1
|
Maiya R, Dey S, Ray K, Menon GI. The interplay of active and passive mechanisms in slow axonal transport. Biophys J 2023; 122:333-345. [PMID: 36502274 PMCID: PMC9892612 DOI: 10.1016/j.bpj.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/24/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A combination of intermittent active movement of transient aggregates and a paused state that intervenes between periods of active transport has been proposed to underlie the slow, directed transport of soluble proteins in axons. A component of passive diffusion in the axoplasm may also contribute to slow axonal transport, although quantitative estimates of the relative contributions of diffusive and active movement in the slow transport of a soluble protein, and in particular how they might vary across developmental stages, are lacking. Here, we propose and study a model for slow axonal transport, addressing data from bleach recovery measurements on a small, soluble, protein, choline acetyltransferase, in thin axons of the lateral chordotonal (lch5) sensory neurons of Drosophila. Choline acetyltransferase is mainly present in soluble form in the axon and catalyzes the acetylation of choline at the synapse. It does not form particulate structures in axons and moves at rates characteristic of slow component b (≈ 1-10 mm/day or 0.01-0.1 μm/s). Using our model, which incorporates active transport with paused and/or diffusive states, we predict bleach recovery, transport rates, and cargo trajectories obtained through kymographs, comparing these with experimental observations at different developmental stages. We show that changes in the diffusive fraction of cargo during these developmental stages dominate bleach recovery and that a combination of active motion with a paused state alone cannot reproduce the data. We compared predictions of the model with results from photoactivation experiments. The importance of the diffusive state in reproducing the bleach recovery signal in the slow axonal transport of small soluble proteins is our central result.
Collapse
Affiliation(s)
- Reshma Maiya
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Swagata Dey
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, India; Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Krishanu Ray
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, India; Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India.
| | - Gautam I Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Department of Physics, Ashoka University, Sonepat, India; Department of Biology, Ashoka University, Sonepat, India.
| |
Collapse
|
2
|
Dauloudet O, Neri I, Walter JC, Dorignac J, Geniet F, Parmeggiani A. Modelling the effect of ribosome mobility on the rate of protein synthesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:19. [PMID: 33686567 PMCID: PMC7940305 DOI: 10.1140/epje/s10189-021-00019-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Translation is one of the main steps in the synthesis of proteins. It consists of ribosomes that translate sequences of nucleotides encoded on mRNA into polypeptide sequences of amino acids. Ribosomes bound to mRNA move unidirectionally, while unbound ribosomes diffuse in the cytoplasm. It has been hypothesized that finite diffusion of ribosomes plays an important role in ribosome recycling and that mRNA circularization enhances the efficiency of translation, see e.g. Lodish et al. (Molecular cell biology, 8th edn, W.H. Freeman and Company, San Francisco, 2016). In order to estimate the effect of cytoplasmic diffusion on the rate of translation, we consider a totally asymmetric simple exclusion process coupled to a finite diffusive reservoir, which we call the ribosome transport model with diffusion. In this model, we derive an analytical expression for the rate of protein synthesis as a function of the diffusion constant of ribosomes, which is corroborated with results from continuous-time Monte Carlo simulations. Using a wide range of biological relevant parameters, we conclude that diffusion is not a rate limiting factor in translation initiation because diffusion is fast enough in biological cells.
Collapse
Affiliation(s)
- Olivier Dauloudet
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
- Laboratory of Parasite Host Interactions (LPHI), CNRS, Montpellier University, Montpellier, France
| | - Izaak Neri
- Department of Mathematics, King’s College London, Strand, London, WC2R 2LS UK
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Frédéric Geniet
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
- Laboratory of Parasite Host Interactions (LPHI), CNRS, Montpellier University, Montpellier, France
| |
Collapse
|
3
|
Ryan SD, McCarthy Z, Potomkin M. Motor Protein Transport Along Inhomogeneous Microtubules. Bull Math Biol 2021; 83:9. [PMID: 33415532 DOI: 10.1007/s11538-020-00838-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/19/2020] [Indexed: 11/27/2022]
Abstract
Many cellular processes rely on the cell's ability to transport material to and from the nucleus. Networks consisting of many microtubules and actin filaments are key to this transport. Recently, the inhibition of intracellular transport has been implicated in neurodegenerative diseases such as Alzheimer's disease and Amyotrophic Lateral Sclerosis. Furthermore, microtubules may contain so-called defective regions where motor protein velocity is reduced due to accumulation of other motors and microtubule-associated proteins. In this work, we propose a new mathematical model describing the motion of motor proteins on microtubules which incorporate a defective region. We take a mean-field approach derived from a first principle lattice model to study motor protein dynamics and density profiles. In particular, given a set of model parameters we obtain a closed-form expression for the equilibrium density profile along a given microtubule. We then verify the analytic results using mathematical analysis on the discrete model and Monte Carlo simulations. This work will contribute to the fundamental understanding of inhomogeneous microtubules providing insight into microscopic interactions that may result in the onset of neurodegenerative diseases. Our results for inhomogeneous microtubules are consistent with prior work studying the homogeneous case.
Collapse
Affiliation(s)
- S D Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, 44115, USA
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, OH, 44115, USA
| | - Z McCarthy
- Department of Mathematics and Statistics, York University, Toronto, ON, Canada
- Laboratory for Industrial and Applied Mathematics, Toronto, ON, Canada
- Centre for Disease Modelling, York University, Toronto, ON, Canada
- Fields-CQAM Mathematics for Public Health Laboratory, Toronto, ON, Canada
| | - M Potomkin
- Department of Mathematics, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
4
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
5
|
Richard M, Blanch-Mercader C, Ennomani H, Cao W, De La Cruz EM, Joanny JF, Jülicher F, Blanchoin L, Martin P. Active cargo positioning in antiparallel transport networks. Proc Natl Acad Sci U S A 2019; 116:14835-14842. [PMID: 31289230 PMCID: PMC6660773 DOI: 10.1073/pnas.1900416116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytoskeletal filaments assemble into dense parallel, antiparallel, or disordered networks, providing a complex environment for active cargo transport and positioning by molecular motors. The interplay between the network architecture and intrinsic motor properties clearly affects transport properties but remains poorly understood. Here, by using surface micropatterns of actin polymerization, we investigate stochastic transport properties of colloidal beads in antiparallel networks of overlapping actin filaments. We found that 200-nm beads coated with myosin Va motors displayed directed movements toward positions where the net polarity of the actin network vanished, accumulating there. The bead distribution was dictated by the spatial profiles of local bead velocity and diffusion coefficient, indicating that a diffusion-drift process was at work. Remarkably, beads coated with heavy-mero-myosin II motors showed a similar behavior. However, although velocity gradients were steeper with myosin II, the much larger bead diffusion observed with this motor resulted in less precise positioning. Our observations are well described by a 3-state model, in which active beads locally sense the net polarity of the network by frequently detaching from and reattaching to the filaments. A stochastic sequence of processive runs and diffusive searches results in a biased random walk. The precision of bead positioning is set by the gradient of net actin polarity in the network and by the run length of the cargo in an attached state. Our results unveiled physical rules for cargo transport and positioning in networks of mixed polarity.
Collapse
Affiliation(s)
- Mathieu Richard
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, F-75248 Paris, France
- Sorbonne Université, F-75252 Paris, France
| | - Carles Blanch-Mercader
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, F-75248 Paris, France
- Sorbonne Université, F-75252 Paris, France
| | - Hajer Ennomani
- CytomorphoLab, Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, 38054 Grenoble, France
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Jean-François Joanny
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, F-75248 Paris, France
- Sorbonne Université, F-75252 Paris, France
- ESPCI ParisTech, 75005 Paris, France
- Collège de France, 75231 Paris Cedex 05, France
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Laurent Blanchoin
- CytomorphoLab, Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, 38054 Grenoble, France
- CytomorphoLab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, UMRS1160, INSERM/AP-HP/Université Paris Diderot, 75010 Paris, France
| | - Pascal Martin
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, F-75248 Paris, France;
- Sorbonne Université, F-75252 Paris, France
| |
Collapse
|
6
|
Lai X, Brown A, Xue C. A stochastic model that explains axonal organelle pileups induced by a reduction of molecular motors. J R Soc Interface 2018; 15:rsif.2018.0430. [PMID: 30487237 DOI: 10.1098/rsif.2018.0430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 11/12/2022] Open
Abstract
Nerve cells are critically dependent on the transport of intracellular cargoes, which are moved by motor proteins along microtubule tracks. Impairments in this movement are thought to explain the focal accumulations of axonal cargoes and axonal swellings observed in many neurodegenerative diseases. In some cases, these diseases are caused by mutations that impair motor protein function, and genetic depletion of functional molecular motors has been shown to lead to cargo accumulations in axons. The evolution of these accumulations has been compared to the formation of traffic jams on a highway, but this idea remains largely untested. In this paper, we investigated the underlying mechanism of local axonal cargo accumulation induced by a global reduction of functional molecular motors in axons. We hypothesized that (i) a reduction in motor number leads to a reduction in the number of active motors on each cargo which in turn leads to less persistent movement, more frequent stops and thus shorter runs; (ii) as cargoes stop more frequently, they impede the passage of other cargoes, leading to local 'traffic jams'; and (iii) collisions between moving and stopping cargoes can push stopping cargoes further away from their microtubule tracks, preventing them from reattaching and leading to the evolution of local cargo accumulations. We used a lattice-based stochastic model to test whether this mechanism can lead to the cargo accumulation patterns observed in experiments. Simulation results of the model support the hypothesis and identify key questions that must be tested experimentally.
Collapse
Affiliation(s)
- Xiulan Lai
- Institute for Mathematical Sciences, Renmin University of China, Beijing, People's Republic of China
| | - Anthony Brown
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Chuan Xue
- Department of Mathematics, Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Bojer M, Graf IR, Frey E. Self-organized system-size oscillation of a stochastic lattice-gas model. Phys Rev E 2018; 98:012410. [PMID: 30110755 DOI: 10.1103/physreve.98.012410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 11/07/2022]
Abstract
The totally asymmetric simple exclusion process (TASEP) is a paradigmatic stochastic model for nonequilibrium physics, and has been successfully applied to describe active transport of molecular motors along cytoskeletal filaments. Building on this simple model, we consider a two-lane lattice-gas model that couples directed transport (TASEP) to diffusive motion in a semiclosed geometry, and simultaneously accounts for spontaneous growth and particle-induced shrinkage of the system's size. This particular extension of the TASEP is motivated by the question of how active transport and diffusion might influence length regulation in confined systems. Surprisingly, we find that the size of our intrinsically stochastic system exhibits robust temporal patterns over a broad range of growth rates. More specifically, when particle diffusion is slow relative to the shrinkage dynamics, we observe quasiperiodic changes in length. We provide an intuitive explanation for the occurrence of these self-organized temporal patterns, which is based on the imbalance between the diffusion and shrinkage speed in the confined geometry. Finally, we formulate an effective theory for the oscillatory regime, which explains the origin of the oscillations and correctly predicts the dependence of key quantities, such as the oscillation frequency, on the growth rate.
Collapse
Affiliation(s)
- Mareike Bojer
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany.,Department of Physics, Technische Universität München, D-85748 Garching, Germany
| | - Isabella R Graf
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany
| |
Collapse
|
8
|
Graf IR, Frey E. Generic Transport Mechanisms for Molecular Traffic in Cellular Protrusions. PHYSICAL REVIEW LETTERS 2017; 118:128101. [PMID: 28388182 DOI: 10.1103/physrevlett.118.128101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/07/2023]
Abstract
Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay between active and diffusive transport and mass conservation leads to localized domain walls and tip localization of the motors. We identify a mechanism for task sharing between the active motors (maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate analytically using an exact moment identity, and might prove useful for the understanding of correlations and active transport also in more elaborate systems.
Collapse
Affiliation(s)
- Isabella R Graf
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Germany
| |
Collapse
|
9
|
Pinkoviezky I, Gov NS. Exclusion and Hierarchy of Time Scales Lead to Spatial Segregation of Molecular Motors in Cellular Protrusions. PHYSICAL REVIEW LETTERS 2017; 118:018102. [PMID: 28106430 DOI: 10.1103/physrevlett.118.018102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Molecular motors that carry cargo along biopolymer filaments within cells play a crucial role in the functioning of the cell. In particular, these motors are essential for the formation and maintenance of the cellular protrusions that play key roles in motility and specific functionalities, such as the stereocilia in hair cells. Typically, there are several species of motors, carrying different cargos, that share the same track. Furthermore, it was observed that in the mature stereocilia, the different motors occupy well-segregated bands as a function of distance from the tip. We use a totally asymmetric exclusion process model with two- and three-motor species, to study the conditions that give rise to such spatial patterns. We find that the well-segregated bands appear for motors with a strong hierarchy of attachment or detachment rates. This is a striking example of pattern formation in nonequilibrium, low-dimensional systems.
Collapse
Affiliation(s)
- I Pinkoviezky
- Department of Chemical Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | - N S Gov
- Department of Chemical Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| |
Collapse
|
10
|
Ciandrini L, Neri I, Walter JC, Dauloudet O, Parmeggiani A. Motor protein traffic regulation by supply-demand balance of resources. Phys Biol 2014; 11:056006. [PMID: 25204752 DOI: 10.1088/1478-3975/11/5/056006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In cells and in in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow chamber) and hence compete for recruiting the available motors, potentially depleting the reservoir and affecting cytoskeletal transport. In this work we provide a theoretical framework in which to study, analytically and numerically, how motor density profiles and crowding along cytoskeletal filaments depend on the competition of motors for their binding sites. We propose two models in which finite processive motor proteins actively advance along cytoskeletal filaments and are continuously exchanged with the motor pool. We first look at homogeneous reservoirs and then examine the effects of free motor diffusion in the surrounding medium. We consider as a reference situation recent in vitro experimental setups of kinesin-8 motors binding and moving along microtubule filaments in a flow chamber. We investigate how the crowding of linear motor proteins moving on a filament can be regulated by the balance between supply (concentration of motor proteins in the flow chamber) and demand (total number of polymerized tubulin heterodimers). We present analytical results for the density profiles of bound motors and the reservoir depletion, and propose novel phase diagrams that present the formation of jams of motor proteins on the filament as a function of two tuneable experimental parameters: the motor protein concentration and the concentration of tubulins polymerized into cytoskeletal filaments. Extensive numerical simulations corroborate the analytical results for parameters in the experimental range and also address the effects of diffusion of motor proteins in the reservoir. We then propose experiments for validating our models and discuss how the 'supply-demand' effects can regulate motor traffic also in in vivo conditions.
Collapse
Affiliation(s)
- Luca Ciandrini
- DIMNP UMR 5235 & CNRS, Université Montpellier 2, F-34095, Montpellier, France. Laboratoire Charles Coulomb UMR 5221 & CNRS, Université Montpellier 2, F-34095, Montpellier, France
| | | | | | | | | |
Collapse
|
11
|
Pinkoviezky I, Gov NS. Traffic jams and shocks of molecular motors inside cellular protrusions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052703. [PMID: 25353825 DOI: 10.1103/physreve.89.052703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 06/04/2023]
Abstract
Molecular motors are involved in key transport processes inside actin-based cellular protrusions. The motors carry cargo proteins to the protrusion tip which participate in regulating the actin polymerization and play a key role in facilitating the growth and formation of such protrusions. It is observed that the motors accumulate at the tips of cellular protrusions and form aggregates that are found to drift towards the protrusion base at the rate of actin treadmilling. We present a one-dimensional driven lattice model, where motors become inactive after delivering their cargo at the tip, or by loosing their cargo to a cargoless neighbor. The results suggest that the experimental observations may be explained by the formation of traffic jams that form at the tip. The model is solved using a novel application of mean-field and shock analysis. We find a new class of shocks that undergo intermittent collapses. Extensions with attachment and detachment events and relevance to experiments are briefly described.
Collapse
Affiliation(s)
- I Pinkoviezky
- Department of Chemical Physics, Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel
| | - N S Gov
- Department of Chemical Physics, Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel
| |
Collapse
|
12
|
Zhuravlev PI, Lan Y, Minakova MS, Papoian GA. Theory of active transport in filopodia and stereocilia. Proc Natl Acad Sci U S A 2012; 109:10849-54. [PMID: 22711803 PMCID: PMC3390872 DOI: 10.1073/pnas.1200160109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological processes in elongated organelles of living cells are often regulated by molecular motor transport. We determined spatial distributions of motors in such organelles, corresponding to a basic scenario when motors only walk along the substrate, bind, unbind, and diffuse. We developed a mean-field model, which quantitatively reproduces elaborate stochastic simulation results as well as provides a physical interpretation of experimentally observed distributions of Myosin IIIa in stereocilia and filopodia. The mean-field model showed that the jamming of the walking motors is conspicuous, and therefore damps the active motor flux. However, when the motor distributions are coupled to the delivery of actin monomers toward the tip, even the concentration bump of G actin that they create before they jam is enough to speed up the diffusion to allow for severalfold longer filopodia. We found that the concentration profile of G actin along the filopodium is rather nontrivial, containing a narrow minimum near the base followed by a broad maximum. For efficient enough actin transport, this nonmonotonous shape is expected to occur under a broad set of conditions. We also find that the stationary motor distribution is universal for the given set of model parameters regardless of the organelle length, which follows from the form of the kinetic equations and the boundary conditions.
Collapse
Affiliation(s)
- Pavel I. Zhuravlev
- Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
| | - Yueheng Lan
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Maria S. Minakova
- Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
| | - Garegin A. Papoian
- Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
| |
Collapse
|
13
|
Muñoz-Gutiérrez E, Alvarez-Ramirez J, Dagdug L, Espinosa-Paredes G. Diffusion in one-dimensional channels with zero-mean time-periodic tilting forces. J Chem Phys 2012; 136:114103. [DOI: 10.1063/1.3693332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
LIPOWSKY REINHARD, BEEG JANINA, DIMOVA RUMIANA, KLUMPP STEFAN, LIEPELT STEFFEN, MÜLLER MELANIEJI, VALLERIANI ANGELO. ACTIVE BIO-SYSTEMS: FROM SINGLE MOTOR MOLECULES TO COOPERATIVE CARGO TRANSPORT. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048009000946] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Living cells contain a large number of molecular motors that convert the chemical energy released from nucleotide hydrolysis into mechanical work. This review focusses on stepping motors that move along cytoskeletal filaments. The behavior of these motors involves three distinct nonequilibrium processes that cover a wide range of length and time scales: (i) Directed stepping of single motors bound to a filament; (ii) Composite motor walks of single motors consisting of directed stepping interrupted by diffusive motion; and (iii) Cooperative transport by teams of several motors. On the molecular scale, the energy conversion of these motors leads to single steps along the filaments with a step size of about 10 nm. The corresponding chemomechanical coupling is governed by several distinct motor cycles, which represent the dominant pathways for different values of nucleotide concentrations and load force. For the kinesin motor, the competition of two such cycles determines the stall force, at which the motor velocity vanishes and the motor reverses the direction of its motion. Because of thermal noise, the stepping motors unbind from the filaments after a certain run time and run length. For kinesin, the run time is about 1 s and the run length is about 1 μm for high ATP concentration and low load force. On length scales that are large compared to the run length, a single motor undergoes composite walks consisting of directed stepping interrupted by diffusive motion. The relative importance of bound and unbound motor states depends on the binding and unbinding rates of the motors. The effective transport velocity and diffusion coefficient of the motors are determined by the geometry of the compartments, in which the motors move. The effective diffusion coefficient can be enhanced by several orders of magnitude if the motors undergo active diffusion by interacting with certain filament patterns. In vivo, stepping motors are responsible for the transport of vesicles and other types of intracellular cargo particles that shuttle between the different cell compartments. This cargo transport is usually performed by teams of motors. If all motors belong to the same molecular species, the cooperative action of the motors leads to uni-directional transport with a strongly increased run length and to a characteristic force dependence of the velocity distributions. If two antagonistic species of motors pull on the cargo, they perform a stochastic tug-of-war, which is characterized by a subtle force balance between the two motor teams and leads to seven distinct patterns of uni- and bi-directional transport. So far, all experimental observations on bi-directional transport are consistent with such a tug-of-war. Finally, the traffic of interacting motors is also briefly discussed. Depending on their mutual interactions and the compartment geometry, the motors form various spatio-temporal patterns such as traffic jams, and undergo nonequilibrium phase transitions between such transport patterns.
Collapse
Affiliation(s)
- REINHARD LIPOWSKY
- Department of Theory & Bio-Systems, MPI of Colloids and Interfaces, Science Park, 14424 Potsdam, Germany
| | - JANINA BEEG
- Department of Theory & Bio-Systems, MPI of Colloids and Interfaces, Science Park, 14424 Potsdam, Germany
| | - RUMIANA DIMOVA
- Department of Theory & Bio-Systems, MPI of Colloids and Interfaces, Science Park, 14424 Potsdam, Germany
| | - STEFAN KLUMPP
- Department of Theory & Bio-Systems, MPI of Colloids and Interfaces, Science Park, 14424 Potsdam, Germany
| | - STEFFEN LIEPELT
- Department of Theory & Bio-Systems, MPI of Colloids and Interfaces, Science Park, 14424 Potsdam, Germany
| | - MELANIE J. I. MÜLLER
- Department of Theory & Bio-Systems, MPI of Colloids and Interfaces, Science Park, 14424 Potsdam, Germany
| | - ANGELO VALLERIANI
- Department of Theory & Bio-Systems, MPI of Colloids and Interfaces, Science Park, 14424 Potsdam, Germany
| |
Collapse
|
15
|
Ashwin P, Lin C, Steinberg G. Queueing induced by bidirectional motor motion near the end of a microtubule. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:051907. [PMID: 21230500 DOI: 10.1103/physreve.82.051907] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 05/15/2023]
Abstract
Recent live observations of motors in long-range microtubule (MT) dependent transport in the fungus Ustilago maydis have reported bidirectional motion of dynein and an accumulation of the motors at the polymerization-active (the plus-end) of the microtubule. Quantitative data derived from in vivo observation of dynein has enabled us to develop an accurate, quantitatively-valid asymmetric simple exclusion process (ASEP) model that describes the coordinated motion of anterograde and retrograde motors sharing a single oriented microtubule. We give approximate expressions for the size and distribution of the accumulation, and discuss queueing properties for motors entering this accumulation. We show for this ASEP model, that the mean accumulation can be modeled as an M/M/∞ queue that is Poisson distributed with mean F(arr)/p(d), where F(arr) is the flux of motors that arrives at the tip and p(d) is the rate at which individual motors change direction from anterograde to retrograde motion. Deviations from this can in principle be used to gain information about other processes at work in the accumulation. Furthermore, our work is a significant step toward a mathematical description of the complex interactions of motors in cellular long-range transport of organelles.
Collapse
Affiliation(s)
- Peter Ashwin
- Mathematics Research Institute, University of Exeter, Exeter, Devon EX4 4QF, United Kingdom
| | | | | |
Collapse
|
16
|
Grzeschik H, Harris RJ, Santen L. Traffic of cytoskeletal motors with disordered attachment rates. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031929. [PMID: 20365792 DOI: 10.1103/physreve.81.031929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Indexed: 05/29/2023]
Abstract
Motivated by experimental results on the interplay between molecular motors and tau proteins, we extend lattice-based models of intracellular transport to include a second species of particle which locally influences the motor-filament attachment rate. We consider various exactly solvable limits of a stochastic multiparticle model before focusing on the low-motor-density regime. Here, an approximate treatment based on the random-walk behavior of single motors gives good quantitative agreement with simulation results for the tau dependence of the motor current. Finally, we discuss the possible physiological implications of our results.
Collapse
Affiliation(s)
- H Grzeschik
- Fachrichtung Theoretische Physik, Universität des Saarlandes, 66041 Saarbrücken, Germany.
| | | | | |
Collapse
|
17
|
Nowak SA, Fok PW, Chou T. Dynamic boundaries in asymmetric exclusion processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:031135. [PMID: 17930227 DOI: 10.1103/physreve.76.031135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Indexed: 05/25/2023]
Abstract
We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and a fluctuating wall. At the left-hand boundary, particles are injected onto the lattice; from there, the particles hop to the right. Along the lattice, particles can adsorb or desorb, and the right-hand boundary is defined by a wall particle. The confining wall particle has intrinsic forward and backward hopping, a net leftward drift, and cannot desorb. Performing Monte Carlo simulations and using a moving-frame finite segment approach coupled to mean field theory, we find the parameter regimes in which the wall acquires a steady-state position. In other regimes, the wall will either drift to the left and fall off the lattice at the injection site, or drift indefinitely to the right. Our results are discussed in the context of nonequilibrium phases of the system, fluctuating boundary layers, and particle densities in the laboratory frame versus the frame of the fluctuating wall.
Collapse
Affiliation(s)
- Sarah A Nowak
- Department of Biomathematics, UCLA, Los Angeles, California 90095-1766, USA
| | | | | |
Collapse
|
18
|
Juhász R. Weakly coupled, antiparallel, totally asymmetric simple exclusion processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:021117. [PMID: 17930016 DOI: 10.1103/physreve.76.021117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/03/2007] [Indexed: 05/25/2023]
Abstract
We study a system composed of two parallel totally asymmetric simple exclusion processes with open boundaries, where the particles move in the two lanes in opposite directions and are allowed to jump to the other lane with rates inversely proportional to the length of the system. Stationary density profiles are determined and the phase diagram of the model is constructed in the hydrodynamic limit, by solving the differential equations describing the steady state of the system, analytically for vanishing total current and numerically for nonzero total current. The system possesses phases with a localized shock in the density profile in one of the lanes, similarly to exclusion processes endowed with nonconserving kinetics in the bulk. Besides, the system undergoes a discontinuous phase transition, where coherently moving delocalized shocks emerge in both lanes and the fluctuation of the global density is described by an unbiased random walk. This phenomenon is analogous to the phase coexistence observed at the coexistence line of the totally asymmetric simple exclusion process, however, as a consequence of the interaction between lanes, the density profiles are deformed and in the case of asymmetric lane change, the motion of the shocks is confined to a limited domain.
Collapse
Affiliation(s)
- Róbert Juhász
- Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary.
| |
Collapse
|
19
|
Bleil S, Reimann P, Bechinger C. Directing Brownian motion by oscillating barriers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:031117. [PMID: 17500678 DOI: 10.1103/physreve.75.031117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Indexed: 05/15/2023]
Abstract
We consider the Brownian motion of a colloidal particle in a symmetric, periodic potential, whose potential barriers are subjected to temporal oscillations. Experimentally, the potential is generated by two arrays of trapped, negatively charged particles whose positions are periodically modulated with light forces. This results in a structured channel geometry of locally variable width. If all potential barriers are oscillating in synchrony, a resonance-like peak of the effective diffusion coefficient upon variation of the oscillation period is observed. For asynchronously oscillating barriers, the particle can be steered with great reliability into one or the other direction by properly choosing the oscillation periods of the different barriers along the channel.
Collapse
Affiliation(s)
- S Bleil
- 2. Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany
| | | | | |
Collapse
|