1
|
Modiri A, Mossahebi S, Sawant A, Chen S, Zhang B, Yi B. Sectored single-energy volumetric-modulated proton arc therapy (VPAT): A preliminary multi-disease-site concept study. Phys Med 2024; 127:104829. [PMID: 39368298 DOI: 10.1016/j.ejmp.2024.104829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
PURPOSE To explore the feasibility of a novel intensity-modulated proton arc technique that uses a single-energy beam from the cyclotron. The beam energy is externally modulated at each gantry angle by a tertiary energy modulator (EM). We hypothesize that irradiating in an arc without requiring an energy change from the cyclotron will achieve a faster delivery (main advantage of our technique) while keeping clinically desirable dosimetric results. METHODS In a retrospective cohort of four patients with female pelvis, prostate, lung, and brain cancers, we investigated our volumetric-modulated proton arc therapy (VPAT) technique. Arcs were simulated by sectors of 1°-spaced static beams. Keeping the energy requested from the cyclotron the same for each entire arc was supported by a predesigned EM placed in front of the nozzle. As a feasibility measure, EM thicknesses were calculated. Delivery times and doses to targets and organs at risk (OARs) were compared to those of the clinical plans. RESULTS VPAT plans were comparable to their clinical counterparts in achieving target dose conformity, being robust to uncertainties, and meeting clinical dose-volume constraints. Cyclotron energies for the four cases were within 159-220 MeV, and energy modulation range was 69-100 MeV, equivalent to 13-19 cm of water-equivalent thickness (WET). Plan delivery times were reduced from > 5 min in our clinical practice to < 3.5 min in VPAT. CONCLUSION For the evaluated plans, the novel VPAT approach achieved shorter delivery times without sacrificing robustness, OAR sparing or target coverage. VPAT's EMs had WETs implementable in a clinical setup.
Collapse
Affiliation(s)
- Arezoo Modiri
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Proton Treatment Center, Baltimore, MD, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shifeng Chen
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Baoshe Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Byongyong Yi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Proton Treatment Center, Baltimore, MD, USA
| |
Collapse
|
2
|
Chocan MS, Wuyckens S, Dasnoy D, Di Perri D, Borderias Villarruel E, Engwall E, Lee JA, Barragan-Montero AM, Sterpin E. A dosimetric and robustness analysis of proton arc therapy with early energy layer and spot assignment for lung cancer versus conventional intensity modulated proton therapy. Acta Oncol 2024; 63:805-815. [PMID: 39473175 PMCID: PMC11538483 DOI: 10.2340/1651-226x.2024.40549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND AND PURPOSE Intensity Modulated Proton Therapy (IMPT) faces challenges in lung cancer treatment, like maintaining plan robustness for moving tumors against setup, range errors, and interplay effects. Proton Arc Therapy (PAT) is an alternative to maintain target coverage, potentially improving organ at risk (OAR) sparing, reducing beam delivery time (BDT), and enhancing patient experience. We aim to perform a systematic plan comparison study between IMPT and energy layer (EL) and spot assignment algorithm - Proton Arc Therapy (ELSA-PAT) to assess its potential for lung cancer treatment. MATERIAL AND METHODS A total of 14 Lung ELSA-PAT plans were compared retrospectively with IMPT plans. 4D worst-case minimax robust optimization was performed, including 84 scenarios (3%, 3 mm). Dosimetry assessment included target (clinical tumor volume [CTV]) and important OARs, on nominal and worst-case scenarios. Most relevant normal tissue complication probabilities (NTCP), target coverage robustness against interplay effect, and BDT were evaluated. RESULTS CTV D95% and D98% showed no significant difference in comparison. PAT demonstrated better conformality by 66% (p = 0.00012) but delivered a higher heart mean dose (HMD, 23%). There was a 2% increase in NTCP 2-year mortality risk with PAT. Total BDT was comparable among techniques. IMPT was more robust than PAT against interplay effect, considering both D1% (1.0 ± 0.8 Gy vs 1.1 ± 1.4 Gy) and D98% bandwidths (0.9 ± 0.9 Gy vs 1.1 ± 1.3 Gy). INTERPRETATION Both techniques provide a similar level of dose coverage to the target volume. Although PAT improved dose conformality, higher HMD translated into increased heart toxicity, presumably due to chosen planning methodology and OAR proximity to target. Increased ELs and spots raised PAT BDT, although it could improve daily treatment workflow.
Collapse
Affiliation(s)
- Macarena S Chocan
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium.
| | - Sophie Wuyckens
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium
| | - Damien Dasnoy
- Université catholique de Louvain, Institute of Information and Communication Technologies (ICTEAM), Louvain-La-Neuve, Belgium
| | - Dario Di Perri
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Elena Borderias Villarruel
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium
| | - Erik Engwall
- RaySearch Laboratories - Research and Development Department, Stockholm, Sweden
| | - John A Lee
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium
| | - Ana M Barragan-Montero
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium
| | - Edmond Sterpin
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium; KULeuven, Department of Oncology, Laboratory of external radiotherapy, Leuven, Belgium; Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium
| |
Collapse
|
3
|
Mein S, Wuyckens S, Li X, Both S, Carabe A, Vera MC, Engwall E, Francesco F, Graeff C, Gu W, Hong L, Inaniwa T, Janssens G, de Jong B, Li T, Liang X, Liu G, Lomax A, Mackie T, Mairani A, Mazal A, Nesteruk KP, Paganetti H, Pérez Moreno JM, Schreuder N, Soukup M, Tanaka S, Tessonnier T, Volz L, Zhao L, Ding X. Particle arc therapy: Status and potential. Radiother Oncol 2024; 199:110434. [PMID: 39009306 DOI: 10.1016/j.radonc.2024.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation. In this work, perspectives from the European Society for Radiotherapy and Oncology (ESTRO) 2022 physics workshop on particle arc therapy are reported. This outlook provides an outline and prospective vision for the path forward to clinically deliverable proton, carbon, and other ion arc treatments. Through the collaboration among industry, academic, and clinical research and development, the scientific landscape and outlook for particle arc therapy are presented here to help our community understand the physics, radiobiology, and clinical principles. The work is presented in three main sections: (i) treatment planning, (ii) treatment delivery, and (iii) clinical outlook.
Collapse
Affiliation(s)
- Stewart Mein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sophie Wuyckens
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Macarena Chocan Vera
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | | | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Hong
- Ion Beam Applications SA, Louvain-la-Neuve, Belgium
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | | | - Bas de Jong
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Antony Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; ETH, Department of Physics, Zürich, Switzerland
| | - Thomas Mackie
- Department of Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | - Konrad P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | | | | | | | - Sodai Tanaka
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Lewei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA.
| |
Collapse
|
4
|
Burford-Eyre S, Aitkenhead A, Aylward JD, Henthorn NT, Ingram SP, Mackay R, Manger S, Merchant MJ, Sitch P, Warmenhoven JW, Appleby RB. Emulating the Delivery of Sawtooth Proton Arc Therapy Plans on a Cyclotron-Based Proton Beam Therapy System. Cancers (Basel) 2024; 16:3315. [PMID: 39409935 PMCID: PMC11475827 DOI: 10.3390/cancers16193315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Purpose: To evaluate and compare the deliverability of 'sawtooth' proton arc therapy (PAT) plans relative to static intensity modulated proton therapy (IMPT) at a cyclotron-based clinical facility. Methods: The delivery of single and dual arc Sawtooth PAT plans for an abdominal CT phantom and multiple clinical cases of brain, head and neck (H&N) and base of skull (BoS) targets was emulated under the step-and-shoot and continuous PAT delivery regimes and compared to that of a corresponding static IMPT plan. Results: Continuous PAT delivery increased the time associated with beam delivery and gantry movement in single/dual PAT plans by 4.86/7.34 min (brain), 7.51/12.40 min (BoS) and 6.59/10.57 min (H&N) on average relative to static IMPT. Step-and-shoot PAT increased this delivery time further by 4.79 min on average as the delivery was limited by gantry motion. Conclusions: The emulator can approximately model clinical sawtooth PAT delivery but requires experimental validation. No clear benefit was observed regarding beam-on time for sawtooth PAT relative to static IMPT.
Collapse
Affiliation(s)
- Samuel Burford-Eyre
- Department of Physics and Astronomy and the Cockcroft Institute, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Adam Aitkenhead
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Heath, The University of Manchester, Manchester M13 9PL, UK
| | - Jack D. Aylward
- Department of Physics and Astronomy and the Cockcroft Institute, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Nicholas T. Henthorn
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Heath, The University of Manchester, Manchester M13 9PL, UK
| | - Samuel P. Ingram
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Heath, The University of Manchester, Manchester M13 9PL, UK
| | - Ranald Mackay
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Heath, The University of Manchester, Manchester M13 9PL, UK
| | - Samuel Manger
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Heath, The University of Manchester, Manchester M13 9PL, UK
| | - Michael J. Merchant
- Division of Cancer Sciences, Faculty of Biology Medicine and Heath, The University of Manchester, Manchester M13 9PL, UK
| | - Peter Sitch
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Heath, The University of Manchester, Manchester M13 9PL, UK
| | - John-William Warmenhoven
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Heath, The University of Manchester, Manchester M13 9PL, UK
| | - Robert B. Appleby
- Department of Physics and Astronomy and the Cockcroft Institute, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
5
|
Ma Y, Li Y, Xu P, Zhang H, Zhang X, Liu X, Li Q. A machine learning-based approach to predict energy layer for each field in spot-scanning proton arc therapy for lung cancer: A feasibility study. Med Phys 2024; 51:4970-4981. [PMID: 38772044 DOI: 10.1002/mp.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Determining the optimal energy layer (EL) for each field, under considering both dose constraints and delivery efficiency, is crucial to promoting the development of proton arc therapy (PAT) technology. PURPOSE This study aimed to explore the feasibility and potential clinical benefits of utilizing machine learning (ML) technique to automatically select EL for each field in PAT plans of lung cancer. METHODS Proton Bragg peak position (BPP) was employed to characterize EL. The ground truth BPPs for each field were determined using the modified ELO-SPAT framework. Features in geometric, water-equivalent thicknesses (WET) and beamlet were defined and extracted. By analyzing the relationship between the extracted features and ground truth, a polynomial regression model with L2-norm regularization (Ridge regression) was constructed and trained. The performance of the regression model was reported as an error between the predictions and the ground truth. Besides, the predictions were used to make PAT plans (PAT_PRED). These plans were compared with those using the ground truth BPPs (PAT_TRUTH) and the mid-WET of the target volumes (PAT_MID) in terms of relative biological effectiveness-weighted dose (RWD) distributions. One hundred ten patients with lung cancer, a total of 7920 samples, were enrolled retrospectively, with 5940 cases randomly selected as the training set and the remaining 1980 cases as the testing set. Nine patients (648 samples) were collected additionally to evaluate the regression model in terms of plan quality and robustness. RESULTS With regard to the prediction errors, the root mean squared errors and mean absolute errors between the ML-predicted and ground truth BPPs for the testing set were 9.165 and 6.572 mm, respectively, indicating differences of approximately two to three ELs. As for plan quality, the PAT_TRUTH and PAT_PRED plans performed similarly in terms of plan robustness, target coverage and organs at risk (OARs) protection, with differences smaller than 0.5 Gy(RBE). This trend was also observed for dose conformity and uniformity. The PAT_MID plans produced the lowest robustness index and lowest doses to OARs, along with the highest heterogeneity index, indicating better protection for OARs, improved plan robustness, but compromised dose homogeneity. Additionally, for relatively small tumor sizes, the PAT_MID plan demonstrated a notably poor dose conformity index. CONCLUSIONS Within this cohort under investigation, our study demonstrated the feasibility of using ML technique to predict ELs for each field, offering a fast (within 2 s) and memory-efficient reduced way to select ELs for PAT plan.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- Putian Lanhai Nuclear Medicine Research Center, Putian, China
| | - Yazhou Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Gansu Provincial Hospital, Lanzhou, China
| | - Penghui Xu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- Lanzhou University, Lanzhou, China
| | - Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- Putian Lanhai Nuclear Medicine Research Center, Putian, China
| | - Xinyang Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinguo Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- Putian Lanhai Nuclear Medicine Research Center, Putian, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- Putian Lanhai Nuclear Medicine Research Center, Putian, China
| |
Collapse
|
6
|
Penfold SN, Santos AMC, Penfold M, Shierlaw E, Crain R. Single high-energy arc proton therapy with Bragg peak boost (SHARP). J Med Radiat Sci 2024; 71 Suppl 2:27-36. [PMID: 38400611 PMCID: PMC11011576 DOI: 10.1002/jmrs.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Because of the co-location of critical organs at risk, base of skull tumours require steep dose gradients to achieve the prescribed dosimetric criteria. When available, proton beam therapy (PBT) is often considered a desirable modality for these cases, but in many instances, compromises in target coverage are still required to achieve critical organ at risk (OAR) tolerance doses. A number of techniques have been proposed to further improve the penumbra of PBT. In the current study, we propose a novel, collimator-free treatment planning technique that combines high-energy shoot-through proton beams with conventional Bragg peak spot placement. The small spot size of the high-energy pencil beams provides a sharp penumbra at the target boundary, and the Bragg peak spots provide a higher linear energy transfer (LET) boost to the target centre. METHODS Three base of skull chordoma patients were retrospectively planned with three different PBT treatment planning techniques: (1) conventional intensity-modulated proton therapy (IMPT); (2) high-energy proton arc therapy (HE-PAT); and (3) the novel technique combining HE-PAT and IMPT, referred to as single high-energy arc with Bragg peak boost (SHARP). The Monaco 6 treatment planning system was used. RESULTS SHARP was found to improve the PBT penumbra in the plane perpendicular to the HE-PAT beams. Minimal penumbra differences were observed in the plane of the HE-PAT beams. SHARP reduced dose-averaged LET to surrounding organs at risk. CONCLUSION A novel PBT treatment planning technique was successfully implemented. Initial results indicate the potential for SHARP to improve the penumbra of PBT treatments for base of skull tumours.
Collapse
Affiliation(s)
- Scott N. Penfold
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Department of PhysicsUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Alexandre M. C. Santos
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Department of PhysicsUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| | - Melanie Penfold
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
| | - Emma Shierlaw
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| | - Rosanna Crain
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| |
Collapse
|
7
|
Qian Y, Fan Q, Dao R, Li X, Yang Z, Zhang S, Yang K, Quan H, Tu B, Ding X, Liu G. A novel planning framework for efficient spot-scanning proton arc therapy via particle swarm optimization (SPArc- particle swarm). Phys Med Biol 2023; 69:015004. [PMID: 38041874 DOI: 10.1088/1361-6560/ad11a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/01/2023] [Indexed: 12/04/2023]
Abstract
Objective.Delivery efficiency is the bottleneck of spot-scanning proton arc therapy (SPArc) because of the numerous energy layers (ELs) ascending switches. This study aims to develop a new algorithm to mitigate the need for EL ascending via water equivalent thickness (WET) sector selection followed by particle swarm optimization (SPArc-particle swarm).Approach.SPArc-particle swarmdivided the full arc trajectory into the optimal sectors based on K-means clustering analysis of the relative mean WET. Within the sector, particle swarm optimization was used to minimize the total energy switch time, optimizing the energy selection integrated with the EL delivery sequence and relationship. This novel planning framework was implemented on the open-source platform matRad (Department of Medical Physics in Radiation Oncology, German Cancer Research Center-DKFZ). Three representative cases (brain, liver, and prostate cancer) were selected for testing purposes. Two kinds of plans were generated: SPArc_seq and SPArc-particle swarm. The plan quality and delivery efficiency were evaluated.Main results. With a similar plan quality, the delivery efficiency was significantly improved using SPArc-particle swarmcompared to SPArc_seq. More specifically, it reduces the number of ELs ascending switching compared to the SPArc_seq (from 21 to 7 in the brain, from 21 to 5 in the prostate, from 21 to 6 in the liver), leading to a 16%-26% reduction of the beam delivery time (BDT) in the SPArc treatment.Significance. A novel planning framework, SPArc-particle swarm, could significantly improve the delivery efficiency, which paves the roadmap towards routine clinical implementation.
Collapse
Affiliation(s)
- Yujia Qian
- Wuhan University, School of Physics and Technology, Wuhan, People's Republic of China
| | - Qingkun Fan
- Wuhan University, School of Mathematics and Statistics, Wuhan, People's Republic of China
| | - Riao Dao
- Wuhan University, School of Physics and Technology, Wuhan, People's Republic of China
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States of America
| | - Zhijian Yang
- Wuhan University, School of Mathematics and Statistics, Wuhan, People's Republic of China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,430022, People's Republic of China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,430022, People's Republic of China
| | - Hong Quan
- Wuhan University, School of Physics and Technology, Wuhan, People's Republic of China
| | - Biao Tu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,430022, People's Republic of China
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States of America
| | - Gang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,430022, People's Republic of China
| |
Collapse
|
8
|
Henjum H, Tjelta J, Fjæra LF, Pilskog S, Stokkevåg CH, Lyngholm E, Handeland AH, Ytre-Hauge KS. Influence of beam pruning techniques on LET and RBE in proton arc therapy. Front Oncol 2023; 13:1155310. [PMID: 37731633 PMCID: PMC10508957 DOI: 10.3389/fonc.2023.1155310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Proton arc therapy (PAT) is an emerging treatment modality that holds promise to improve target volume coverage and reduce linear energy transfer (LET) in organs at risk. We aimed to investigate if pruning the highest energy layers in each beam direction could increase the LET in the target and reduce LET in tissue and organs at risk (OAR) surrounding the target volume, thus reducing the relative biological effectiveness (RBE)-weighted dose and sparing healthy tissue. Methods PAT plans for a germinoma, an ependymoma and a rhabdomyosarcoma patient were created in the Eclipse treatment planning system with a prescribed dose of 54 Gy(RBE) using a constant RBE of 1.1 (RBE1.1). The PAT plans was pruned for high energy spots, creating several PAT plans with different amounts of pruning while maintaining tumor coverage, denoted PX-PAT plans, where X represents the amount of pruning. All plans were recalculated in the FLUKA Monte Carlo software, and the LET, physical dose, and variable RBE-weighted dose from the phenomenological Rørvik (ROR) model and an LET weighted dose (LWD) model were evaluated. Results and discussion For the germinoma case, all plans but the P6-PAT reduced the mean RBE-weighted dose to the surrounding healthy tissue compared to the PAT plan. The LET was increasingly higher within the PTV for each pruning iteration, where the mean LET from the P6-PAT plan was 1.5 keV / μm higher than for the PAT plan, while the P4- and P5-PAT plans provided an increase of 0.4 and 0.7 keV / μm , respectively. The other plans increased the LET by a smaller margin compared to the PAT plan. Likewise, the LET values to the healthy tissue were reduced for each degree of pruning. Similar results were found for the ependymoma and the rhabdomyosarcoma case. We demonstrated a PAT pruning technique that can increase both LET and RBE in the target volume and at the same time decreased values in healthy tissue, without affecting the target volume dose coverage.
Collapse
Affiliation(s)
- Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Johannes Tjelta
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Lars Fredrik Fjæra
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Sara Pilskog
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Camilla H. Stokkevåg
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Erlend Lyngholm
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Andreas H. Handeland
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
9
|
Cao W, Li Y, Zhang X, Poenisch F, Yepes P, Sahoo N, Grosshans D, McGovern S, Gunn GB, Frank SJ, Zhu XR. Intensity modulated proton arc therapy via geometry-based energy selection for ependymoma. J Appl Clin Med Phys 2023:e13954. [PMID: 36913484 DOI: 10.1002/acm2.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
PURPOSE We developed and tested a novel method of creating intensity modulated proton arc therapy (IMPAT) plans that uses computing resources similar to those for regular intensity-modulated proton therapy (IMPT) plans and may offer a dosimetric benefit for patients with ependymoma or similar tumor geometries. METHODS Our IMPAT planning method consists of a geometry-based energy selection step with major scanning spot contributions as inputs computed using ray-tracing and single-Gaussian approximation of lateral spot profiles. Based on the geometric relation of scanning spots and dose voxels, our energy selection module selects a minimum set of energy layers at each gantry angle such that each target voxel is covered by sufficient scanning spots as specified by the planner, with dose contributions above the specified threshold. Finally, IMPAT plans are generated by robustly optimizing scanning spots of the selected energy layers using a commercial proton treatment planning system (TPS). The IMPAT plan quality was assessed for four ependymoma patients. Reference three-field IMPT plans were created with similar planning objective functions and compared with the IMPAT plans. RESULTS In all plans, the prescribed dose covered 95% of the clinical target volume (CTV) while maintaining similar maximum doses for the brainstem. While IMPAT and IMPT achieved comparable plan robustness, the IMPAT plans achieved better homogeneity and conformity than the IMPT plans. The IMPAT plans also exhibited higher relative biological effectiveness (RBE) enhancement than did the corresponding reference IMPT plans for the CTV in all four patients and brainstem in three of them. CONCLUSIONS The proposed method demonstrated potential as an efficient technique for IMPAT planning and may offer a dosimetric benefit for patients with ependymoma or tumors in close proximity to critical organs. IMPAT plans created using this method had elevated RBE enhancement associated with increased linear energy transfer (LET) in both targets and abutting critical organs.
Collapse
Affiliation(s)
- Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yupeng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Falk Poenisch
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pablo Yepes
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaorong R Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Biological Dose Optimization for Particle Arc Therapy using Helium and Carbon Ions. Int J Radiat Oncol Biol Phys 2022; 114:334-348. [PMID: 35490991 DOI: 10.1016/j.ijrobp.2022.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To present biological dose optimization for particle arc therapy using helium and carbon ions. METHODS Treatment plan planning and optimization procedures were developed for spot-scanning hadron arc (SHArc) delivery using the RayStation TPS and a GPU-accelerated dose engine (†TPS-XXX). The SHArc optimization algorithm is applicable for charged particle beams and determines angle-dependencies for spot/energy selection with three main initiatives: i) achieve standard clinical optimization goals and constraints for target and OARs, ii) target dose robustness and iii) increasing LET in the target volume. Three patient cases previously treated at the †INSTITUTION-XXX were selected for evaluation of conventional versus arc delivery for the two clinical particle beams (helium [4He] and carbon [12C] ions): glioblastoma, prostate-adenocarcinoma and skull-base chordoma. Biological dose and dose-averaged linear energy transfer (LETd) distributions for SHArc were evaluated against conventional planning techniques (VMAT and IMPT2F) applying the modified microdosimetric kinetic model (mMKM) for considering bio-effect with (α/β)x=2Gy. Clinical viability and deliverability were assessed via evaluation of plan quality, robustness and irradiation time. RESULTS For all investigated patient cases, SHArc treatment optimizations met planning goals and constraints for target coverage and OARs, exhibiting acceptable target coverage and reduced normal tissue volumes with effective dose >10GyRBE compared to conventional 2F planning. For carbon ions, LETd was increased in the target volume from ∼40-60keV/µm to ∼80-140keV/µm for SHArc compared to conventional treatments. Favorable LETd distributions were possible with the SHArc approach, with maximum LETd in CTV/GTV and potential reductions of high-LET regions in normal tissues and OARs. Compared to VMAT, SHArc affords substantial reductions in normal tissue dose (40-70%). CONCLUSION SHArc therapy offers potential treatment benefits such as increased normal tissue sparing from higher doses >10GyRBE, enhanced target LETd, and potential reduction in high-LET components in OARs. Findings justify further development of robust SHArc treatment planning towards potential clinical translation.
Collapse
|
11
|
Engwall E, Battinelli C, Wase V, Marthin O, Glimelius L, Bokrantz R, Andersson B, Fredriksson A. Fast robust optimization of proton PBS arc therapy plans using early energy layer selection and spot assignment. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac55a6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/16/2022] [Indexed: 12/31/2022]
Abstract
Abstract
Objective. Proton pencil-beam scanning arcs (PBS arcs) have gained much attention during the past years, due to its potential for increased clinical benefit compared to conventional proton therapy. Previous studies on PBS arcs have primarily been focused on plan quality, and lately efforts have been made to reduce the delivery time. However, the methods presented so far suffer from slow optimization processes. Approach. We present a new method for fast robust optimization of PBS arc plans. The new method assigns a single energy layer per discretized direction prior to spot weight optimization and reduces the number of initial spots considerably compared to conventional methods. We used the new method for three prostate cancer patients with a prescribed dose to the CTV of 77 GyRBE in 35 fractions. For each of the patients, four plans were created: 2-beam IMPT (2IMPT), 1-beam PBS arc (1Arc), 1-beam PBS arc without focus on reducing upward energy jumps (1Arc_unseq) and two-beam PBS arc (2Arc). Main results. All PBS arc plans show a reduced integral dose compared to their respective 2IMPT plans. In the nominal case, the average CTV D98 and D2 metrics over the three patients were best for the 2Arc, followed by 2IMPT (
D
98
¯
/
D
2
¯
:
7523/7986 cGyRBE (2IMPT), 7478/7984 cGy (1Arc), 7486/7951 cGy (1Arc_unseq), 7531/7951 cGyRBE (2Arc)). The average robust target coverage in terms of V95 of the voxelwise minimum dose distribution (evaluated over 42 scenarios) was: 98.0% (2IMPT), 88.6% (1Arc), 92.5% (1Arc_unseq), 97.3% (2Arc). The optimization time, including spot selection and spot dose computation, is longest for the 2Arc plan, but is below 6 min for all patients. The maximum estimated delivery time for all types of arc plans is just above 5 min Significance. The ability for efficient treatment planning constitutes an important step towards clinical introduction of proton PBS arcs.
Collapse
|
12
|
Yap J, De Franco A, Sheehy S. Future Developments in Charged Particle Therapy: Improving Beam Delivery for Efficiency and Efficacy. Front Oncol 2021; 11:780025. [PMID: 34956897 PMCID: PMC8697351 DOI: 10.3389/fonc.2021.780025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023] Open
Abstract
The physical and clinical benefits of charged particle therapy (CPT) are well recognized. However, the availability of CPT and complete exploitation of dosimetric advantages are still limited by high facility costs and technological challenges. There are extensive ongoing efforts to improve upon these, which will lead to greater accessibility, superior delivery, and therefore better treatment outcomes. Yet, the issue of cost remains a primary hurdle as utility of CPT is largely driven by the affordability, complexity and performance of current technology. Modern delivery techniques are necessary but limited by extended treatment times. Several of these aspects can be addressed by developments in the beam delivery system (BDS) which determines the overall shaping and timing capabilities enabling high quality treatments. The energy layer switching time (ELST) is a limiting constraint of the BDS and a determinant of the beam delivery time (BDT), along with the accelerator and other factors. This review evaluates the delivery process in detail, presenting the limitations and developments for the BDS and related accelerator technology, toward decreasing the BDT. As extended BDT impacts motion and has dosimetric implications for treatment, we discuss avenues to minimize the ELST and overview the clinical benefits and feasibility of a large energy acceptance BDS. These developments support the possibility of advanced modalities and faster delivery for a greater range of treatment indications which could also further reduce costs. Further work to realize methodologies such as volumetric rescanning, FLASH, arc, multi-ion and online image guided therapies are discussed. In this review we examine how increased treatment efficiency and efficacy could be achieved with improvements in beam delivery and how this could lead to faster and higher quality treatments for the future of CPT.
Collapse
Affiliation(s)
- Jacinta Yap
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Andrea De Franco
- IFMIF Accelerator Development Group, Rokkasho Fusion Institute, National Institutes for Quantum Science and Technology, Aomori, Japan
| | - Suzie Sheehy
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Vidal M, Moignier C, Patriarca A, Sotiropoulos M, Schneider T, De Marzi L. Future technological developments in proton therapy - A predicted technological breakthrough. Cancer Radiother 2021; 25:554-564. [PMID: 34272182 DOI: 10.1016/j.canrad.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
In the current spectrum of cancer treatments, despite high costs, a lack of robust evidence based on clinical outcomes or technical and radiobiological uncertainties, particle therapy and in particular proton therapy (PT) is rapidly growing. Despite proton therapy being more than fifty years old (first proposed by Wilson in 1946) and more than 220,000 patients having been treated with in 2020, many technological challenges remain and numerous new technical developments that must be integrated into existing systems. This article presents an overview of on-going technical developments and innovations that we felt were most important today, as well as those that have the potential to significantly shape the future of proton therapy. Indeed, efforts have been done continuously to improve the efficiency of a PT system, in terms of cost, technology and delivery technics, and a number of different developments pursued in the accelerator field will first be presented. Significant developments are also underway in terms of transport and spatial resolution achievable with pencil beam scanning, or conformation of the dose to the target: we will therefore discuss beam focusing and collimation issues which are important parameters for the development of these techniques, as well as proton arc therapy. State of the art and alternative approaches to adaptive PT and the future of adaptive PT will finally be reviewed. Through these overviews, we will finally see how advances in these different areas will allow the potential for robust dose shaping in proton therapy to be maximised, probably foreshadowing a future era of maturity for the PT technique.
Collapse
Affiliation(s)
- M Vidal
- Centre Antoine-Lacassagne, Fédération Claude Lalanne, 227, avenue de la Lanterne, 06200 Nice, France
| | - C Moignier
- Centre François Baclesse, Department of Medical Physics, Centre de protonthérapie de Normandie, 14000 Caen, France
| | - A Patriarca
- Institut Curie, PSL Research University, Radiation oncology department, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, 91898 Orsay, France
| | - M Sotiropoulos
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France
| | - T Schneider
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France
| | - L De Marzi
- Institut Curie, PSL Research University, Radiation oncology department, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, 91898 Orsay, France; Institut Curie, PSL Research University, University Paris Saclay, Inserm LITO, Campus universitaire, 91898 Orsay, France.
| |
Collapse
|
14
|
Mein S, Tessonnier T, Kopp B, Harrabi S, Abdollahi A, Debus J, Haberer T, Mairani A. Spot-Scanning Hadron Arc (SHArc) Therapy: A Study With Light and Heavy Ions. Adv Radiat Oncol 2021; 6:100661. [PMID: 33817410 PMCID: PMC8010580 DOI: 10.1016/j.adro.2021.100661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To evaluate the clinical potential of spot-scanning hadron arc (SHArc) therapy with a heavy-ion gantry. METHODS AND MATERIALS A series of in silico studies was conducted via treatment plan optimization in FRoG and the RayStation TPS to compare SHArc therapy against reference plans using conventional techniques with single, parallel-opposed, and 3-field configurations for 3 clinical particle beams (protons [p], helium [4He], and carbon [12C] ions). Tests were performed on water-equivalent cylindrical phantoms for simple targets and clinical-like scenarios with an organ-at-risk in proximity of the target. Effective dose and dose-averaged linear energy transfer (LETD) distributions for SHArc were evaluated against conventional planning techniques applying the modified microdosimetric kinetic model for considering bio-effect with (α/β)x = 2 Gy. A model for hypoxia-induced tumor radio-resistance was developed for particle therapy with dependence on oxygen concentration and particle species/energy (Zeff/β)2 to investigate the impact on effective dose. RESULTS SHArc plans exhibited similar target coverage with unique treatment attributes and distributions compared with conventional planning, with carbon ions demonstrating the greatest potential for tumor control and normal tissue sparing among the arc techniques. All SHArc plans exhibited a low-dose bath outside the target volume with a reduced maximum dose in normal tissues compared with single, parallel-opposed, and 3-field configuration plans. Moreover, favorable LETD distributions were made possible using the SHArc approach, with maximum LETD in the r = 5 mm tumor core (~8 keVμm-1, ~30 keVμm-1, and ~150 keVμm-1 for p, 4He, and 12C ions, respectively) and reductions of high-LET regions in normal tissues and organs-at-risk compared with static treatment beam delivery. CONCLUSION SHArc therapy offers potential treatment benefits such as increased normal tissue sparing. Without explicit consideration of oxygen concentration during treatment planning and optimization, SHArc-C may mitigate tumor hypoxia-induced loss of efficacy. Findings justify further development of robust SHArc treatment planning toward potential clinical translation.
Collapse
Affiliation(s)
- Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Semi Harrabi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| |
Collapse
|
15
|
Mazal A, Vera Sanchez JA, Sanchez-Parcerisa D, Udias JM, España S, Sanchez-Tembleque V, Fraile LM, Bragado P, Gutierrez-Uzquiza A, Gordillo N, Garcia G, Castro Novais J, Perez Moreno JM, Mayorga Ortiz L, Ilundain Idoate A, Cremades Sendino M, Ares C, Miralbell R, Schreuder N. Biological and Mechanical Synergies to Deal With Proton Therapy Pitfalls: Minibeams, FLASH, Arcs, and Gantryless Rooms. Front Oncol 2021; 10:613669. [PMID: 33585238 PMCID: PMC7874206 DOI: 10.3389/fonc.2020.613669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
Proton therapy has advantages and pitfalls comparing with photon therapy in radiation therapy. Among the limitations of protons in clinical practice we can selectively mention: uncertainties in range, lateral penumbra, deposition of higher LET outside the target, entrance dose, dose in the beam path, dose constraints in critical organs close to the target volume, organ movements and cost. In this review, we combine proposals under study to mitigate those pitfalls by using individually or in combination: (a) biological approaches of beam management in time (very high dose rate “FLASH” irradiations in the order of 100 Gy/s) and (b) modulation in space (a combination of mini-beams of millimetric extent), together with mechanical approaches such as (c) rotational techniques (optimized in partial arcs) and, in an effort to reduce cost, (d) gantry-less delivery systems. In some cases, these proposals are synergic (e.g., FLASH and minibeams), in others they are hardly compatible (mini-beam and rotation). Fixed lines have been used in pioneer centers, or for specific indications (ophthalmic, radiosurgery,…), they logically evolved to isocentric gantries. The present proposals to produce fixed lines are somewhat controversial. Rotational techniques, minibeams and FLASH in proton therapy are making their way, with an increasing degree of complexity in these three approaches, but with a high interest in the basic science and clinical communities. All of them must be proven in clinical applications.
Collapse
Affiliation(s)
| | | | - Daniel Sanchez-Parcerisa
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Sedecal Molecular Imaging, Madrid, Spain
| | - Jose Manuel Udias
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Samuel España
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Victor Sanchez-Tembleque
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Luis Mario Fraile
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Paloma Bragado
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Department of Biochemistry and Molecular Biology. U. Complutense, Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Department of Biochemistry and Molecular Biology. U. Complutense, Madrid, Spain
| | - Nuria Gordillo
- Department of Applied Physics, U. Autonoma de Madrid, Madrid, Spain.,Center for Materials Microanalysis, (CMAM), U. Autonoma de Madrid, Madrid, Spain
| | - Gaston Garcia
- Center for Materials Microanalysis, (CMAM), U. Autonoma de Madrid, Madrid, Spain
| | | | | | | | | | | | - Carme Ares
- Centro de Protonterapia Quironsalud, Madrid, Spain
| | | | | |
Collapse
|
16
|
Carabe A, Karagounis IV, Huynh K, Bertolet A, François N, Kim MM, Maity A, Abel E, Dale R. Radiobiological effectiveness difference of proton arc beams versus conventional proton and photon beams. Phys Med Biol 2020; 65:165002. [PMID: 32413889 DOI: 10.1088/1361-6560/ab9370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper aims to demonstrate the difference in biological effectiveness of proton monoenergetic arc therapy (PMAT) compared to intensity modulated proton therapy (IMPT) and conventional 6 MV photon therapy, and to quantify this difference when exposing cells of different radiosensitivity to the same experimental conditions for each modality. V79, H1299 and H460 cells were cultured in petri dishes placed in the central axis of a cylindrical and homogeneous solid water phantom of 20 cm in diameter. For the PMAT plan, cells were exposed to 13 mono-energetic proton beams separated every 15° over a 180° arc, designed to deliver a uniform dose of higher LET to the petri dishes. For the IMPT plans, 3 fields were used, where each field was modulated to cover the full target. Cells were also exposed to 6 MV photon beams in petri dishes to characterize their radiosensitivity. The relative biological effectiveness of the PMAT plans compared with those of IMPT was measured using clonogenic assays. Similarly, in order to study the quantity and quality of the DNA damage induced by the PMAT plans compared to that of IMPT and photons, γ-H2AX assays were conducted to study the relative amount of DNA damage induced by each modality, and their repair rate over time. The clonogenic assay revealed similar survival levels to the same dose delivered with IMPT or x-rays. However, a systematic average of up to a 43% increase in effectiveness in PMAT plans was observed when compared with IMPT. In addition, the repair kinetic assays proved that PMAT induces larger and more complex DNA damage (evidenced by a slower repair rate and a larger proportion of unrepaired DNA damage) than IMPT. The repair kinetics of IMPT and 6 MV photon therapy were similar. Mono-energetic arc beams offer the possibility of taking advantage of the enhanced LET of proton beams to increase TCP. This study presents initial results based on exposing cells with different radiosensitivity to other modalities under the same experimental conditions, but more extensive clonogenic and in-vivo studies will be required to confirm the validity of these results.
Collapse
Affiliation(s)
- Alejandro Carabe
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, PA, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bertolet A, Carabe A. Proton monoenergetic arc therapy (PMAT) to enhance LETd within the target. Phys Med Biol 2020; 65:165006. [PMID: 32428896 DOI: 10.1088/1361-6560/ab9455] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We show the performance and feasibility of a proton arc technique so-called proton monoenergetic arc therapy (PMAT). Monoenergetic partial arcs are selected to place spots at the middle of a target and its potential to enhance the dose-averaged linear energy transfer (LETd) distribution within the target. Single-energy partial arcs in a single 360 degree gantry rotation are selected to deposit Bragg's peaks at the central part of the target to increase LETd values. An in-house inverse planning optimizer seeks for homogeneous doses at the target while keeping the dose to organs at risk (OARs) within constraints. The optimization consists of balancing the weights of spots coming out of selected partial arcs. A simple case of a cylindrical target in a phantom is shown to illustrate the method. Three different brain cancer cases are then considered to produce actual clinical plans, compared to those clinically used with pencil beam scanning (PBS). The relative biological effectiveness (RBE) is calculated according to the microdosimetric kinetic model (MKM). For the ideal case of a cylindrical target placed in a cylindrical phantom, the mean LETd in the target increases from 2.8 keV μm-1 to 4.0 keV μm-1 when comparing a three-field PBS plan with PMAT. This is replicated for clinical plans, increasing the mean RBE-weighted doses to the CTV by 3.1%, 1.7% and 2.5%, respectively, assuming an [Formula: see text] ratio equal to 10 Gy in the CTV. In parallel, LETd to OARs near the distal edge of the tumor decrease for all cases and metrics (mean LETd, LD,2% and LD,98%). The PMAT technique increases the LETd within the target, being feasible for the production of clinical plans meeting physical dosimetric requirements for both target and OARs. Thus, PMAT increases the RBE within the target, which may lead to a widening of the therapeutic index in proton radiotherapy that would be highlighted for low [Formula: see text] ratios and hyperfractionated schedules.
Collapse
Affiliation(s)
- A Bertolet
- Department of Radiation Oncology, Hospital of The University of Pennsylvania, Philadelphia 19104, PA, United States of America
| | | |
Collapse
|
18
|
Gu W, Ruan D, Lyu Q, Zou W, Dong L, Sheng K. A novel energy layer optimization framework for spot-scanning proton arc therapy. Med Phys 2020; 47:2072-2084. [PMID: 32040214 DOI: 10.1002/mp.14083] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Spot-scanning proton arc therapy (SPAT) is an emerging modality to improve plan conformality and delivery efficiency. A greedy and heuristic method is proposed in the existing SPAT algorithm to select energy layers and sequence energy switching with gantry rotation, which does not promise optimality in either dosimetry or efficiency. We aim to develop a method to solve the energy layer switching and dosimetry optimization problems in an integrated framework for SPAT. METHODS In an integrated approach, energy layer optimization for spot-scanning proton arc therapy (ELO-SPAT) is formulated with a dose fidelity term, a group sparsity regularization, a log barrier regularization, and an energy sequencing (ES) penalty. The combination of L2,1/2-norm group sparsity regularization and log barrier function allows one energy layer being selected per control point. The ES regularization term sorts the delivery sequence from high energy to low energy to reduce the total energy layer switching time (ELST) and subsequently the total delivery time. Within the ES penalty, the gradient of layer weights between adjacent beams is first calculated along beam direction and then along energy direction. The gradients indicate energy switch patterns between two adjacent beams. The time-wise costly energy switch-up is more heavily penalized in the ES term. This ELO-SPAT method was tested on one frontal base-of-skull (BOS) patient, one chordoma (CHDM) patient with a simultaneous integrated boost, one bilateral head-and-neck (H&N) patient, and one lung (LNG) patient. We compared ELO-SPAT with intensity-modulated proton therapy (IMPT) using discrete beams and SPArc by Ding et al. For the two arc algorithms, both the plans with and without energy sequencing were created and compared. RESULTS Energy layer optimization for spot-scanning proton arc therapy reduced the runtime of optimization by 84% on average compared with the greedy SPArc method. In both the ELO-SPAT plans with and without ES, one energy layer per control point was selected. Without ES regularization, the energy sequence was arbitrary, with around 40-60 switch-up for the tested cases. After adding ES regularization, the number of energy switch-up was reduced to less than 20. Compared with the energy sequenced SPArc plans, the ELO-SPAT plans with ES led to 24% less total ELST for synchrotron plans and 14% less for cyclotron plans. Both the ELO-SPAT and SPArc plans achieved better sparing compared with the IMPT plans for most Organs-at-risks (OARs), with or without ES. Without ES, the ELO-SPAT plans achieved further improvement of the OARs compared with the SPArc plans, with an averaged reduction of OAR [Dmean, Dmax] by [1.57, 3.34] GyRBE. Adding the ES regularization degraded the plan quality, but the ELO-SPAT plans still had comparable or slightly better sparing than the SPArc plans with ES, with an averaged reduction of OAR [Dmean, Dmax] by [1.42, 2.34] GyRBE. CONCLUSION We developed a computationally efficient spot-scanning proton arc optimization method, which solved energy layer selection and sequencing in an integrated framework, generating plans with good dosimetry and high delivery efficiency.
Collapse
Affiliation(s)
- Wenbo Gu
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Dan Ruan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Qihui Lyu
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
19
|
Carabe-Fernandez A, Bertolet-Reina A, Karagounis I, Huynh K, Dale RG. Is there a role for arcing techniques in proton therapy? Br J Radiol 2020; 93:20190469. [PMID: 31860338 PMCID: PMC7066964 DOI: 10.1259/bjr.20190469] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Proton arc therapy (PAT) has been proposed as a possible evolution for proton therapy. This commentary uses dosimetric and cancer risk evaluations from earlier studies to compare PAT with intensity modulated proton therapy. It is concluded that, although PAT may not produce better physical dose distributions than intensity modulated proton therapy, the radiobiological considerations associated with particular PAT techniques could offer the possibility of an increased therapeutic index.
Collapse
Affiliation(s)
| | | | - Ilias Karagounis
- Department
of Radiation Oncology, University of Pennsylvania,
Philadelphia, USA
| | - Kiet Huynh
- Department
of Radiation Oncology, University of Pennsylvania,
Philadelphia, USA
| | - Roger G Dale
- Department
of Surgery and Cancer, Faculty of Medicine, Imperial College,
London, UK
| |
Collapse
|
20
|
Sánchez‐Parcerisa D, López‐Aguirre M, Dolcet Llerena A, Udías JM. MultiRBE: Treatment planning for protons with selective radiobiological effectiveness. Med Phys 2019; 46:4276-4284. [DOI: 10.1002/mp.13718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniel Sánchez‐Parcerisa
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| | - Miguel López‐Aguirre
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| | | | - José Manuel Udías
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| |
Collapse
|
21
|
Underwood TS, McMahon SJ. Proton relative biological effectiveness (RBE): a multiscale problem. Br J Radiol 2018; 92:20180004. [PMID: 29975153 DOI: 10.1259/bjr.20180004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proton radiotherapy is undergoing rapid expansion both within the UK and internationally, but significant challenges still need to be overcome if maximum benefit is to be realised from this technique. One major limitation is the persistent uncertainty in proton relative biological effectiveness (RBE). While RBE values are needed to link proton radiotherapy to our existing experience with photon radiotherapy, RBE remains poorly understood and is typically incorporated as a constant dose scaling factor of 1.1 in clinical plans. This is in contrast to extensive experimental evidence indicating that RBE is a function of dose, tissue type, and proton linear energy transfer, among other parameters. In this article, we discuss the challenges associated with obtaining clinically relevant values for proton RBE through commonly-used assays, and highlight the wide range of other experimental end points which can inform our understanding of RBE. We propose that accurate and robust optimization of proton radiotherapy ultimately requires a multiscale understanding of RBE, integrating subcellular, cellular, and patient-level processes.
Collapse
Affiliation(s)
- Tracy Sa Underwood
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Stephen J McMahon
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
22
|
Sanchez-Parcerisa D, Udías J. Teaching treatment planning for protons with educational open-source software: experience with FoCa and matRad. J Appl Clin Med Phys 2018; 19:302-306. [PMID: 29754467 PMCID: PMC6036366 DOI: 10.1002/acm2.12326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/18/2017] [Accepted: 03/08/2018] [Indexed: 11/15/2022] Open
Abstract
Open‐source, MATLAB‐based treatment planning systems FoCa and matRAD were used in a pilot project for training prospective medical physicists and postgraduate physics students in treatment planning and beam modeling techniques for proton therapy. In the four exercises designed, students learnt how proton pencil beams are modeled and how dose is calculated in three‐dimensional voxelized geometries, how pencil beam scanning plans (PBS) are constructed, the rationale behind the choice of spot spacing in patient plans, and the dosimetric differences between photon IMRT and proton PBS plans. Sixty students of two courses participated in the pilot project, with over 90% of satisfactory rating from student surveys. The pilot experience will certainly be continued.
Collapse
Affiliation(s)
- Daniel Sanchez-Parcerisa
- Grupo de Física Nuclear, Departamento de Estructura de la Materia, Física Térmica y Electrónica & UPARCOS, Universidad Complutense de Madrid & CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Jose Udías
- Grupo de Física Nuclear, Departamento de Estructura de la Materia, Física Térmica y Electrónica & UPARCOS, Universidad Complutense de Madrid & CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|