1
|
Bai W, Dong Y, Zhang Y, Wu Y, Dan M, Liu D, Gao F. Wide-field illumination diffuse optical tomography within a framework of single-pixel time-domain spatial frequency domain imaging. OPTICS EXPRESS 2024; 32:6104-6120. [PMID: 38439321 DOI: 10.1364/oe.513909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
We present a wide-field illumination time-domain (TD) diffusion optical tomography (DOT) for three-dimensional (3-D) reconstruction within a shallow region under the illuminated surface of the turbid medium. The methodological foundation is laid on the single-pixel spatial frequency domain (SFD) imaging that facilitates the adoption of the well-established time-correlated single-photon counting (TCSPC)-based TD detection and generalized pulse spectrum techniques (GPST)-based reconstruction. To ameliorate the defects of the conventional diffusion equation (DE) in the forward modeling of TD-SFD-DOT, mainly the low accuracy in the near-field region and in profiling early-photon migration, we propose a modified model employing the time-dependent δ-P1 approximation and verify its improved accuracy in comparison with both the Monte Carlo and DE-based ones. For a simplified inversion process, a modified GPST approach is extended to TD-SFD-DOT that enables the effective separation of the absorption and scattering coefficients using a steady-state equivalent strategy. Furthermore, we set up a single-pixel TD-SFD-DOT system that employs the TCSPC-based TD detection in the SFD imaging framework. For assessments of the reconstruction approach and the system performance, phantom experiments are performed for a series of scenarios. The results show the effectiveness of the proposed methodology for rapid 3-D reconstruction of the absorption and scattering coefficients within a depth range of about 5 mean free pathlengths.
Collapse
|
2
|
Luchian I, Budală DG, Baciu ER, Ursu RG, Diaconu-Popa D, Butnaru O, Tatarciuc M. The Involvement of Photobiology in Contemporary Dentistry-A Narrative Review. Int J Mol Sci 2023; 24:ijms24043985. [PMID: 36835395 PMCID: PMC9961259 DOI: 10.3390/ijms24043985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Light is an emerging treatment approach that is being used to treat many diseases and conditions such as pain, inflammation, and wound healing. The light used in dental therapy generally lies in visible and invisible spectral regions. Despite many positive results in the treatment of different conditions, this therapy still faces some skepticism, which has prevented its widespread adoption in clinics. The main reason for this skepticism is the lack of comprehensive information about the molecular, cellular, and tissular mechanisms of action, which underpin the positive effects of phototherapy. However, there is currently promising evidence in support of the use of light therapy across a spectrum of oral hard and soft tissues, as well as in a variety of important dental subspecialties, such as endodontics, periodontics, orthodontics, and maxillofacial surgery. The merging of diagnostic and therapeutic light procedures is also seen as a promising area for future expansion. In the next decade, several light technologies are foreseen as becoming integral parts of modern dentistry practice.
Collapse
Affiliation(s)
- Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dana Gabriela Budală
- Department of Prosthodontics, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (D.G.B.); (E.-R.B.)
| | - Elena-Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (D.G.B.); (E.-R.B.)
| | - Ramona Gabriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Diana Diaconu-Popa
- Department of Dental Technology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Monica Tatarciuc
- Department of Dental Technology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
3
|
Hank P, Liemert A, Kienle A. Analytical solution of the vector radiative transfer equation for single scattered radiance. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:2045-2053. [PMID: 36520701 DOI: 10.1364/josaa.467890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
In this paper, derivation of the analytical solution of the vector radiative transfer equation for the single scattered radiance of three-dimensional semi-infinite media with a refractive index mismatch at the boundary is presented. In particular, the solution is obtained in the spatial domain and spatial frequency domain. Besides the general derivation, determination of the amplitude scattering matrix, which is required for the analytical solution, is given in detail. Furthermore, the incorporation of Fresnel equations due to a refractive index mismatch at the boundary is presented. Finally, verification of the derived formulas is performed using a self-implemented electrical field Monte Carlo method based on Jones formalism. For this purpose, the solution based on Jones formalism is converted to Stokes-Mueller formalism. For the verification, spherical particles are assumed as scatterers, whereby arbitrary size distributions can be considered.
Collapse
|
4
|
Applegate MB, Spink SS, Roblyer D. Dual-DMD hyperspectral spatial frequency domain imaging (SFDI) using dispersed broadband illumination with a demonstration of blood stain spectral monitoring. BIOMEDICAL OPTICS EXPRESS 2021; 12:676-688. [PMID: 33520393 PMCID: PMC7818964 DOI: 10.1364/boe.411976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Spatial frequency domain imaging (SFDI) is a widefield diffuse optical measurement technique capable of generating 2D maps of sub-surface absorption and scattering in biological tissue. We developed a new hyperspectral SFDI instrument capable of collecting images at wavelengths from the visible to the near infrared. The system utilizes a custom-built monochromator with a digital micromirror device (DMD) that can dynamically select illumination wavelength bands from a broadband quartz tungsten halogen lamp, and a second DMD to provide spatially modulated sample illumination. The system is capable of imaging 10 wavelength bands in approximately 25 seconds. The spectral resolution can be varied from 12 to 30 nm by tuning the input slit width and the output DMD column width. We compared the optical property extraction accuracy between the new device and a commercial SFDI system and found an average error of 23% in absorption and 6% in scattering. The system was highly stable, with less than 5% variation in absorption and less than 0.2% variation in scattering across all wavelengths over two hours. The system was used to monitor hyperspectral changes in the optical absorption and reduced scattering spectra of blood exposed to air over 24 hours. This served as a general demonstration of the utility of this system, and points to a potential application for blood stain age estimation. We noted significant changes in both absorption and reduced scattering spectra over multiple discrete stages of aging. To our knowledge, these are the first measurement of changes in scattering of blood stains. This hyperspectral SFDI system holds promise for a multitude of applications in quantitative tissue and diffuse sample imaging.
Collapse
Affiliation(s)
- Matthew B. Applegate
- Boston University, Dept. of Biomedical Engineering, Boston, MA 02215, USA
- Authors contributed equally to this work
| | - Samuel S. Spink
- Boston University, Dept. of Biomedical Engineering, Boston, MA 02215, USA
- Authors contributed equally to this work
| | - Darren Roblyer
- Boston University, Dept. of Biomedical Engineering, Boston, MA 02215, USA
| |
Collapse
|
5
|
Goth W, Potter S, Allen ACB, Zoldan J, Sacks MS, Tunnell JW. Non-Destructive Reflectance Mapping of Collagen Fiber Alignment in Heart Valve Leaflets. Ann Biomed Eng 2019; 47:1250-1264. [PMID: 30783832 PMCID: PMC6456388 DOI: 10.1007/s10439-019-02233-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Collagen fibers are the primary structural elements that define many soft-tissue structure and mechanical function relationships, so that quantification of collagen organization is essential to many disciplines. Current tissue-level collagen fiber imaging techniques remain limited in their ability to quantify fiber organization at macroscopic spatial scales and multiple time points, especially in a non-contacting manner, requiring no modifications to the tissue, and in near real-time. Our group has previously developed polarized spatial frequency domain imaging (pSFDI), a reflectance imaging technique that rapidly and non-destructively quantifies planar collagen fiber orientation in superficial layers of soft tissues over large fields-of-view. In this current work, we extend the light scattering models and image processing techniques to extract a critical measure of the degree of collagen fiber alignment, the normalized orientation index (NOI), directly from pSFDI data. Electrospun fiber samples with architectures similar to many collagenous soft tissues and known NOI were used for validation. An inverse model was then used to extract NOI from pSFDI measurements of aortic heart valve leaflets and clearly demonstrated changes in degree of fiber alignment between opposing sides of the sample. These results show that our model was capable of extracting absolute measures of degree of fiber alignment in superficial layers of heart valve leaflets with only general a priori knowledge of fiber properties, providing a novel approach to rapid, non-destructive study of microstructure in heart valve leaflets using a reflectance geometry.
Collapse
Affiliation(s)
- Will Goth
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sam Potter
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Alicia C B Allen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael S Sacks
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - James W Tunnell
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Angelo JP, Chen SJ, Ochoa M, Sunar U, Gioux S, Intes X. Review of structured light in diffuse optical imaging. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-20. [PMID: 30218503 PMCID: PMC6676045 DOI: 10.1117/1.jbo.24.7.071602] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/31/2018] [Indexed: 05/11/2023]
Abstract
Diffuse optical imaging probes deep living tissue enabling structural, functional, metabolic, and molecular imaging. Recently, due to the availability of spatial light modulators, wide-field quantitative diffuse optical techniques have been implemented, which benefit greatly from structured light methodologies. Such implementations facilitate the quantification and characterization of depth-resolved optical and physiological properties of thick and deep tissue at fast acquisition speeds. We summarize the current state of work and applications in the three main techniques leveraging structured light: spatial frequency-domain imaging, optical tomography, and single-pixel imaging. The theory, measurement, and analysis of spatial frequency-domain imaging are described. Then, advanced theories, processing, and imaging systems are summarized. Preclinical and clinical applications on physiological measurements for guidance and diagnosis are summarized. General theory and method development of tomographic approaches as well as applications including fluorescence molecular tomography are introduced. Lastly, recent developments of single-pixel imaging methodologies and applications are reviewed.
Collapse
Affiliation(s)
- Joseph P. Angelo
- National Institute of Standards and Technology, Sensor Science Division, Gaithersburg, Maryland, United States
- Address all correspondence to: Joseph P. Angelo, E-mail: ; Sez-Jade Chen, E-mail:
| | - Sez-Jade Chen
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
- Address all correspondence to: Joseph P. Angelo, E-mail: ; Sez-Jade Chen, E-mail:
| | - Marien Ochoa
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| | - Ulas Sunar
- Wright State University, Department of Biomedical Industrial and Human Factor Engineering, Dayton, Ohio, United States
| | - Sylvain Gioux
- University of Strasbourg, ICube Laboratory, Strasbourg, France
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| |
Collapse
|
7
|
Nothelfer S, Bergmann F, Liemert A, Reitzle D, Kienle A. Spatial frequency domain imaging using an analytical model for separation of surface and volume scattering. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-10. [PMID: 30218505 PMCID: PMC6995876 DOI: 10.1117/1.jbo.24.7.071604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/10/2018] [Indexed: 05/06/2023]
Abstract
A method to correct for surface scattering in spatial frequency domain imaging (SFDI) is presented. The use of a modified analytical solution of the radiative transfer equation allows calculation of the reflectance and the phase of a rough semi-infinite geometry so that both spatial frequency domain reflectance and phase can be applied for precise retrieval of the bulk optical properties and the surface scattering. For validation of the method, phantoms with different surface roughness were produced. Contrarily, with the modified theory, it was possible to dramatically reduce systematic errors due to surface scattering. The evaluation of these measurements with the state-of-the-art theory and measuring modality, i.e., using crossed linear polarizers, reveals large errors in the determined optical properties, depending on the surface roughness, of up to ≈100 % . These results were confirmed with SFDI measurements on a phantom that has a structured rough surface.
Collapse
Affiliation(s)
- Steffen Nothelfer
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Ulm, Germany
- Address all correspondence to: Steffen Nothelfer, E-mail:
| | - Florian Bergmann
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Ulm, Germany
| | - André Liemert
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Ulm, Germany
| | - Dominik Reitzle
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Ulm, Germany
| | - Alwin Kienle
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Ulm, Germany
| |
Collapse
|
8
|
Carlson ML, McClatchy DM, Gunn JR, Elliott JT, Paulsen KD, Kanick SC, Pogue BW. Wide-field color imaging of scatter-based tissue contrast using both high spatial frequency illumination and cross-polarization gating. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28800205 DOI: 10.1002/jbio.201700104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
This study characterizes the scatter-specific tissue contrast that can be obtained by high spatial frequency (HSF) domain imaging and cross-polarization (CP) imaging, using a standard color imaging system, and how combining them may be beneficial. Both HSF and CP approaches are known to modulate the sensitivity of epi-illumination reflectance images between diffuse multiply scattered and superficially backscattered photons, providing enhanced contrast from microstructure and composition than what is achieved by standard wide-field imaging. Measurements in tissue-simulating optical phantoms show that CP imaging returns localized assessments of both scattering and absorption effects, while HSF has uniquely specific sensitivity to scatter-only contrast, with a strong suppression of visible contrast from blood. The combination of CP and HSF imaging provided an expanded sensitivity to scatter compared with CP imaging, while rejecting specular reflections detected by HSF imaging. ex vivo imaging of an atlas of dissected rodent organs/tissues demonstrated the scatter-based contrast achieved with HSF, CP and HSF-CP imaging, with the white light spectral signal returned by each approach translated to a color image for intuitive encoding of scatter-based contrast within images of tissue. The results suggest that visible CP-HSF imaging could have the potential to aid diagnostic imaging of lesions in skin or mucosal tissues and organs, where just CP is currently the standard practice imaging modality.
Collapse
Affiliation(s)
| | - David M McClatchy
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jonathan T Elliott
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Stephen C Kanick
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
- Profusa, Inc., South San Francisco, California
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
9
|
Bodenschatz N, Krauter P, Nothelfer S, Foschum F, Bergmann F, Liemert A, Kienle A. Detecting structural information of scatterers using spatial frequency domain imaging. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:116006. [PMID: 26590206 DOI: 10.1117/1.jbo.20.11.116006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/16/2015] [Indexed: 05/23/2023]
Abstract
We demonstrate optical phantom experiments on the phase function parameter γ using spatial frequency domain imaging. The incorporation of two different types of scattering particles allows for control of the optical phantoms’ microscopic scattering properties. By laterally structuring areas with either TiO2 or Al2O3 scattering particles, we were able to obtain almost pure subdiffusive scattering contrast in a single optical phantom. Optical parameter mapping was then achieved using an analytical radiative transfer model revealing the microscopic structural contrast on a macroscopic field of view. As part of our study, we explain several correction and referencing techniques for high spatial frequency analysis and experimentally study the sampling depth of the subdiffusive parameter γ.
Collapse
|