. Michael’s Hospital, Toronto, M5 B 1T8, Canada
| | - Jonathan P. May
- Faculty of Pharmaceutical Sciences, The University of British Colombia, Vancouver, V6T 1Z3, Canada
| | - Elijus Undzys
- Drug Delivery and Formulation Group, Ontario Institute for Cancer Research, Toronto, M5G 0A3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Colombia, Vancouver, V6T 1Z3, Canada
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, M5 B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Center, St. Michael’s Hospital, Toronto, M5 B 1T8, Canada
| |
Collapse
|
14
|
Sheeran PS, Matsuura N, Borden MA, Williams R, Matsunaga TO, Burns PN, Dayton PA. Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:252-263. [PMID: 27775902 PMCID: PMC5706463 DOI: 10.1109/tuffc.2016.2619685] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Continued advances in the field of ultrasound and ultrasound contrast agents have created new approaches to imaging and medical intervention. Phase-shift perfluorocarbon droplets, which can be vaporized by ultrasound energy to transition from the liquid to the vapor state, are one of the most highly researched alternatives to clinical ultrasound contrast agents (i.e., microbubbles). In this paper, part of a special issue on methods in biomedical ultrasonics, we survey current techniques to prepare ultrasound-activated nanoscale phase-shift perfluorocarbon droplets, including sonication, extrusion, homogenization, microfluidics, and microbubble condensation. We provide example protocols and discuss advantages and limitations of each approach. Finally, we discuss best practice in characterization of this class of contrast agents with respect to size distribution and ultrasound activation.
Collapse
|
15
|
van den Berg PJ, Bansal R, Daoudi K, Steenbergen W, Prakash J. Preclinical detection of liver fibrosis using dual-modality photoacoustic/ultrasound system. BIOMEDICAL OPTICS EXPRESS 2016; 7:5081-5091. [PMID: 28018726 PMCID: PMC5175553 DOI: 10.1364/boe.7.005081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 05/07/2023]
Abstract
Liver fibrosis is a major cause for increasing mortality worldwide. Preclinical research using animal models is required for the discovery of new anti-fibrotic therapies, but currently relies on endpoint liver histology. In this study, we investigated a cost-effective and portable photoacoustic/ultrasound (PA/US) imaging system as a potential non-invasive alternative. Fibrosis was induced in mice using CCl4 followed by liver imaging and histological analysis. Imaging showed significantly increased PA features with higher frequency signals in fibrotic livers versus healthy livers. This corresponds to more heterogeneous liver structure resulting from collagen deposition and angiogenesis. Importantly, PA response and its frequency were highly correlated with histological parameters. These results demonstrate the preclinical feasibility of the PA imaging approach and applicability of dual PA/US system.
Collapse
Affiliation(s)
- Pim J van den Berg
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work;
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work;
| | - Khalid Daoudi
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work
| |
Collapse
|
16
|
Feng T, Li Q, Zhang C, Xu G, Guo LJ, Yuan J, Wang X. Characterizing cellular morphology by photoacoustic spectrum analysis with an ultra-broadband optical ultrasonic detector. OPTICS EXPRESS 2016; 24:19853-62. [PMID: 27557261 PMCID: PMC5025227 DOI: 10.1364/oe.24.019853] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 05/28/2023]
Abstract
Photoacoustic spectrum analysis (PASA) has been demonstrated as a new method for quantitative tissue imaging and characterization. The ability of PASA in evaluating micro-size tissue features was limited by the bandwidth of detectors for photoacoustic (PA) signal acquisition. We improve upon such a limit, and report on developments of PASA facilitated by an optical ultrasonic detector based on micro-ring resonator. The detector's broad and flat frequency response significantly improves the performance of PASA and extents its characterization capability from the tissue level to cellular level. The performance of the system in characterizing cellular level (a few microns) stochastic objects was first shown via a study on size-controlled optically absorbing phantoms. As a further demonstration of PASA's potential clinical application, it was employed to characterize the morphological changes of red blood cells (RBCs) from a biconcave shape to a spherical shape as a result of aging. This work demonstrates that PASA equipped with the micro-ring ultrasonic detectors is an effective technique in characterizing cellular-level micro-features of biological samples.
Collapse
Affiliation(s)
- Ting Feng
- Institute of Acoustics, Tongji University, Shanghai 200092,
China
- Department of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 21000,
China
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109,
USA
- These authors contributed equally to this work
| | - Qiaochu Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109,
USA
- These authors contributed equally to this work
| | - Cheng Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109,
USA
| | - Guan Xu
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109,
USA
| | - L. Jay Guo
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109,
USA
| | - Jie Yuan
- Department of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 21000,
China
| | - Xueding Wang
- Institute of Acoustics, Tongji University, Shanghai 200092,
China
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109,
USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109,
USA
| |
Collapse
|
17
|
Strohm EM, Moore MJ, Kolios MC. High resolution ultrasound and photoacoustic imaging of single cells. PHOTOACOUSTICS 2016; 4:36-42. [PMID: 27114911 PMCID: PMC4833469 DOI: 10.1016/j.pacs.2016.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 05/02/2023]
Abstract
High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.
Collapse
Affiliation(s)
- Eric M. Strohm
- Department of Physics, Ryerson University, Toronto, Ontario M5B2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, Toronto, Ontario, M5B1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, M5B1T8, Canada
| | - Michael J. Moore
- Department of Physics, Ryerson University, Toronto, Ontario M5B2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, Toronto, Ontario, M5B1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, M5B1T8, Canada
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, Ontario M5B2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, Toronto, Ontario, M5B1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, M5B1T8, Canada
| |
Collapse
|
18
|
Simulating photoacoustic waves produced by individual biological particles with spheroidal wave functions. Sci Rep 2015; 5:14801. [PMID: 26442830 PMCID: PMC4595827 DOI: 10.1038/srep14801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022] Open
Abstract
Under the usual approximation of treating a biological particle as a spheroidal droplet, we consider the analysis of its size and shape with the high frequency photoacoustics and develop a numerical method which can simulate its characteristic photoacoustic waves. This numerical method is based on the calculation of spheroidal wave functions, and when comparing to the finite element model (FEM) calculation, can reveal more physical information and can provide results independently at each spatial points. As the demonstration, red blood cells (RBCs) and MCF7 cell nuclei are studied, and their photoacoustic responses including field distribution, spectral amplitude, and pulse forming are calculated. We expect that integrating this numerical method with the high frequency photoacoustic measurement will form a new modality being extra to the light scattering method, for fast assessing the morphology of a biological particle.
Collapse
|
19
|
Feng T, Perosky JE, Kozloff KM, Xu G, Cheng Q, Du S, Yuan J, Deng CX, Wang X. Characterization of bone microstructure using photoacoustic spectrum analysis. OPTICS EXPRESS 2015; 23:25217-24. [PMID: 26406719 PMCID: PMC4646513 DOI: 10.1364/oe.23.025217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/27/2015] [Accepted: 09/09/2015] [Indexed: 05/18/2023]
Abstract
Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and the deterioration in bone microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic (PA) signal from the bone. Modeling and numerical simulation of PA signal were performed on trabecular bone simulations and CT scans with different trabecular thicknesses. The resulting quasi-linear photoacoustic spectra were fittted by linear regression, from which the spectral parameter slope was quantified. The simulation based on two different models both demonstrate that bone specimens with thinner trabecular thicknesses have higher slope. Experiment on osteoporotic rat femoral heads with different mineral content was conducted. The finding from the experiment was in good agreement with the simulation, demonstrating that the frequency-domain analysis of PA signals can provide an objective assessment of bone microstructure and deterioration. Considering that PA measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and non-calcified tissues, this new bone evaluation method based on photoacoustic spectral analysis holds potential for clinical management of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Ting Feng
- Department of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 21000, China
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph E. Perosky
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kenneth M. Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guan Xu
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qian Cheng
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Acousitc, Tongji University, Shanghai 200092, China
| | - Sidan Du
- Department of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 21000, China
| | - Jie Yuan
- Department of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 21000, China
| | - Cheri X. Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Strohm EM, Kolios MC. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics. Cytometry A 2015; 87:741-9. [DOI: 10.1002/cyto.a.22698] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/05/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Eric M. Strohm
- Department of Physics; Ryerson University; Toronto Canada
| | | |
Collapse
|