1
|
Loos PF, Giarrusso S. Excited-state-specific Kohn-Sham formalism for the asymmetric Hubbard dimer. J Chem Phys 2025; 162:144104. [PMID: 40197591 DOI: 10.1063/5.0255324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Building on our recent study [Giarrusso and Loos, J. Phys. Chem. Lett. 14, 8780 (2023)], we explore the generalization of the ground-state Kohn-Sham (KS) formalism of density-functional theory (DFT) to the (singlet) excited states of the asymmetric Hubbard dimer at half-filling. While we found that the KS-DFT framework can be straightforwardly generalized to the highest-lying doubly excited state, the treatment of the first excited state presents significant challenges. In particular, using a density-fixed adiabatic connection, we show that the density of the first excited state lacks non-interacting v-representability. However, by employing an analytic continuation of the adiabatic path, we demonstrate that the density of the first excited state can be generated by a complex-valued external potential in the non-interacting case. More practically, by performing state-specific KS calculations with exact and approximate correlation functionals-each state possessing a distinct correlation functional-we observe that spurious stationary solutions of the KS equations may arise due to the approximate nature of the functional.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sara Giarrusso
- Institut de Chimie Physique (UMR 8000), Université Paris-Saclay, CNRS, Paris, France
| |
Collapse
|
2
|
Crisostomo S, Gross EKU, Burke K. Exchange-Correlation Energy from Green's Functions. PHYSICAL REVIEW LETTERS 2024; 133:086401. [PMID: 39241721 DOI: 10.1103/physrevlett.133.086401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/10/2024] [Indexed: 09/09/2024]
Abstract
Density-functional theory (DFT) calculations yield useful ground-state energies and densities, while Green's function techniques (such as GW) are mostly used to produce spectral functions. From the Galitskii-Migdal formula, we extract the exchange correlation of DFT directly from a Green's function. This spectral representation provides an alternative to the fluctuation-dissipation theorem of DFT, identifying distinct single-particle and many-particle contributions. Results are illustrated on the uniform electron gas and the two-site Hubbard model.
Collapse
|
3
|
Cernatic F, Fromager E. Extended N-centered ensemble density functional theory of double electronic excitations. J Comput Chem 2024; 45:1945-1962. [PMID: 38700389 DOI: 10.1002/jcc.27387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
A recent work (arXiv:2401.04685) has merged N-centered ensembles of neutral and charged electronic ground states with ensembles of neutral ground and excited states, thus providing a general and in-principle exact (so-called extended N-centered) ensemble density functional theory of neutral and charged electronic excitations. This formalism made it possible to revisit the concept of density-functional derivative discontinuity, in the particular case of single excitations from the highest occupied Kohn-Sham (KS) molecular orbital, without invoking the usual "asymptotic behavior of the density" argument. In this work, we address a broader class of excitations, with a particular focus on double excitations. An exact implementation of the theory is presented for the two-electron Hubbard dimer model. A thorough comparison of the true physical ground- and excited-state electronic structures with that of the fictitious ensemble density-functional KS system is also presented. Depending on the choice of the density-functional ensemble as well as the asymmetry of the dimer and the correlation strength, an inversion of states can be observed. In some other cases, the strong mixture of KS states within the true physical system makes the assignment "single excitation" or "double excitation" irrelevant.
Collapse
Affiliation(s)
- Filip Cernatic
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Dajka J. Interference of Particles with Fermionic Internal Degrees of Freedom. ENTROPY (BASEL, SWITZERLAND) 2024; 26:449. [PMID: 38920458 PMCID: PMC11202565 DOI: 10.3390/e26060449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
The interference of fermionic particles, specifically molecules comprising a small number of fermions, in a Mach-Zehnder interferometer is being investigated under the influence of both classical and non-classical external controls. The aim is to identify control strategies that can elucidate the relationship between the interference pattern and the characteristics of internal fermion-fermion interactions.
Collapse
Affiliation(s)
- Jerzy Dajka
- Institute of Physics, University of Silesia in Katowice, 40-007 Katowice, Poland;
- The Professor Tadeusz Widła Interdisciplinary Research Centre for Forensic Science and Legislation, University of Silesia in Katowice, 40-007 Katowice, Poland
| |
Collapse
|
5
|
El-Sahili A, Sottile F, Reining L. Total Energy beyond GW: Exact Results and Guidelines for Approximations. J Chem Theory Comput 2024; 20:1972-1987. [PMID: 38324673 DOI: 10.1021/acs.jctc.3c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The total energy and electron addition and removal spectra can, in principle, be obtained exactly from the one-body Green's function (GF). In practice, the GF is obtained from an approximate self-energy. In the framework of many-body perturbation theory, we derive different expressions that are based on an approximate self-energy, but that yield nevertheless, in principle, the exact exchange-correlation contribution to the total energy for any interaction strength. Response functions play a crucial role, which explains why, for example, ingredients from time-dependent density functional theory can be used to build these approximate self-energies. We show that the key requirement for obtaining exact results is the consistent combination of ingredients. Also when further approximations are made, as it is necessary in practice, this consistency remains the key to obtain good results. All findings are illustrated using the exactly solvable symmetric Hubbard dimer.
Collapse
Affiliation(s)
- Abdallah El-Sahili
- LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau F-91120, France
- European Theoretical Spectroscopy Facility (ETSF), https://www.etsf.eu/
| | - Francesco Sottile
- LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau F-91120, France
- European Theoretical Spectroscopy Facility (ETSF), https://www.etsf.eu/
| | - Lucia Reining
- LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau F-91120, France
- European Theoretical Spectroscopy Facility (ETSF), https://www.etsf.eu/
| |
Collapse
|
6
|
Sobrino N, Jacob D, Kurth S. What can lattice DFT teach us about real-space DFT? J Chem Phys 2023; 159:154110. [PMID: 37861117 DOI: 10.1063/5.0170312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
In this paper we establish a connection between density functional theory (DFT) for lattice models and common real-space DFT. We consider the lattice DFT description of a two-level model subject to generic interactions in Mermin's DFT formulation in the grand canonical ensemble at finite temperature. The case of only density-density and Hund's rule interaction studied in earlier work is shown to be equivalent to an exact-exchange description of DFT in the real-space picture. In addition, we also include the so-called pair-hopping interaction which can be treated analytically and, crucially, leads to non-integer occupations of the Kohn-Sham (KS) levels even in the limit of zero temperature. Treating the hydrogen molecule in a minimal basis is shown to be equivalent to our two-level lattice DFT model. By means of the fractional occupations of the KS orbitals (which, in this case, are identical to the many-body ones) we reproduce the results of full configuration interaction, even in the dissociation limit and without breaking the spin symmetry. Beyond the minimal basis, we embed our HOMO-LUMO model into a standard DFT calculation and, again, obtain results in overall good agreement with exact ones without the need of breaking the spin symmetry.
Collapse
Affiliation(s)
- Nahual Sobrino
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco UPV/EHU, Avenida Tolosa 72, E-20018 San Sebastián, Spain
| | - David Jacob
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco UPV/EHU, Avenida Tolosa 72, E-20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Stefan Kurth
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco UPV/EHU, Avenida Tolosa 72, E-20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
7
|
Giarrusso S, Loos PF. Exact Excited-State Functionals of the Asymmetric Hubbard Dimer. J Phys Chem Lett 2023; 14:8780-8786. [PMID: 37739406 PMCID: PMC10561271 DOI: 10.1021/acs.jpclett.3c02052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
The exact functionals associated with the (singlet) ground state and the two singlet excited states of the asymmetric Hubbard dimer at half-filling are calculated using both Levy's constrained search and Lieb's convex formulation. While the ground-state functional is, as is commonly known, a convex function with respect to the density, the functional associated with the doubly excited state is found to be concave. Also, because the density-potential mapping associated with the first excited state is noninvertible, its "functional" is a partial, multivalued function composed of one concave and one convex branch that correspond to two separate domains of the external potential. Remarkably, it is found that, although the one-to-one mapping between density and external potential may not apply (as in the case of the first excited state), each state-specific energy and corresponding universal functional are "functions" whose derivatives are each other's inverse, just as in the ground state formalism.
Collapse
Affiliation(s)
- Sara Giarrusso
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
8
|
Badrtdinov DI, Rodriguez-Fernandez C, Grzeszczyk M, Qiu Z, Vaklinova K, Huang P, Hampel A, Watanabe K, Taniguchi T, Jiong L, Potemski M, Dreyer CE, Koperski M, Rösner M. Dielectric Environment Sensitivity of Carbon Centers in Hexagonal Boron Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300144. [PMID: 37329196 DOI: 10.1002/smll.202300144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/01/2023] [Indexed: 06/18/2023]
Abstract
A key advantage of utilizing van-der-Waals (vdW) materials as defect-hosting platforms for quantum applications is the controllable proximity of the defect to the surface or the substrate allowing for improved light extraction, enhanced coupling with photonic elements, or more sensitive metrology. However, this aspect results in a significant challenge for defect identification and characterization, as the defect's properties depend on the the atomic environment. This study explores how the environment can influence the properties of carbon impurity centers in hexagonal boron nitride (hBN). It compares the optical and electronic properties of such defects between bulk-like and few-layer films, showing alteration of the zero-phonon line energies and their phonon sidebands, and enhancements of inhomogeneous broadenings. To disentangle the mechanisms responsible for these changes, including the atomic structure, electronic wavefunctions, and dielectric screening, it combines ab initio calculations with a quantum-embedding approach. By studying various carbon-based defects embedded in monolayer and bulk hBN, it demonstrates that the dominant effect of the change in the environment is the screening of density-density Coulomb interactions between the defect orbitals. The comparative analysis of experimental and theoretical findings paves the way for improved identification of defects in low-dimensional materials and the development of atomic scale sensors for dielectric environments.
Collapse
Affiliation(s)
- Danis I Badrtdinov
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525, AJ Nijmegen, Netherlands
| | | | - Magdalena Grzeszczyk
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544
| | - Zhizhan Qiu
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Kristina Vaklinova
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544
| | - Pengru Huang
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Alexander Hampel
- Center for Computational Quantum Physics, Flatiron Institute, 162 5 th Avenue, New York, NY 10010, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Lu Jiong
- Department of Chemistry, National University of Singapore, 117543, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
| | - Marek Potemski
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 Av. des Martyrs, 38042, Grenoble, France
- CENTERA Labs, Institute of High Pressure Physics, PAS PL-01-142, Warsaw, Poland
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland
| | - Cyrus E Dreyer
- Center for Computational Quantum Physics, Flatiron Institute, 162 5 th Avenue, New York, NY 10010, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, 11794-3800, USA
| | - Maciej Koperski
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Malte Rösner
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525, AJ Nijmegen, Netherlands
| |
Collapse
|
9
|
Giarrusso S, Pribram-Jones A. Møller-Plesset and Density-Fixed Adiabatic Connections for a Model Diatomic System at Different Correlation Regimes. J Chem Theory Comput 2023; 19:5835-5850. [PMID: 37642270 DOI: 10.1021/acs.jctc.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In recent years, adiabatic connection (AC) interpolations developed within density functional theory (DFT) have been found to provide good performances in the calculation of interaction energies when used with Hartree-Fock (HF) ingredients. The physical and mathematical reasons for such unanticipated performance have been clarified, to some extent, by studying the strong-interaction limit of the Møller-Plesset (MP) AC. In this work, we calculate both the MP and the DFT AC integrand for the asymmetric Hubbard dimer, which allows for a systematic investigation of different correlation regimes by varying two simple parameters in the Hamiltonian: the external potential, Δv, and the interaction strength, U. Notably, we find that, while the DFT AC integrand appears to be convex in the full parameter space, the MP integrand may change curvature twice. Furthermore, we discuss different aspects of the second-order expansion of the correlation energy in each AC, and we demonstrate why the derivative of the λ-dependent density in the MP AC at λ = 0 (i.e., at the HF density) is zero in the model. Concerning the strong-interaction limit of both ACs in the Hubbard dimer setting, we show that the asymptotic value of the MP AC, W∞HF, is lower than (or equal to) its DFT analogue, W∞KS, if the two are compared at a given density, just like in real space. However, we also show that this is not always the case if the two quantities are compared at a given external potential.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, United States
| | - Aurora Pribram-Jones
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, United States
| |
Collapse
|
10
|
Acke G, Van Hende D, De Vriendt X, Bultinck P. Extending Conceptual Density Functional Theory toward First-Order Reduced Density Matrices: An Open Subsystems Viewpoint on the Fukui Matrix. J Chem Theory Comput 2023; 19:5418-5426. [PMID: 37531218 DOI: 10.1021/acs.jctc.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
As a matrix extension of the Fukui function, a reactivity descriptor grounded within Conceptual Density Functional Theory, the Fukui matrix extends Frontier Molecular Orbital Theory to correlated regimes with its eigendecomposition in Fukui occupations and Fukui naturals. Despite successful applications, the questions remain as to whether replacing a quantity derived from a purely density-based framework by its matrix extension is theoretically well-founded and what chemical information is contained in the corresponding eigendecomposition. In this study, we show that the matrix extension of the Fukui function is only well-defined if one also generalizes the external potential to become nonlocal, leading to the introduction of Conceptual First-Order Reduced Density Matrix Functional Theory. By interpreting the Anderson impurity model from an interacting open subsystem perspective, we show how Fukui occupations and Fukui naturals reflect the influence of an increasing (static) correlation and which characteristic patterns we should expect within a molecular context. This study represents a step in generalizing Conceptual Density Functional Theory beyond its density-based perspective.
Collapse
Affiliation(s)
- Guillaume Acke
- Department of Chemistry - Ghent Quantum Chemistry Group, Ghent University, Krijgslaan 281 (S3), Ghent B-9000, Belgium
| | - Daria Van Hende
- Department of Chemistry - Ghent Quantum Chemistry Group, Ghent University, Krijgslaan 281 (S3), Ghent B-9000, Belgium
| | - Xeno De Vriendt
- Department of Chemistry - Ghent Quantum Chemistry Group, Ghent University, Krijgslaan 281 (S3), Ghent B-9000, Belgium
| | - Patrick Bultinck
- Department of Chemistry - Ghent Quantum Chemistry Group, Ghent University, Krijgslaan 281 (S3), Ghent B-9000, Belgium
| |
Collapse
|
11
|
Orlando R, Romaniello P, Loos PF. Exploring new exchange-correlation kernels in the Bethe–Salpeter equation: A study of the asymmetric Hubbard dimer. ADVANCES IN QUANTUM CHEMISTRY 2023. [DOI: 10.1016/bs.aiq.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Giarrusso S, Pribram-Jones A. Comparing correlation components and approximations in Hartree-Fock and Kohn-Sham theories via an analytical test case study. J Chem Phys 2022; 157:054102. [PMID: 35933215 DOI: 10.1063/5.0097095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The asymmetric Hubbard dimer is a model that allows for explicit expressions of the Hartree-Fock (HF) and Kohn-Sham (KS) states as analytical functions of the external potential, Δv, and of the interaction strength, U. We use this unique circumstance to establish a rigorous comparison between the individual contributions to the correlation energies stemming from the two theories in the {U, Δv} parameter space. Within this analysis of the Hubbard dimer, we observe a change in the sign of the HF kinetic correlation energy, compare the indirect repulsion energies, and derive an expression for the "traditional" correlation energy, i.e., the one that corrects the HF estimate, in a pure site-occupation function theory spirit [Eq. (45)]. Next, we test the performances of the Liu-Burke and the Seidl-Perdew-Levy functionals, which model the correlation energy based on its weak- and strong-interaction limit expansions and can be used for both the traditional and the KS correlation energies. Our results show that, in the Hubbard dimer setting, they typically work better for the HF reference, despite having been originally devised for KS. These conclusions are somewhat in line with prior assessments of these functionals on various chemical datasets. However, the Hubbard dimer model allows us to show the extent of the error that may occur in using the strong-interaction ingredient for the KS reference in place of the one for the HF reference, as has been carried out in most of the prior assessments.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA
| | - Aurora Pribram-Jones
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA
| |
Collapse
|
13
|
De Vriendt X, Van Hende D, De Baerdemacker S, Bultinck P, Acke G. Uncovering phase transitions that underpin the flat-planes in the tilted Hubbard model using subsystems and entanglement measures. J Chem Phys 2022; 156:244115. [DOI: 10.1063/5.0092153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The failure of many approximate electronic structure methods can be traced to their erroneous description of fractional charge and spin redistributions in the asymptotic limit toward infinity, where violations of the flat-plane conditions lead to delocalization and static correlation errors. Although the energetic consequences of the flat-planes are known, the underlying quantum phase transitions that occur when (spin)charge is redistributed have not been characterized. In this study, we use open subsystems to redistribute (spin)charges in the tilted Hubbard model by imposing suitable Lagrange constraints on the Hamiltonian. We computationally recover the flat-plane conditions and quantify the underlying quantum phase transitions using quantum entanglement measures. The resulting entanglement patterns quantify the phase transition that gives rise to the flat-plane conditions and quantify the complexity required to accurately describe charge redistributions in strongly correlated systems. Our study indicates that entanglement patterns can uncover those phase transitions that have to be modeled accurately if the delocalization and static correlation errors of approximate methods are to be reduced.
Collapse
Affiliation(s)
- Xeno De Vriendt
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Gent, Belgium
| | - Daria Van Hende
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Gent, Belgium
| | - Stijn De Baerdemacker
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Patrick Bultinck
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Gent, Belgium
| | - Guillaume Acke
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Gent, Belgium
| |
Collapse
|
14
|
Nonadiabatic Exchange-Correlation Potential for Strongly Correlated Materials in the Weak and Strong Interaction Limits. COMPUTATION 2022. [DOI: 10.3390/computation10050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, nonadiabatic exchange-correlation (XC) potentials for time-dependent density-functional theory (TDDFT) for strongly correlated materials are derived in the limits of strong and weak correlations. After summarizing some essentials of the available dynamical mean-field theory (DMFT) XC potentials valid for these systems, we present details of the Sham–Schluter equation approach that we use to obtain, in principle, an exact XC potential from a many-body theory solution for the nonequilibrium electron self-energy. We derive the XC potentials for the one-band Hubbard model in the limits of weak and strong on-site Coulomb repulsion. To test the accuracy of the obtained potentials, we compare the TDDFT results obtained with these potentials with the corresponding nonequilibrium DMFT solution for the one-band Hubbard model and find that the agreement between the solutions is rather good. We also discuss possible directions to obtain a universal XC potential that would be appropriate for the case of intermediate interaction strengths, i.e., a nonadiabatic potential that can be used to perform TDDFT analysis of nonequilibrium phenomena, such as transport and other ultrafast properties of materials with any strength of electron correlation at any value in the applied perturbing field.
Collapse
|
15
|
North SC, Wilson AK. Ab Initio Composite Approaches for Heavy Element Energetics: Ionization Potentials for the Actinide Series of Elements. J Phys Chem A 2022; 126:3027-3042. [PMID: 35427146 DOI: 10.1021/acs.jpca.2c01007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first, second, and third gas-phase ionization potentials have been determined for the actinide series of elements using an ab initio composite scalar and fully relativistic approach, employing the coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) and Dirac Hartree-Fock (DHF) methods, extrapolated to the complete basis set (CBS) limit. The impact of electron correlation and basis set choice within this framework are examined. Additionally, the first three ionization potentials were obtained using an ab initio heavy element correlation-consistent Composite Approach (here referred to as α-ccCA). This is the first utilization of a ccCA for actinide species.
Collapse
Affiliation(s)
- Sasha C North
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Zawadzki K, Skelt AH, D'Amico I. Approximating quantum thermodynamic properties using DFT. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:274002. [PMID: 35405664 DOI: 10.1088/1361-648x/ac6648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The fabrication, utilisation, and efficiency of quantum technology devices rely on a good understanding of quantum thermodynamic properties. Many-body systems are often used as hardware for these quantum devices, but interactions between particles make the complexity of related calculations grow exponentially with the system size. Here we explore and systematically compare 'simple' and 'hybrid' approximations to the average work and entropy variation built on static density functional theory concepts. These approximations are computationally cheap and could be applied to large systems. We exemplify them considering driven one-dimensional Hubbard chains and show that, for 'simple' approximations and low to medium temperatures, it pays to consider a good estimate of the Kohn-Sham Hamiltonian to approximate the driving Hamiltonian. Our results confirm that a 'hybrid' approach, requiring a very good approximation of the initial and, for the entropy, final states of the system, provides great improvements. This approach should be particularly efficient when many-body effects are not increased by the driving Hamiltonian.
Collapse
Affiliation(s)
- K Zawadzki
- ICTP South American Institute for Fundamental Research, IFT-UNESP, São Paulo CEP: 01140-070, Brazil
| | - A H Skelt
- Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - I D'Amico
- Department of Physics, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
17
|
Everhart LM, Derteano JA, Bates JE. Tension between predicting accurate ground state correlation energies and excitation energies from adiabatic approximations in TDDFT. J Chem Phys 2022; 156:084116. [DOI: 10.1063/5.0080382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The connection between the adiabatic excitation energy of time-dependent density functional theory and the ground state correlation energy from the adiabatic connection fluctuation–dissipation theorem (ACFDT) is explored in the limiting case of one excited state. An exact expression is derived for any adiabatic Hartree-exchange–correlation kernel that connects the excitation energy and the potential contribution to correlation. The resulting formula is applied to the asymmetric Hubbard dimer, a system where this limit is exact. Results from a hierarchy of approximations to the kernel, including the random phase approximation (RPA) with and without exchange and the adiabatically exact (AE) approximation, are compared to the exact ones. At full coupling, the numerical results indicate a tension between predicting an accurate excitation energy and an accurate potential contribution to correlation. The AE approximation is capable of making accurate predictions of both quantities, but only in parts of the parameter space that classify as weakly correlated, while RPA tends to be unable to accurately predict these properties simultaneously anywhere. For a strongly correlated dimer, the AE approximation greatly overestimates the excitation energy yet continues to yield an accurate ground state correlation energy due to its accurate prediction of the adiabatic connection integrand. If similar trends hold for real systems, the development of correlation kernels will be important for applications of the ACFDT in systems with large potential contributions to correlation.
Collapse
Affiliation(s)
- Lucas M. Everhart
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28607, USA
| | - Julio A. Derteano
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28607, USA
| | - Jefferson E. Bates
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28607, USA
| |
Collapse
|
18
|
Abstract
The principles of density-functional theory are studied for finite lattice systems represented by graphs. Surprisingly, the fundamental Hohenberg-Kohn theorem is found void, in general, while many insights into the topological structure of the density-potential mapping can be won. We give precise conditions for a ground state to be uniquely v-representable and are able to prove that this property holds for almost all densities. A set of examples illustrates the theory and demonstrates the non-convexity of the pure-state constrained-search functional.
Collapse
Affiliation(s)
- Markus Penz
- Department of Mathematics, University of Innsbruck, Innsbruck, Austria
| | - Robert van Leeuwen
- Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
19
|
Ensemble Density Functional Theory of Neutral and Charged Excitations : Exact Formulations, Standard Approximations, and Open Questions. Top Curr Chem (Cham) 2021; 380:4. [PMID: 34825294 DOI: 10.1007/s41061-021-00359-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Recent progress in the field of (time-independent) ensemble density-functional theory (DFT) for excited states are reviewed. Both Gross-Oliveira-Kohn (GOK) and N-centered ensemble formalisms, which are mathematically very similar and allow for an in-principle-exact description of neutral and charged electronic excitations, respectively, are discussed. Key exact results, for example, the equivalence between the infamous derivative discontinuity problem and the description of weight dependencies in the ensemble exchange-correlation density functional, are highlighted. The variational evaluation of orbital-dependent ensemble Hartree-exchange (Hx) energies is discussed in detail. We show in passing that state-averaging individual exact Hx energies can lead to severe (although solvable) v-representability issues. Finally, we explore the possibility of using the concept of density-driven correlation, which has been introduced recently and does not exist in regular ground-state DFT, for improving state-of-the-art correlation density-functional approximations for ensembles. The present review reflects the efforts of a growing community to turn ensemble DFT into a rigorous and reliable low-cost computational method for excited states. We hope that, in the near future, this contribution will stimulate new formal and practical developments in the field.
Collapse
|
20
|
Di Sabatino S, Loos PF, Romaniello P. Scrutinizing GW-Based Methods Using the Hubbard Dimer. Front Chem 2021; 9:751054. [PMID: 34778206 PMCID: PMC8586429 DOI: 10.3389/fchem.2021.751054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
Using the simple (symmetric) Hubbard dimer, we analyze some important features of the GW approximation. We show that the problem of the existence of multiple quasiparticle solutions in the (perturbative) one-shot GW method and its partially self-consistent version is solved by full self-consistency. We also analyze the neutral excitation spectrum using the Bethe-Salpeter equation (BSE) formalism within the standard GW approximation and find, in particular, that 1) some neutral excitation energies become complex when the electron-electron interaction U increases, which can be traced back to the approximate nature of the GW quasiparticle energies; 2) the BSE formalism yields accurate correlation energies over a wide range of U when the trace (or plasmon) formula is employed; 3) the trace formula is sensitive to the occurrence of complex excitation energies (especially singlet), while the expression obtained from the adiabatic-connection fluctuation-dissipation theorem (ACFDT) is more stable (yet less accurate); 4) the trace formula has the correct behavior for weak (i.e., small U) interaction, unlike the ACFDT expression.
Collapse
Affiliation(s)
- S. Di Sabatino
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS and ETSF, Toulouse, France
| | - P.-F. Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - P. Romaniello
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS and ETSF, Toulouse, France
| |
Collapse
|
21
|
Marie A, Burton HGA, Loos PF. Perturbation theory in the complex plane: exceptional points and where to find them. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:283001. [PMID: 33601362 DOI: 10.1088/1361-648x/abe795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 05/24/2023]
Abstract
We explore the non-Hermitian extension of quantum chemistry in the complex plane and its link with perturbation theory. We observe that the physics of a quantum system is intimately connected to the position of complex-valued energy singularities, known as exceptional points. After presenting the fundamental concepts of non-Hermitian quantum chemistry in the complex plane, including the mean-field Hartree-Fock approximation and Rayleigh-Schrödinger perturbation theory, we provide a historical overview of the various research activities that have been performed on the physics of singularities. In particular, we highlight seminal work on the convergence behaviour of perturbative series obtained within Møller-Plesset perturbation theory, and its links with quantum phase transitions. We also discuss several resummation techniques (such as Padé and quadratic approximants) that can improve the overall accuracy of the Møller-Plesset perturbative series in both convergent and divergent cases. Each of these points is illustrated using the Hubbard dimer at half filling, which proves to be a versatile model for understanding the subtlety of analytically-continued perturbation theory in the complex plane.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France
| | - Hugh G A Burton
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, United Kingdom
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
22
|
Sagredo F, Burke K. Confirmation of the PPLB Derivative Discontinuity: Exact Chemical Potential at Finite Temperatures of a Model System. J Chem Theory Comput 2020; 16:7225-7231. [PMID: 33237784 DOI: 10.1021/acs.jctc.0c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The landmark 1982 work of Perdew, Parr, Levy, and Balduz (often called PPLB) laid the foundation for our modern understanding of the role of the derivative discontinuity in density functional theory, which drives much development to account for its effects. A simple model for the chemical potential at vanishing temperature played a crucial role in their argument. We investigate the validity of this model in the simplest nontrivial system to which it can be applied and which can be easily solved exactly, the Hubbard dimer. We find exact agreement in the crucial zero-temperature limit and show the model remains accurate for a significant range of temperatures. We identify how this range depends on the strength of correlations. We extend the model to approximate free energies accounting for the derivative discontinuity, a feature missing in standard semilocal approximations. We provide a correction to this approximation to yield even more accurate free energies. We discuss the relevance of these results for warm dense matter.
Collapse
Affiliation(s)
- Francisca Sagredo
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
23
|
Fromager E. Individual Correlations in Ensemble Density Functional Theory: State- and Density-Driven Decompositions without Additional Kohn-Sham Systems. PHYSICAL REVIEW LETTERS 2020; 124:243001. [PMID: 32639839 DOI: 10.1103/physrevlett.124.243001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Gould and Pittalis [Phys. Rev. Lett. 123, 016401 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.016401 recently revealed a density-driven (DD) correlation energy that is specific to many-electron ensembles and must be accounted for by approximations. We derive in this Letter a general and simpler expression in terms of the ensemble weights, the ensemble Kohn-Sham (KS) orbitals, and their linear response to variations in the ensemble weights. As no additional state-driven KS systems are needed, its evaluation is greatly simplified. We confirm the importance of DD effects and introduce a direct and promising route to approximations.
Collapse
Affiliation(s)
- Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
24
|
Loos PF, Fromager E. A weight-dependent local correlation density-functional approximation for ensembles. J Chem Phys 2020; 152:214101. [DOI: 10.1063/5.0007388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
25
|
Benavides-Riveros CL, Wolff J, Marques MAL, Schilling C. Reduced Density Matrix Functional Theory for Bosons. PHYSICAL REVIEW LETTERS 2020; 124:180603. [PMID: 32441966 DOI: 10.1103/physrevlett.124.180603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Based on a generalization of Hohenberg-Kohn's theorem, we propose a ground state theory for bosonic quantum systems. Since it involves the one-particle reduced density matrix γ as a variable but still recovers quantum correlations in an exact way it is particularly well suited for the accurate description of Bose-Einstein condensates. As a proof of principle we study the building block of optical lattices. The solution of the underlying v-representability problem is found and its peculiar form identifies the constrained search formalism as the ideal starting point for constructing accurate functional approximations: The exact functionals F[γ] for this N-boson Hubbard dimer and general Bogoliubov-approximated systems are determined. For Bose-Einstein condensates with N_{BEC}≈N condensed bosons, the respective gradient forces are found to diverge, ∇_{γ}F∝1/sqrt[1-N_{BEC}/N], providing a comprehensive explanation for the absence of complete condensation in nature.
Collapse
Affiliation(s)
- Carlos L Benavides-Riveros
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
- NR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area della Ricerca di Roma 1, Via Salaria Km 29.3, I-00016 Monterotondo Scalo, Italy
| | - Jakob Wolff
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Miguel A L Marques
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian Schilling
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
- Wolfson College, University of Oxford, Linton Rd, Oxford OX2 6UD, United Kingdom
| |
Collapse
|
26
|
Mitxelena I, Piris M. An efficient method for strongly correlated electrons in one dimension. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:17LT01. [PMID: 31952058 DOI: 10.1088/1361-648x/ab6d11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The one-particle reduced density matrix functional theory in its natural orbital functional (NOF) version is used to study strongly correlated electrons. We show the ability of the Piris NOF 7 (PNOF7) to describe non-dynamic correlation effects in one-dimensional (1D) systems. An extensive study of 1D systems that includes Hydrogen (H) chains and the 1D Hubbard model with periodic boundary conditions is provided. Different filling situations and large sizes with up to 122 electrons are considered. Compared to quasi-exact results, PNOF7 is accurate in different correlation regimes for the 1D Hubbard model even away from the half-filling, and maintains its accuracy when the system size increases. The symmetric and asymmetric dissociations of the linear H chain composed of 50 atoms are described to remark the importance of long-range interactions in presence of strong correlation effects. Our results compare remarkably well with those obtained at the density-matrix renormalization group level of theory.
Collapse
Affiliation(s)
- Ion Mitxelena
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | | |
Collapse
|
27
|
Mitxelena I, Piris M. An efficient method for strongly correlated electrons in two-dimensions. J Chem Phys 2020; 152:064108. [PMID: 32061239 DOI: 10.1063/1.5140985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work deals with the problem of strongly correlated electrons in two-dimensions. We give a reduced density matrix (RDM) based tool through which the ground-state energy is given as a functional of the natural orbitals and their occupation numbers. Specifically, the Piris Natural Orbital Functional 7 (PNOF7) is used for studying the 2D Hubbard model and hydrogen square lattices. The singlet ground-state is studied, as well as the doublet mixed quantum state obtained by extracting an electron from the system. Our method satisfies two-index necessary N-representability conditions of the two-particle RDM (2RDM) and guarantees the conservation of the total spin. We show the ability of PNOF7 to describe strong correlation effects in two-dimensional (2D) systems by comparing our results with the exact diagonalization, density matrix renormalization group (DMRG), and auxiliary-field quantum Monte Carlo calculations. PNOF7 overcomes variational 2RDM methods with two- and three-index positivity N-representability conditions, reducing computational cost to mean-field scaling. Consistent results are obtained for small and large systems up to 144 electrons, weak and strong correlation regimes, and many filling situations. Unlike other methods, there is no dependence on dimensionality in the results obtained with PNOF7 and no particular difficulties have been observed to converge PNOF7 away from half-filling. Smooth double occupancy of sites is obtained, regardless of the filling. Symmetric dissociation of 2D hydrogen lattices shows that long-range nondynamic correlation dramatically affects electron detachment energies. PNOF7 compares well with DMRG along the dissociation curve.
Collapse
Affiliation(s)
- Ion Mitxelena
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Mario Piris
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| |
Collapse
|
28
|
Vuckovic S, Song S, Kozlowski J, Sim E, Burke K. Density Functional Analysis: The Theory of Density-Corrected DFT. J Chem Theory Comput 2019; 15:6636-6646. [DOI: 10.1021/acs.jctc.9b00826] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Vuckovic
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| | - Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - John Kozlowski
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
29
|
Via-Nadal M, Rodríguez-Mayorga M, Ramos-Cordoba E, Matito E. Singling Out Dynamic and Nondynamic Correlation. J Phys Chem Lett 2019; 10:4032-4037. [PMID: 31276421 DOI: 10.1021/acs.jpclett.9b01376] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The correlation part of the pair density is separated into two components, one of them being predominant at short electronic ranges and the other at long ranges. The analysis of the intracular part of these components permits to classify molecular systems according to the prevailing correlation: dynamic or nondynamic. The study of the long-range asymptotics reveals the key component of the pair density that is responsible for the description of London dispersion forces and a universal decay with the interelectronic distance. The natural range-separation, the identification of the dispersion forces, and the kind of predominant correlation type that arise from this analysis are expected to be important assets in the development of new electronic structure methods in wave function, density, and reduced density-matrix functional theories.
Collapse
Affiliation(s)
- Mireia Via-Nadal
- Donostia International Physics Center (DIPC) , 20018 Donostia , Euskadi , Spain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) , Donostia , Euskadi , Spain
| | - Mauricio Rodríguez-Mayorga
- Donostia International Physics Center (DIPC) , 20018 Donostia , Euskadi , Spain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) , Donostia , Euskadi , Spain
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química , Universitat de Girona , C/Maria Aurèlia Capmany, 69 , 17003 Girona , Catalonia , Spain
| | - Eloy Ramos-Cordoba
- Donostia International Physics Center (DIPC) , 20018 Donostia , Euskadi , Spain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) , Donostia , Euskadi , Spain
| | - Eduard Matito
- Donostia International Physics Center (DIPC) , 20018 Donostia , Euskadi , Spain
- IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Euskadi , Spain
| |
Collapse
|
30
|
Deur K, Fromager E. Ground and excited energy levels can be extracted exactly from a single ensemble density-functional theory calculation. J Chem Phys 2019; 150:094106. [DOI: 10.1063/1.5084312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Killian Deur
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
31
|
Schilling C, Schilling R. Diverging Exchange Force and Form of the Exact Density Matrix Functional. PHYSICAL REVIEW LETTERS 2019; 122:013001. [PMID: 31012728 DOI: 10.1103/physrevlett.122.013001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 06/09/2023]
Abstract
For translationally invariant one-band lattice models, we exploit the ab initio knowledge of the natural orbitals to simplify reduced density matrix functional theory (RDMFT). Striking underlying features are discovered. First, within each symmetry sector, the interaction functional F depends only on the natural occupation numbers n. The respective sets P_{N}^{1} and E_{N}^{1} of pure and ensemble N-representable one-matrices coincide. Second, and most importantly, the exact functional is strongly shaped by the geometry of the polytope E_{N}^{1}≡P_{N}^{1}, described by linear constraints D^{(j)}(n)≥0. For smaller systems, it follows as F[n]=[under ∑]i,i^{'}V[over ¯]_{i,i^{'}}sqrt[D^{(i)}(n)D^{(i^{'})}(n)]. This generalizes to systems of arbitrary size by replacing each D^{(i)} by a linear combination of {D^{(j)}(n)} and adding a nonanalytical term involving the interaction V[over ^]. Third, the gradient dF/dn is shown to diverge on the boundary ∂E_{N}^{1}, suggesting that the fermionic exchange symmetry manifests itself within RDMFT in the form of an "exchange force." All findings hold for systems with a nonfixed particle number as well and V[over ^] can be any p-particle interaction. As an illustration, we derive the exact functional for the Hubbard square.
Collapse
Affiliation(s)
- Christian Schilling
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Rolf Schilling
- Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany
| |
Collapse
|
32
|
Senjean B, Nakatani N, Tsuchiizu M, Fromager E. Multiple impurities and combined local density approximations in site-occupation embedding theory. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2368-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Sagredo F, Burke K. Accurate double excitations from ensemble density functional calculations. J Chem Phys 2018; 149:134103. [DOI: 10.1063/1.5043411] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Francisca Sagredo
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
34
|
Theophilou I, Buchholz F, Eich FG, Ruggenthaler M, Rubio A. Kinetic-Energy Density-Functional Theory on a Lattice. J Chem Theory Comput 2018; 14:4072-4087. [PMID: 29969552 PMCID: PMC6096452 DOI: 10.1021/acs.jctc.8b00292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present a kinetic-energy density-functional theory and the corresponding
kinetic-energy Kohn–Sham (keKS) scheme on a lattice and show
that, by including more observables explicitly in a density-functional
approach, already simple approximation strategies lead to very accurate
results. Here, we promote the kinetic-energy density to a fundamental
variable alongside the density and show for specific cases (analytically
and numerically) that there is a one-to-one correspondence between
the external pair of on-site potential and site-dependent hopping
and the internal pair of density and kinetic-energy density. On the
basis of this mapping, we establish two unknown effective fields,
the mean-field exchange-correlation potential and the mean-field exchange-correlation
hopping, which force the keKS system to generate the same kinetic-energy
density and density as the fully interacting one. We show, by a decomposition
based on the equations of motions for the density and the kinetic-energy
density, that we can construct simple orbital-dependent functionals
that outperform the corresponding exact-exchange Kohn–Sham
(KS) approximation of standard density-functional theory. We do so
by considering the exact KS and keKS systems and comparing the unknown
correlation contributions as well as by comparing self-consistent
calculations based on the mean-field exchange (for the effective potential)
and a uniform (for the effective hopping) approximation for the keKS
and the exact-exchange approximation for the KS system, respectively.
Collapse
Affiliation(s)
- Iris Theophilou
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science , Hamburg 22761 , Germany
| | - Florian Buchholz
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science , Hamburg 22761 , Germany
| | - F G Eich
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science , Hamburg 22761 , Germany
| | - Michael Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science , Hamburg 22761 , Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science , Hamburg 22761 , Germany.,Center for Computational Quantum Physics (CCQ) , Flatiron Institute , New York , New York 10010 , United States
| |
Collapse
|
35
|
Li C, Requist R, Gross EKU. Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF. J Chem Phys 2018; 148:084110. [DOI: 10.1063/1.5011663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chen Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Ryan Requist
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - E. K. U. Gross
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
36
|
Mitxelena I, Piris M, Rodríguez-Mayorga M. On the performance of natural orbital functional approximations in the Hubbard model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:425602. [PMID: 28722686 DOI: 10.1088/1361-648x/aa80ca] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Strongly correlated materials are now under intense development, and natural orbital functional (NOF) methods seem to be able to capture the physics of these systems. We present a benchmark based on the Hubbard model for a class of commonly used NOF approximations (also known as reduced density matrix functional approximations). Our findings highlight the importance of imposing ensemble N-representability conditions in order to obtain consistent results in systems with either weak or strong electronic correlation, such as the Hubbard system with a varying two-particle interaction parameter. Based on the accuracy of the results obtained using PNOF7, which retrieves a large amount of the total strong nondynamic correlation, the Hubbard model points out that N-representability gives solid foundations for NOF development.
Collapse
Affiliation(s)
- I Mitxelena
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain. Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Euskadi, Spain
| | | | | |
Collapse
|
37
|
Abstract
In the framework of quantum thermodynamics, we propose a method to quantitatively describe thermodynamic quantities for out-of-equilibrium interacting many-body systems. The method is articulated in various approximation protocols which allow to achieve increasing levels of accuracy, it is relatively simple to implement even for medium and large number of interactive particles, and uses tools and concepts from density functional theory. We test the method on the driven Hubbard dimer at half filling, and compare exact and approximate results. We show that the proposed method reproduces the average quantum work to high accuracy: for a very large region of parameter space (which cuts across all dynamical regimes) estimates are within 10% of the exact results.
Collapse
|
38
|
|
39
|
Senjean B, Tsuchiizu M, Robert V, Fromager E. Local density approximation in site-occupation embedding theory. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1182224] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bruno Senjean
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| | | | - Vincent Robert
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| |
Collapse
|