1
|
Rodriguez M, Sempau J, Brualla L. Monte Carlo simulation of the Varian TrueBeam flattened-filtered beams using a surrogate geometry in PRIMO. Radiat Oncol 2024; 19:14. [PMID: 38267999 PMCID: PMC10809682 DOI: 10.1186/s13014-024-02405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Monte Carlo simulation of radiation transport for medical linear accelerators (linacs) requires accurate knowledge of the geometrical description of the linac head. Since the geometry of Varian TrueBeam machines has not been disclosed, the manufacturer distributes phase-space files of the linac patient-independent part to allow researchers to compute absorbed dose distributions using the Monte Carlo method. This approach limits the possibility of achieving an arbitrarily small statistical uncertainty. This work investigates the use of the geometry of the Varian Clinac 2100, which is included in the Monte Carlo system PRIMO, as a surrogate. METHODS Energy, radial and angular distributions extracted from the TrueBeam phase space files published by the manufacturer and from phase spaces tallied with PRIMO for the Clinac 2100 were compared for the 6, 8, 10 and 15 MV flattened-filtered beams. Dose distributions in water computed for the two sets of PSFs were compared with the Varian Representative Beam Data (RBD) for square fields with sides ranging from 3 to 30 cm. Output factors were calculated for square fields with sides ranging from 2 to 40 cm. RESULTS Excellent agreement with the RBD was obtained for the simulations that employed the phase spaces distributed by Varian as well as for those that used the surrogate geometry, reaching in both cases Gamma ([Formula: see text], 2 mm) pass rates larger than [Formula: see text], except for the 15 MV surrogate. This result supports previous investigations that suggest a change in the material composition of the TrueBeam 15 MV flattening filter. In order to get the said agreement, PRIMO simulations were run using enlarged transport parameters to compensate the discrepancies between the actual and surrogate geometries. CONCLUSIONS This work sustains the claim that the simulation of the 6, 8 and 10 MV flattening-filtered beams of the TrueBeam linac can be performed using the Clinac 2100 model of PRIMO without significant loss of accuracy.
Collapse
Affiliation(s)
- Miguel Rodriguez
- Hospital Paitilla, Calle 53 y ave Balboa, Panamá, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología-AIP (INDICASAT-AIP), Ciudad del Saber, Edificio 219, Panamá, Panama
| | - Josep Sempau
- Department of Physics, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
- Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
- Centros de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 28029, Madrid, Spain
| | - Lorenzo Brualla
- Westdeutsches Protonentherapiezentrum Essen (WPE), Hufelandstraße 55, 45147, Essen, Germany.
- West German Cancer Center (WTZ), Hufelandstraße 55, 45147, Essen, Germany.
- Medizinische Fakultät, Universität Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
- German Cancer Consortium DKTK, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
2
|
Pant A, Miri N, Bhagroo S, Mathews JA, Nazareth DP. Monitor unit verification for Varian TrueBeam VMAT plans using Monte Carlo calculations and phase space data. J Appl Clin Med Phys 2023; 24:e14063. [PMID: 37469244 PMCID: PMC10562028 DOI: 10.1002/acm2.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 07/21/2023] Open
Abstract
To use the open-source Monte Carlo (MC) software calculations for TPS monitor unit verification of VMAT plans, delivered with the Varian TrueBeam linear accelerator, and compare the results with a commercial software product, following the guidelines set in AAPM Task Group 219. The TrueBeam is modeled in EGSnrc using the Varian-provided phase-space files. Thirteen VMAT TrueBeam treatment plans representing various anatomical regions were evaluated, comprising 37 treatment arcs. VMAT plans simulations were performed on a computing cluster, using 107 -109 particle histories per arc. Point dose differences at five reference points per arc were compared between Eclipse, MC, and the commercial software, MUCheck. MC simulation with 5 × 107 histories per arc offered good agreement with Eclipse and a reasonable average calculation time of 9-18 min per full plan. The average absolute difference was 3.0%, with only 22% of all points exceeding the 5% action limit. In contrast, the MUCheck average absolute difference was 8.4%, with 60% of points exceeding the 5% dose difference. Lung plans were particularly problematic for MUCheck, with an average absolute difference of approximately 16%. Our EGSnrc-based MC framework can be used for the MU verification of VMAT plans calculated for the Varian TrueBeam; furthermore, our phase space approach can be adapted to other treatment devices by using appropriate phase space files. The use of 5 × 107 histories consistently satisfied the 5% action limit across all plan types for the majority of points, performing significantly better than a commercial MU verification system, MUCheck. As faster processors and cloud computing facilities become even more widely available, this approach can be readily implemented in clinical settings.
Collapse
Affiliation(s)
- Ankit Pant
- Department of Radiation MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Medical Physics ProgramUniversity at Buffalo (SUNY)BuffaloNew YorkUSA
| | - Narges Miri
- Department of Radiation MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Stephen Bhagroo
- Department of Radiation OncologyHuntsman Cancer InstituteSalt Lake CityUtahUSA
| | | | - Daryl P. Nazareth
- Department of Radiation MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Medical Physics ProgramUniversity at Buffalo (SUNY)BuffaloNew YorkUSA
| |
Collapse
|
3
|
De Saint-Hubert M, Boissonnat G, Schneider U, Bäumer C, Verbeek N, Esser J, Wulff J, Stuckmann F, Suesselbeck F, Nabha R, Dabin J, Vasi F, Radonic S, Rodriguez M, Simon AC, Journy N, Timmermann B, Thierry-Chef I, Brualla L. Complete patient exposure during paediatric brain cancer treatment for photon and proton therapy techniques including imaging procedures. Front Oncol 2023; 13:1222800. [PMID: 37795436 PMCID: PMC10546320 DOI: 10.3389/fonc.2023.1222800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Background In radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment. Materials and methods Organ doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al. Results Out-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 μSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 μSv (testes) and 48 μSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs. Conclusion The complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs.
Collapse
Affiliation(s)
| | | | - Uwe Schneider
- Physik Institut, Universitat Zürich, Zürich, Switzerland
| | - Christian Bäumer
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- Radiation Oncology and Imaging, German Cancer Consortium DKTK, Essen, Germany
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Nico Verbeek
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Johannes Esser
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- Faculty of Mathematics and Science Institute of Physics and Medical Physics, Heinrich-Heine University, Düsseldorf, Germany
| | - Jörg Wulff
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Florian Stuckmann
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Finja Suesselbeck
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Racell Nabha
- Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Jérémie Dabin
- Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Fabiano Vasi
- Physik Institut, Universitat Zürich, Zürich, Switzerland
| | | | - Miguel Rodriguez
- Hospital Paitilla, Panama City, Panama
- Instituto de Investigaciones Científicas y de Alta Tecnología INDICASAT-AIP, Panama City, Panama
| | | | - Neige Journy
- INSERM U1018, Paris Sud-Paris Saclay University, Villejuif, France
| | - Beate Timmermann
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- Radiation Oncology and Imaging, German Cancer Consortium DKTK, Essen, Germany
- Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| | - Isabelle Thierry-Chef
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- Radiation Oncology and Imaging, German Cancer Consortium DKTK, Essen, Germany
- Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Monte-Carlo techniques for radiotherapy applications I: introduction and overview of the different Monte-Carlo codes. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Introduction:
The dose calculation plays a crucial role in many aspects of contemporary clinical radiotherapy treatment planning process. It therefore goes without saying that the accuracy of the dose calculation is of very high importance. The gold standard for absorbed dose calculation is the Monte-Carlo algorithm.
Methods:
This first of two papers gives an overview of the main openly available and supported codes that have been widely used for radiotherapy simulations.
Results:
The paper aims to provide an overview of Monte-Carlo in the field of radiotherapy and point the reader in the right direction of work that could help them get started or develop their existing understanding and use of Monte-Carlo algorithms in their practice.
Conclusions:
It also serves as a useful companion to a curated collection of papers on Monte-Carlo that have been published in this journal.
Collapse
|
5
|
Shende R, Dhoble S, Gupta G. Geometrical source modeling of 6MV flattening-filter-free (FFF) beam from TrueBeam linear accelerator and its commissioning validation using Monte Carlo simulation approach for radiotherapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Vassiliev ON, Peterson CB, Chang JY, Mohan R. Monte Carlo evaluation of target dose coverage in lung stereotactic body radiation therapy with flattening filter-free beams. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022; 21:81-87. [PMID: 35401050 PMCID: PMC8992779 DOI: 10.1017/s1460396920000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aim Previous studies showed that replacing conventional flattened beams (FF) with flattening filter-free (FFF) beams improves the therapeutic ratio in lung stereotactic body radiation therapy (SBRT), but these findings could have been impacted by dose calculation uncertainties caused by the heterogeneity of the thoracic anatomy and by respiratory motion, which were particularly high for target coverage. In this study, we minimized such uncertainties by calculating doses using high-spatial-resolution Monte Carlo and four-dimensional computed tomography (4DCT) images. We aimed to evaluate more reliably the benefits of using FFF beams for lung SBRT. Materials and methods For a cohort of 15 patients with early stage lung cancer that we investigated in a previous treatment planning study, we recalculated dose distributions with Monte Carlo using 4DCT images. This included fifteen FF and fifteen FFF treatment plans. Results Compared to Monte Carlo, the treatment planning system (TPS) over-predicted doses in low-dose regions of the planning target volume. For most patients, replacing FF beams with FFF beams improved target coverage, tumor control, and uncomplicated tumor control probabilities. Conclusions Monte Carlo tends to reveal deficiencies in target coverage compared to coverage predicted by the TPS. Our data support previously reported benefits of using FFF beams for lung SBRT.
Collapse
Affiliation(s)
- Oleg N Vassiliev
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Yang HJ, Kim TH, Schaarschmidt T, Park DW, Kang SH, Chung HT, Suh TS. A multivariate approach to determine electron beam parameters for a Monte Carlo 6 MV Linac model: Statistical and machine learning methods. Phys Med 2021; 93:38-45. [PMID: 34920381 DOI: 10.1016/j.ejmp.2021.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE This study aimed to determine the optimal initial electron beam parameters of a Linac for radiotherapy with a multivariate approach using statistical and machine-learning tools. METHODS For MC beam commissioning, a 6 MV Varian Clinac was simulated using the Geant4 toolkit. The authors investigated the relations between simulated dose distribution and initial electron beam parameters, namely, mean energy (E), energy spread (ES), and radial beam size (RS). The goodness of simulation was evaluated by the slope of differences between the simulated and the golden beam data. The best-fit combination of the electron beam parameters that minimized the slope of dose difference was searched through multivariate methods using conventional statistical methods and machine-learning tools of the scikit-learn library. RESULTS Simulation results with 87 combinations of the electron beam parameters were analyzed. Regardless of being univariate or multivariate, traditional statistical models did not recommend a single parameter set simultaneously minimizing slope of dose differences for percent depth dose (PDD) and lateral dose profile (LDP). Two machine learning classification modules, RandomForestClassifier and BaggingClassifier, agreed in recommending (E = 6.3 MeV, ES = ±5.0%, RS = 1.0 mm) for predicting simultaneous acceptance of PDD and LDP. CONCLUSIONS The machine learning with random-forest and bagging classifier modules recommended a consistent result. It was possible to draw an optimal electron beam parameter set using multivariate methods for MC simulation of a radiotherapy 6 MV Linac.
Collapse
Affiliation(s)
- Hye Jeong Yang
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Nuclear Engineering, Hanyang University College of Engineering, Seoul, Republic of Korea
| | - Thomas Schaarschmidt
- Department of Nuclear Engineering, Hanyang University College of Engineering, Seoul, Republic of Korea
| | - Dong-Wook Park
- Department of Radiation Oncology, Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Seung Hee Kang
- Department of Radiation Oncology, Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Hyun-Tai Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Tae Suk Suh
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Investigation of field output factors using IAEA-AAPM TRS-483 code of practice recommendations and Monte Carlo simulation for 6 MV photon beams. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Introduction:
This study aims to experimentally determine field output factors using the methodologies suggested by the IAEA-AAPM TRS-483 for small field dosimetry and compare with the calculation from Monte Carlo (MC) simulation.
Methods:
The IBA-CC01, Sun Nuclear EDGE and IBA-SFD detectors were employed to determine the uncorrected and the corrected field output factors for 6 MV photon beams. Measurements were performed at 100 cm source to axis distance, 10 cm depth in water, and the field sizes ranged from 1 × 1 to 10 × 10 cm2. The use of field output correction factors proposed by the TRS-483 was utilised to determine field output factors. The measured field output factors were compared to that calculated using the egs_chamber user code.
Results:
The decrease in the percentage standard deviation of the measured three detectors was observed after applying the field output correction factors. Measured field output factors using CC01 and EDGE detectors agreed with MC values within 3% for field sizes down to 1 × 1 cm2, except the SFD detector.
Conclusions:
The corrected field output factors agree with the calculation from MC, except the SFD detector. CC01 and EDGE are suitable for determining field output factors, while the SFD may need more implementation of the intermediate field method.
Collapse
|
9
|
Yabsantia S, Suriyapee S, Phaisangittisakul N, Oonsiri S, Sanghangthum T, Mirzakhanian L, Heng VJ, Seuntjens J. Determination of field output correction factors of radiophotoluminescence glass dosimeter and CC01 ionization chamber and validation against IAEA-AAPM TRS-483 code of practice. Phys Med 2021; 88:167-174. [PMID: 34280729 DOI: 10.1016/j.ejmp.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To determine the field output correction factors of the radiophotoluminescence glass dosimeter (RPLGD) in parallel and perpendicular orientations with reference to CC01, the ionization chamber. METHODS The dose to a small water volume and the sensitive volume of the RPLGD and the IBA-CC01 were determined for 6-MV, 100-cm SAD, 10-cm depth using egs_chamber user-code. The RPLGD in perpendicular and parallel orientations to the beam axis were studied. The field output correction factors of each detector for 0.5 × 0.5 to 10 × 10 cm2 field sizes were determined. These field output correction factors were validated by comparing field output factors against data determined from IAEA-AAPM TRS-483 code of practice. RESULTS The field output correction factors of all detectors were within 5% for field sizes down to 0.8 × 0.8 cm2. For 0.5 × 0.5 cm2, the field output correction factors of CC01, RPLGD in perpendicular and parallel orientations differed from unity by 14%, 19%, and 5%, respectively. The percentage difference between field output factors determined using RPLGD and CC01 data, corrected using the field output correction factors determined in this work and measurements with CC01 data corrected using TRS-483, was less than 3% for all field sizes, except for the smallest field size of RPLGD in perpendicular orientation and the CC01. CONCLUSIONS The field output correction factors of RPLGD and CC01 are reported. The validation proves that RPLGD in parallel orientation combined with the field output correction factors is the most suitable for determining the field output factors for the smallest field used in this study.
Collapse
Affiliation(s)
- Sumalee Yabsantia
- Medical Physics Program, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sivalee Suriyapee
- Medical Physics Program, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | | | - Sornjarod Oonsiri
- Department of Radiation Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Taweap Sanghangthum
- Medical Physics Program, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Lalageh Mirzakhanian
- Health Sciences North, Sudbury, Ontario, Canada; Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Veng Jean Heng
- Medical Physics Unit, McGill University, Montreal, Québec H3G 1A4, Canada
| | - Jan Seuntjens
- Medical Physics Unit, McGill University, Montreal, Québec H3G 1A4, Canada
| |
Collapse
|
10
|
Hermida-López M, Sánchez-Artuñedo D, Rodríguez M, Brualla L. Monte Carlo simulation of conical collimators for stereotactic radiosurgery with a 6 MV flattening-filter-free photon beam. Med Phys 2021; 48:3160-3171. [PMID: 33715167 DOI: 10.1002/mp.14837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Conical collimators, or cones, are tertiary collimators that attach to a radiotherapy linac and are suited for the stereotactic radiosurgery treatment of small brain lesions. The small diameter of the most used cones makes difficult the acquisition of the dosimetry data needed for the commissioning of treatment planning systems. Although many publications report dosimetric data of conical collimators for stereotactic radiosurgery, most of the works use different setups, which complicates comparisons. In other cases, the cone output factors reported do not take into account the effect of the small cone diameter on the detector response. Finally, few data exist on the dosimetry of cones with flattening-filter-free (FFF) beams from modern linac models. This work aims at obtaining a dosimetric characterization of the conical collimators manufactured by Brainlab AG (Munich, Germany) in a 6 MV FFF beam from a TrueBeam STx linac (Varian Medical Systems). METHODS Percentage depth dose curves, lateral dose profiles and cone output factors were obtained using Monte Carlo simulations for the cones with diameters of 4, 5, 6, 7.5, 8, 10, 12.5, 15, 17.5, 20, 25, and 30 mm. The simulation of the linac head was carried out with the PRIMO Monte Carlo software, and the simulations of the cones and the water phantom were run with the general-purpose Monte Carlo code PENELOPE. The Monte Carlo model was validated by comparing the simulation results with measurements performed for the cones of 4, 5, and 7.5 mm of diameter using a stereotactic field diode, a microDiamond detector and EBT3 radiochromic film. In addition, for those cones, simulations and measurements were done for comparison purposes, by reproducing the experimental setups from the available publications. RESULTS The experimental data acquired for the cones of 4, 5, and 7.5 mm validated the developed Monte Carlo model. The simulations accurately reproduced the experimental depths of maximum dose and the dose ratio at 20- and 10-cm depth (PDD20/10 ). A good agreement was obtained between simulated and experimental lateral dose profiles: The differences in the full-width at half-maximum were smaller than 0.2 mm, and the differences in the penumbra 80%-20% were smaller than 0.25 mm. The difference between the simulated and the average of the experimental output factors for the cones of 4, 5, and 7.5 mm of diameter was 0.0%, 0.0%, and 3.0%, respectively, well within the statistical uncertainty of the simulations (4.4% with coverage factor k = 2). It was also found that the simulated cone output factors agreed within 2% with the average of output factors reported in the literature for a variety of setup conditions, detectors, beam qualities, and cone manufacturers. CONCLUSION A Monte Carlo model of cones for stereotactic radiosurgery has been developed and validated. The cone dosimetry dataset obtained in this work, consisting of percentage depth doses, lateral dose profiles and output factors, is useful to benchmark data acquired for the commissioning of cone-based radiosurgery treatment planning systems.
Collapse
Affiliation(s)
- Marcelino Hermida-López
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - David Sánchez-Artuñedo
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Miguel Rodríguez
- Centro Médico Paitilla, Calle 53 y ave. Balboa, Panama City, Panama.,Instituto de Investigaciones Científicas y de Alta Tecnología, INDICASAT-AIP, City of Knowledge, Building 219, Panama City, Panama
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen, 45147, Germany.,West German Cancer Centre (WTZ), Hufelandstr. 55, Essen, 45147, Germany.,Faculty of Medicine, University of Duisburg-Essen, Hufelandstr. 55, Essen, 45147, Germany
| |
Collapse
|
11
|
Hernández-Becerril MA, Lárraga-Gutiérrez JM, Saldivar B, Hernández-Servín JA. Monte Carlo verification of output correction factors for a TrueBeam STx®. Appl Radiat Isot 2021; 173:109701. [PMID: 33813187 DOI: 10.1016/j.apradiso.2021.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/15/2022]
Abstract
The recent publication of the new code of practice IAEA/AAPM TRS-483 introduces output correction factors to correct detector response changes in relative dosimetry of small photon beams. In TRS-483, average correction factors are reported for several detectors in high-energy photon beams at 6 and 10 MV with and without flattening filter. These correction factors were determined by Monte Carlo simulation or experimental measurements using several linacs of different brands and vendors. The goal of this work was to validate the output correction factors reported in TRS-483 for 6 MV photon beams of a TrueBeam STx® linac. The validation was performed using Monte Carlo simulations of four radiation detectors employed in the dosimetry of small photon beams and whose output correction factors were determined using a different radiation source than TrueBeam STx®. The results show that Monte Carlo calculated output correction factors, and those reported in the code of practice TRS-483 fully agree within ∼1%. The use of generic correction factors for a TrueBeam STx® and the detectors studied in this work is suitable for small field dosimetry static beams within the uncertainties of Monte Carlo calculations and output correction factors reported in TRS-483.
Collapse
Affiliation(s)
- Mario A Hernández-Becerril
- Facultad de Ingeniería,Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, Toluca 50100, Estado de México, Mexico
| | - José M Lárraga-Gutiérrez
- Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Insurgentes sur 3877, Tlalpan 14269, CDMX, Mexico.
| | - Belem Saldivar
- Facultad de Ingeniería,Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, Toluca 50100, Estado de México, Mexico; Cátedras CONACYT, Av. Insurgentes sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, CDMX 03940, Mexico
| | - J A Hernández-Servín
- Facultad de Ingeniería,Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, Toluca 50100, Estado de México, Mexico
| |
Collapse
|
12
|
Azzi A, Ryangga D, Pawiro SA. Comparison of Air-Gaps Effect in a Small Cavity on Dose Calculation for 6 MV Linac. J Biomed Phys Eng 2021; 11:17-28. [PMID: 33564636 PMCID: PMC7859373 DOI: 10.31661/jbpe.v0i0.2004-1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
Abstract
Background: Many authors stated that cavities or air-gaps were the main challenge of dose calculation for head and neck with flattening filter medical linear accelerator (Linac) irradiation. Objective: The study aimed to evaluate the effect of air-gap dose calculation on flattening-filter-free (FFF) small field irradiation. Material and Methods: In this comparative study, we did the experimental and Monte Carlo (MC) simulation to evaluate the presence of heterogeneities in radiotherapy. We simulated the dose distribution on virtual phantom and the patient’s CT image to determine the air-gap effect of open small field and modulated photon beam, respectively. The dose ratio of air-gaps to tissue-equivalent was calculated both in Analytical Anisotropic Algorithm (AAA) and MC. Results: We found that the dose ratio of air to tissue-equivalent tends to decrease with a larger field size. This correlation was linear with a slope of -0.198±0.001 and -0.161±0.014 for both AAA and MC, respectively. On the other hand, the dose ratio below the air-gap was field size-dependent. The AAA to MC dose calculation as the impact of air-gap thickness and field size varied from 1.57% to 5.35% after the gap. Besides, patient’s skin and oral cavity on head and neck case received a large dose discrepancy according to this study. Conclusion: The dose air to tissue-equivalent ratio decreased with smaller air gaps and larger field sizes. Dose correction for AAA calculation of open small field size should be considered after small air-gaps. However, delivered beam from others gantry angle reduced this effect on clinical case.
Collapse
Affiliation(s)
- A Azzi
- MSc, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, West Java, 16424, Indonesia
| | - D Ryangga
- MSc, Department of Radiotherapy, Pasar Minggu Regional General Hospital, South Jakarta, Jakarta, 12550, Indonesia
| | - S A Pawiro
- PhD, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, West Java, 16424, Indonesia
| |
Collapse
|
13
|
Aamri H, Fielding A, Aamry A, Sulieman A, Tamam N, Alkhorayef M, Bradley DA. Comparison between PRIMO and EGSnrc Monte Carlo models of the Varian True Beam linear accelerator. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
S A P, A A, D S S. A Monte Carlo Study of Photon Beam Characteristics on Various Linear Accelerator Filters. J Biomed Phys Eng 2020; 10:613-622. [PMID: 33134221 PMCID: PMC7557471 DOI: 10.31661/jbpe.v0i0.1192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022]
Abstract
Background: Intensity Modulated Radiation Therapy (IMRT) technique is an advanced method of radiotherapy leading into the development of Flattening Filter-Free (FFF) medical linear accelerators (Linacs). Monte Carlo simulation has been a standard method for calculation of particle transport due to precise geometry and material specifications. Objective: This study is to obtain the design optimization of Flattening Filter Free (FFF) for 6 MV Linac machine Material and Methods: In this simulating study, EGSnrc user code was used to simulate particles emitted from head of linac 6MV Varian to achieve the most suitable
filter in FFF linac design. Monte Carlo simulation results of the PDD and profile, on the 10 × 10 cm2 field, were compared with the measurements. Differences in small profile beams from Monte Carlo simulation were also evaluated between FF and FFF linac. Results: The spectrum on Monte Carlo simulation in isocenter was compared with Treatment Planning System (TPS) for each filter variation.
The slight differences of average spectrum are simulated using 2 mm copper filter and FakeBeam with -1.52 ± 3.82% and -3.13 ± 3.61%.
Whereas, for PDD and profiles, each variation has an average difference of 7.10 ± 0.70% and -5.99 ± 1.39%. Conclusion: FakeBeam filter is a proper filter for the use of linac design 6MV Varian. It is necessary to decrease the kinetic energy of electrons to perform MC simulations on FFF linac.
Collapse
Affiliation(s)
- Pawiro S A
- PhD, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| | - Azzi A
- MSc, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| | - Soejoko D S
- PhD, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| |
Collapse
|
15
|
Zheng Y, Samant P, Merill J, Chen Y, Ahmad S, Li D, Xiang L. X-ray-induced acoustic computed tomography for guiding prone stereotactic partial breast irradiation: a simulation study. Med Phys 2020; 47:4386-4395. [PMID: 32428252 PMCID: PMC7674271 DOI: 10.1002/mp.14245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The aim of this study is to investigate the feasibility of x-ray-induced acoustic computed tomography (XACT) as an image guidance tool for tracking x-ray beam location and monitoring radiation dose delivered to the patient during stereotactic partial breast irradiation (SPBI). METHODS An in-house simulation workflow was developed to assess the ability of XACT to act as an in vivo dosimetry tool for SPBI. To evaluate this simulation workflow, a three-dimensional (3D) digital breast phantom was created by a series of two-dimensional (2D) breast CT slices from a patient. Three different tissue types (skin, adipose tissue, and glandular tissue) were segmented and the postlumpectomy seroma was simulated inside the digital breast phantom. A treatment plan was made with three beam angles to deliver radiation dose to the seroma in breast to simulate SPBI. The three beam angles for 2D simulations were 17°, 90° and 159° (couch angles were 0 degrees) while the angles were 90 degrees (couch angles were 0°, 27°, 90°) in 3D simulation. A multi-step simulation platform capable of modelling XACT was developed. First, the dose distribution was converted to an initial pressure distribution. The propagation of this pressure disturbance in the form of induced acoustic waves was then modeled using the k-wave MATLAB toolbox. The waves were then detected by a hemispherical-shaped ultrasound transducer array (6320 transducer locations distributed on the surface of the breast). Finally, the time-varying pressure signals detected at each transducer location were used to reconstruct an image of the initial pressure distribution using a 3D time-reversal reconstruction algorithm. Finally, the reconstructed XACT images of the radiation beams were overlaid onto the structure breast CT. RESULTS It was found that XACT was able to reconstruct the dose distribution of SPBI in 3D. In the reconstructed 3D volumetric dose distribution, the average doses in the GTV (Gross Target Volume) and PTV (Planning Target Volume) were 86.15% and 80.89%, respectively. When compared to the treatment plan, the XACT reconstructed dose distribution in the GTV and PTV had a RMSE (root mean square error) of 2.408 % and 2.299 % over all pixels. The 3D breast XACT imaging reconstruction with time-reversal reconstruction algorithm can be finished within several minutes. CONCLUSIONS This work explores the feasibility of using the novel imaging modality of XACT as an in vivo dosimeter for SPBI radiotherapy. It shows that XACT imaging can provide the x-ray beam location and dose information in deep tissue during the treatment in real time in 3D. This study lays the groundwork for a variety of future studies related to the use of XACT as a dosimeter at different cancer sites.
Collapse
Affiliation(s)
- Yue Zheng
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China; School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Pratik Samant
- School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Jack Merill
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Salahuddin Ahmad
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dengwang Li
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Liangzhong Xiang
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
16
|
Ghareeb F, Esposito A, Lencart J, Santos JA. Localized extra focal dose collimator angle dependence during VMAT: An out-of-field Monte Carlo study using PRIMO software. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Sarin B, Bindhu B, Saju B, Nair RK. Validation of PRIMO Monte Carlo Model of Clinac ®iX 6MV Photon Beam. J Med Phys 2020; 45:24-35. [PMID: 32355432 PMCID: PMC7185709 DOI: 10.4103/jmp.jmp_75_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/04/2022] Open
Abstract
Purpose This study aims to model 6MV photon of Clinac®iX linear accelerator using PRIMO Monte Carlo (MC) code and to assess PRIMO as an independent MC-based dose verification and quality assurance tool. Materials and Methods The modeling of Clinac®iX linear accelerator has been carried out by using PRIMO simulation software (Version 0.3.1.1681). The simulated beam parameters were compared against the measured beam data of the Clinac®iX machine. The PRIMO simulation model of Clinac®iX was also validated against Eclipse® Acuros XB dose calculations in the case of both homogenous and inhomogeneous mediums. The gamma analysis method with the acceptance criteria of 2%, 2 mm was used for the comparison of dose distributions. Results Gamma analysis shows a minimum pass percentage of 99% for depth dose curves and 95.4% for beam profiles. The beam quality index and output factors and absolute point dose show good agreement with measurements. The validation of PRIMO dose calculations, in both homogeneous and inhomogeneous medium, against Acuros® XB shows a minimum gamma analysis pass rate of 99%. Conclusions This study shows that the research software PRIMO can be used as a treatment planning system-independent quality assurance and dose verification tool in daily clinical practice. Further validation will be performed with different energies, complex multileaf collimators fields, and with dynamic treatment fields.
Collapse
Affiliation(s)
- B Sarin
- Department of Physics, Noorul Islam Centre For Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India.,Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - B Bindhu
- Department of Physics, Noorul Islam Centre For Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - B Saju
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Raguram K Nair
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
18
|
Paganini L, Reggiori G, Stravato A, Palumbo V, Mancosu P, Lobefalo F, Gaudino A, Fogliata A, Scorsetti M, Tomatis S. MLC parameters from static fields to VMAT plans: an evaluation in a RT-dedicated MC environment (PRIMO). Radiat Oncol 2019; 14:216. [PMID: 31791355 PMCID: PMC6889207 DOI: 10.1186/s13014-019-1421-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
Background PRIMO is a graphical environment based on PENELOPE Monte Carlo (MC) simulation of radiotherapy beams able to compute dose distribution in patients, from plans with different techniques. The dosimetric characteristics of an HD-120 MLC (Varian), simulated using PRIMO, were here compared with measurements, and also with Acuros calculations (in the Eclipse treatment planning system, Varian). Materials and methods A 10 MV FFF beam from a Varian EDGE linac equipped with the HD-120 MLC was used for this work. Initially, the linac head was simulated inside PRIMO, and validated against measurements in a water phantom. Then, a series of different MLC patterns were established to assess the MLC dosimetric characteristics. Those tests included: i) static fields: output factors from MLC shaped fields (2 × 2 to 10 × 10 cm2), alternate open and closed leaf pattern, MLC transmitted dose; ii) dynamic fields: dosimetric leaf gap (DLG) evaluated with sweeping gaps, tongue and groove (TG) effect assessed with profiles across alternate open and closed leaves moving across the field. The doses in the different tests were simulated in PRIMO and then compared with EBT3 film measurements in solid water phantom, as well as with Acuros calculations. Finally, MC in PRIMO and Acuros were compared in some clinical cases, summarizing the clinical complexity in view of a possible use of PRIMO as an independent dose calculation check. Results Static output factor MLC tests showed an agreement between MC calculated and measured OF of 0.5%. The dynamic tests presented DLG values of 0.033 ± 0.003 cm and 0.032 ± 0.006 cm for MC and measurements, respectively. Regarding the TG tests, a general agreement between the dose distributions of 1–2% was achieved, except for the extreme patterns (very small gaps/field sizes and high TG effect) were the agreement was about 4–5%. The analysis of the clinical cases, the Gamma agreement between MC in PRIMO and Acuros dose calculation in Eclipse was of 99.5 ± 0.2% for 3%/2 mm criteria of dose difference/distance to agreement. Conclusions MC simulations in the PRIMO environment were in agreement with measurements for the HD-120 MLC in a 10 MV FFF beam from a Varian EDGE linac. This result allowed to consistently compare clinical cases, showing the possible use of PRIMO as an independent dose calculation check tool.
Collapse
Affiliation(s)
- Lucia Paganini
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Giacomo Reggiori
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy.
| | - Antonella Stravato
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Valentina Palumbo
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Pietro Mancosu
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Francesca Lobefalo
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Anna Gaudino
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Antonella Fogliata
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, (Milan), Italy
| | - Stefano Tomatis
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| |
Collapse
|
19
|
Lee B, Jeong S, Chung K, Yoon M, Park HC, Han Y, Jung SH. Feasibility of a GATE Monte Carlo platform in a clinical pretreatment QA system for VMAT treatment plans using TrueBeam with an HD120 multileaf collimator. J Appl Clin Med Phys 2019; 20:101-110. [PMID: 31544350 PMCID: PMC6806485 DOI: 10.1002/acm2.12718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose To evaluate the quality of patient‐specific complicated treatment plans, including commercialized treatment planning systems (TPS) and commissioned beam data, we developed a process of quality assurance (QA) using a Monte Carlo (MC) platform. Specifically, we constructed an interface system that automatically converts treatment plan and dose matrix data in digital imaging and communications in medicine to an MC dose‐calculation engine. The clinical feasibility of the system was evaluated. Materials and Methods A dose‐calculation engine based on GATE v8.1 was embedded in our QA system and in a parallel computing system to significantly reduce the computation time. The QA system automatically converts parameters in volumetric‐modulated arc therapy (VMAT) plans to files for dose calculation using GATE. The system then calculates dose maps. Energies of 6 MV, 10 MV, 6 MV flattening filter free (FFF), and 10 MV FFF from a TrueBeam with HD120 were modeled and commissioned. To evaluate the beam models, percentage depth dose (PDD) values, MC calculation profiles, and measured beam data were compared at various depths (Dmax, 5 cm, 10 cm, and 20 cm), field sizes, and energies. To evaluate the feasibility of the QA system for clinical use, doses measured for clinical VMAT plans using films were compared to dose maps calculated using our MC‐based QA system. Results A LINAC QA system was analyzed by PDD and profile according to the secondary collimator and multileaf collimator (MLC). Values for MC calculations and TPS beam data obtained using CC13 ion chamber (IBA Dosimetry, Germany) were consistent within 1.0%. Clinical validation using a gamma index was performed for VMAT treatment plans using a solid water phantom and arbitrary patient data. The gamma evaluation results (with criteria of 3%/3 mm) were 98.1%, 99.1%, 99.2%, and 97.1% for energies of 6 MV, 10 MV, 6 MV FFF, and 10 MV FFF, respectively. Conclusions We constructed an MC‐based QA system for evaluating patient treatment plans and evaluated its feasibility in clinical practice. We observed robust agreement between dose calculations from our QA system and measurements for VMAT plans. Our QA system could be useful in other clinical settings, such as small‐field SRS procedures or analyses of secondary cancer risk, for which dose calculations using TPS are difficult to verify.
Collapse
Affiliation(s)
- Boram Lee
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Seonghoon Jeong
- Department of Bio-convergence Engineering, Korea University, Seoul, Korea
| | - Kwangzoo Chung
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myonggeun Yoon
- Department of Bio-convergence Engineering, Korea University, Seoul, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youngyih Han
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology,, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Sang Hoon Jung
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
20
|
An EGS Monte Carlo model for Varian TrueBEAM treatment units: Commissioning and experimental validation of source parameters. Phys Med 2019; 64:81-88. [PMID: 31515039 DOI: 10.1016/j.ejmp.2019.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 11/23/2022] Open
Abstract
In this work we have created and commissioned a Monte Carlo model of 6FFF Varian TrueBeam linear accelerator using BEAMnrc. For this purpose we have experimentally measured the focal spot size and shape of three Varian TrueBeam treatment units in 6FFF modality with a slit collimator and several depth dose and lateral beam profiles in a water phantom. The Monte Carlo model of a 6FFF TrueBeam machine was implemented with a primary electron source commissioned as a 2D Gaussian with Full Width Half Maximum selected by comparison of simulated and measured narrow beam profiles. The energy of the primary electron beam was optimized through a simultaneous fit to the measured beam depth dose profiles. Special attention was paid to evaluation of uncertainties of the selected Monte Carlo source parameters. These uncertainties were calculated by analysing the sensitivity of the commissioning process to changes in both primary beam size and energy. Both experimental and Monte Carlo commissioned focus size values were compared and found to be in excellent agreement. The commissioned Monte Carlo model reproduces within 1% accuracy the dose distributions of radiation field size from 3 cm × 3 cm to 15 cm × 15 cm.
Collapse
|
21
|
Brualla L, Rodriguez M, Sempau J, Andreo P. PENELOPE/PRIMO-calculated photon and electron spectra from clinical accelerators. Radiat Oncol 2019; 14:6. [PMID: 30634994 PMCID: PMC6330451 DOI: 10.1186/s13014-018-1186-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of photon and electron spectra in digital form from current accelerators and Monte Carlo (MC) systems is scarce, and one of the packages widely used refers to linacs with a reduced clinical use nowadays. Such spectra are mainly intended for the MC calculation of detector-related quantities in conventional broad beams, where the use of detailed phase-space files (PSFs) is less critical than for MC-based treatment planning applications, but unlike PSFs, spectra can easily be transferred to other computer systems and users. METHODS A set of spectra for a range of Varian linacs has been calculated using the PENELOPE/PRIMO MC system. They have been extracted from PSFs tallied for field sizes of 10 cm × 10 cm and 15 cm × 15 cm for photon and electron beams, respectively. The influence of the spectral bin width and of the beam central axis region used to extract the spectra have been analyzed. RESULTS Spectra have been compared to those by other authors showing good agreement with those obtained using the, now superseded, EGS4/BEAM MC code, but significant differences with the most widely used photon data set. Other spectra, particularly for electron beams, have not been published previously for the machines simulated in this work. The influence of the bin width on the spectrum mean energy for 6 and 10 MV beams has been found to be negligible. The size of the region used to extract the spectra yields differences of up to 40% for the mean energies in 10 MV beams, but the maximum difference for TPR 20,10 values derived from depth-dose distributions does not exceed 2% relative to those obtained using the PSFs. This corresponds to kQ differences below 0.2% for a typical Farmer-type chamber, considered to be negligible for reference dosimetry. Different configurations for using electron spectra have been compared for 6 MeV beams, concluding that the geometry used for tallying the PSFs used to extract the spectra must be accounted for in subsequent calculations using the spectra as a source. CONCLUSIONS An up-to-date set of consistent spectra for Varian accelerators suitable for the calculation of detector-related quantities in conventional broad beams has been developed and made available in digital form.
Collapse
Affiliation(s)
- Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Essen, D-45147, Germany. .,West German Cancer Center (WTZ), Essen, D-45147, Germany. .,University Hospital Essen, Essen, D-45147, Germany. .,Universität Duisburg-Essen, Medizinische Fakultät, Essen, D-45147, Germany.
| | - Miguel Rodriguez
- Centro Médico Paitilla, Panama City, 0816-03075, Panama.,Instituto de Investigaciones Científicas y de Alta Tecnología, INDICASAT-AIP, City of Knowledge, Building 219, Panama City, Panama
| | - Josep Sempau
- Department of Physics and Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona, E-08028, Spain
| | - Pedro Andreo
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, and Department of Oncology-Pathology, Karolinska Institutet, Stockholm, SE-171 76, Sweden
| |
Collapse
|
22
|
Hermida–López M, Sánchez–Artuñedo D, Calvo–Ortega JF. PRIMO Monte Carlo software benchmarked against a reference dosimetry dataset for 6 MV photon beams from Varian linacs. Radiat Oncol 2018; 13:144. [PMID: 30086767 PMCID: PMC6081807 DOI: 10.1186/s13014-018-1076-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The software PRIMO for the Monte Carlo simulation of radiotherapy linacs could potentially act as a independent calculation system to verify the calculations of treatment planning systems. We investigated the suitability of the PRIMO default beam parameters to produce accurate dosimetric results for 6 MV photon beams from Varian Clinac 2100 linacs and 6 MV flattening-filter-free photon beams from Varian TrueBeam linacs. METHODS Simulation results with the DPM algorithm were benchmarked against a published reference dosimetry dataset based on point measurements of 25 dosimetric parameters on a large series of linacs. Studied parameters (for several field sizes and depths) were: PDD, off-axis ratios, and output factors for open fields and IMRT/SBRT-style fields. For the latter, the output factors were also determined with radiochromic film and with a small-sized ionization chamber. Benchmark data, PRIMO simulation results and our experimental results were compared. RESULTS PDD, off-axis ratios, and open-field output factors obtained from the simulations with the PRIMO default beam parameters agreed with the benchmark data within 2.4% for Clinac 2100, and within 1.3% for TrueBeam. Higher differences were found for IMRT/SBRT-style output factors: up to 2.8% for Clinac 2100, and up to 3.3% for TrueBeam. Experimental output factors agreed with benchmark data within 1.0% (ionization chamber) and within 1.9% (radiochromic film). CONCLUSIONS PRIMO default initial beam parameters for 6 MV photon beams from Varian Clinac 2100 linacs and 6 MV FFF photon beams from Varian TrueBeam linacs allowed agreement within 3.3% with a dosimetry database based on measurements of a high number of linacs. This finding represents a first step in the validation of PRIMO for the independent verification of radiotherapy plans.
Collapse
Affiliation(s)
- Marcelino Hermida–López
- Servei de Física i Protecció Radiològica. Hospital Universitari Vall d’Hebron, Pg. Vall d’Hebron, 119–129, Barcelona, 08035 Spain
| | - David Sánchez–Artuñedo
- Servei de Física i Protecció Radiològica. Hospital Universitari Vall d’Hebron, Pg. Vall d’Hebron, 119–129, Barcelona, 08035 Spain
| | - Juan Francisco Calvo–Ortega
- Servicio de Oncología Radioterápica, Hospital Quirónsalud Barcelona, Pza. Alfonso Comín, 5, Barcelona, 08023 Spain
- Servicio de Oncología Radioterápica, Hospital Universitario Dexeus, C./ Sabino Arana, 5-19, Barcelona, 08028 Spain
| |
Collapse
|
23
|
Ishizawa Y, Dobashi S, Kadoya N, Ito K, Chiba T, Takayama Y, Sato K, Takeda K. A photon source model based on particle transport in a parameterized accelerator structure for Monte Carlo dose calculations. Med Phys 2018; 45:2937-2946. [PMID: 29772081 DOI: 10.1002/mp.12976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 11/11/2022] Open
Abstract
PURPOSE An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. METHODS We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. RESULTS The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4 × 4, 10 × 10, and 20 × 20 cm2 fields at multiple depths. For the 2D dose distributions calculated in the heterogeneous lung phantom, the 2D gamma pass rate was 100% for 6 and 15 MV beams. The model optimization time was less than 4 min. CONCLUSION The proposed source model optimization process accurately produces photon fluence spectra from a linac using valid physical properties, without detailed knowledge of the geometry of the linac head, and with minimal optimization time.
Collapse
Affiliation(s)
- Yoshiki Ishizawa
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Suguru Dobashi
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kengo Ito
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takahito Chiba
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yoshiki Takayama
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kiyokazu Sato
- Radiation Technology, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Ken Takeda
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| |
Collapse
|
24
|
Yuan J, Ellis R, Machtay M. Technical Note: An approach to building a Monte Carlo simulation model for a double scattering proton beam system. Med Phys 2018; 45:2660-2666. [PMID: 29603753 DOI: 10.1002/mp.12895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The purpose of this study was to demonstrate and develop a Monte Carlo (MC) simulation model for a passive double scattering compact proton therapy system based on limited information of the mechanical components. METHOD We built a virtual machine source model (VMSM) which included a detailed definition of each beam-modifying component in the nozzle. Conceptually, it is similar to the conventional virtual analytical source model (VASM), except that the numerical machine nozzle or beamline is constructed in the VMSM, whereas in the VASM analytical parameters characterizing the energy spectrum and source fluence distribution are sought. All major beam shaping components were included in the VMSM and the model simulates interactions of the beam with a rotating range modulation wheel (RMW) combined with the beam current modulation. The RMWs, the first and second scatterer in the system were generated and tuned to reproduce measurement data as closely as possible. To validate the model, we compared the percent depth dose curves, spread out Bragg peaks (SOBPs) and lateral profiles against measured commissioning beam data. RESULTS The agreement of beam range between the MC calculation and measurement was within 1 mm for all beam options. The distal-falloff length was in good agreement as well (<1 mm for the large and deep groups, <1.5 mm for the small group). Agreement to within 2.5 mm of measured SOBP widths was obtained for all MC calculations. For lateral profiles, differences were found to be less than 2 mm. CONCLUSIONS We demonstrated that with limited geometrical information it is possible to build an acceptable source model for MC simulations of a passive double scattering compact proton therapy system. The agreement between the measurements and the MC model provides validation for use of the model for further studies of the dosimetric effects in patient treatments.
Collapse
Affiliation(s)
- Jiankui Yuan
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, 44106, OH, USA
| | - Rodney Ellis
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, 44106, OH, USA
| | - Mitchell Machtay
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, 44106, OH, USA
| |
Collapse
|
25
|
Brualla L, Rodriguez M, Lallena AM. Monte Carlo systems used for treatment planning and dose verification. Strahlenther Onkol 2016; 193:243-259. [PMID: 27888282 DOI: 10.1007/s00066-016-1075-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations.
Collapse
Affiliation(s)
- Lorenzo Brualla
- NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, D-45122, Essen, Germany.
| | | | - Antonio M Lallena
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071, Granada, Spain
| |
Collapse
|
26
|
Lloyd SAM, Gagne IM, Bazalova-Carter M, Zavgorodni S. Validation of Varian TrueBeam electron phase-spaces for Monte Carlo simulation of MLC-shaped fields. Med Phys 2016; 43:2894-2903. [PMID: 27277038 DOI: 10.1118/1.4949000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work evaluates Varian's electron phase-space sources for Monte Carlo simulation of the TrueBeam for modulated electron radiation therapy (MERT) and combined, modulated photon and electron radiation therapy (MPERT) where fields are shaped by the photon multileaf collimator (MLC) and delivered at 70 cm SSD. METHODS Monte Carlo simulations performed with EGSnrc-based BEAMnrc/DOSXYZnrc and penelope-based PRIMO are compared against diode measurements for 5 × 5, 10 × 10, and 20 × 20 cm(2) MLC-shaped fields delivered with 6, 12, and 20 MeV electrons at 70 cm SSD (jaws set to 40 × 40 cm(2)). Depth dose curves and profiles are examined. In addition, EGSnrc-based simulations of relative output as a function of MLC-field size and jaw-position are compared against ion chamber measurements for MLC-shaped fields between 3 × 3 and 25 × 25 cm(2) and jaw positions that range from the MLC-field size to 40 × 40 cm(2). RESULTS Percent depth dose curves generated by BEAMnrc/DOSXYZnrc and PRIMO agree with measurement within 2%, 2 mm except for PRIMO's 12 MeV, 20 × 20 cm(2) field where 90% of dose points agree within 2%, 2 mm. Without the distance to agreement, differences between measurement and simulation are as large as 7.3%. Characterization of simulated dose parameters such as FWHM, penumbra width and depths of 90%, 80%, 50%, and 20% dose agree within 2 mm of measurement for all fields except for the FWHM of the 6 MeV, 20 × 20 cm(2) field which falls within 2 mm distance to agreement. Differences between simulation and measurement exist in the profile shoulders and penumbra tails, in particular for 10 × 10 and 20 × 20 cm(2) fields of 20 MeV electrons, where both sets of simulated data fall short of measurement by as much as 3.5%. BEAMnrc/DOSXYZnrc simulated outputs agree with measurement within 2.3% except for 6 MeV MLC-shaped fields. Discrepancies here are as great as 5.5%. CONCLUSIONS TrueBeam electron phase-spaces available from Varian have been implemented in two distinct Monte Carlo simulation packages to produce dose distributions and outputs that largely reflect measurement. Differences exist in the profile shoulders and penumbra tails for the 20 MeV phase-space off-axis and in the outputs for the 6 MeV phase-space.
Collapse
Affiliation(s)
- Samantha A M Lloyd
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 3P6 5C2, Canada
| | - Isabelle M Gagne
- Department of Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5, Canada and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2, Canada
| | - Sergei Zavgorodni
- Department of Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5, Canada and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2, Canada
| |
Collapse
|
27
|
Feng Z, Yue H, Zhang Y, Wu H, Cheng J, Su X. Monte Carlo simulation of beam characteristics from small fields based on TrueBeam flattening-filter-free mode. Radiat Oncol 2016; 11:30. [PMID: 26921246 PMCID: PMC4769502 DOI: 10.1186/s13014-016-0601-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/15/2016] [Indexed: 11/10/2022] Open
Abstract
Purpose Through the Monte Carlo (MC) simulation of 6 and 10 MV flattening-filter-free (FFF) beams from Varian TrueBeam accelerator, this study aims to find the best incident electron distribution for further studying the small field characteristics of these beams. Methods By incorporating the training materials of Varian on the geometry and material parameters of TrueBeam Linac head, the 6 and 10 MV FFF beams were modelled using the BEAMnrc and DOSXYZnrc codes, where the percentage depth doses (PDDs) and the off-axis ratios (OARs) curves of fields ranging from 4 × 4 to 40 × 40 cm2 were simulated for both energies by adjusting the incident beam energy, radial intensity distribution and angular spread, respectively. The beam quality and relative output factor (ROF) were calculated. The simulations and measurements were compared using Gamma analysis method provided by Verisoft program (PTW, Freiburg, Germany), based on which the optimal MC model input parameters were selected and were further used to investigate the beam characteristics of small fields. Results The Full Width Half Maximum (FWHM), mono-energetic energy and angular spread of the resultant incident Gaussian radial intensity electron distribution were 0.75 mm, 6.1 MeV and 0.9° for the nominal 6 MV FFF beam, and 0.7 mm, 10.8 MeV and 0.3° for the nominal 10 MV FFF beam respectively. The simulation was mostly comparable to the measurement. Gamma criteria of 1 mm/1 % (local dose) can be met by all PDDs of fields larger than 1 × 1 cm2, and by all OARs of no larger than 20 × 20 cm2, otherwise criteria of 1 mm/2 % can be fulfilled. Our MC simulated ROFs agreed well with the measured ROFs of various field sizes (the discrepancies were less than 1 %), except for the 1 × 1 cm2 field. Conclusions The MC simulation agrees well with the measurement and the proposed model parameters can be clinically used for further dosimetric studies of 6 and 10 MV FFF beams.
Collapse
Affiliation(s)
- Zhongsu Feng
- Key laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, 100088, China.
| | - Haizhen Yue
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiotherapy, Peking University Cancer Hospital & Institute, 52 Fuchen Road, Haidian, Beijing, 100142, China.
| | - Yibao Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiotherapy, Peking University Cancer Hospital & Institute, 52 Fuchen Road, Haidian, Beijing, 100142, China.
| | - Hao Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiotherapy, Peking University Cancer Hospital & Institute, 52 Fuchen Road, Haidian, Beijing, 100142, China.
| | - Jinsheng Cheng
- Key laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, 100088, China.
| | - Xu Su
- Key laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, 100088, China.
| |
Collapse
|