1
|
Randolph L, Banjafar M, Yabuuchi T, Baehtz C, Bussmann M, Dover NP, Huang L, Inubushi Y, Jakob G, Kläui M, Ksenzov D, Makita M, Miyanishi K, Nishiuchi M, Öztürk Ö, Paulus M, Pelka A, Preston TR, Schwinkendorf JP, Sueda K, Togashi T, Cowan TE, Kluge T, Gutt C, Nakatsutsumi M. (Sub-)Picosecond Surface Correlations of Femtosecond Laser Excited Al-Coated Multilayers Observed by Grazing-Incidence X-ray Scattering. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1050. [PMID: 38921926 PMCID: PMC11206609 DOI: 10.3390/nano14121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Femtosecond high-intensity laser pulses at intensities surpassing 1014 W/cm2 can generate a diverse range of functional surface nanostructures. Achieving precise control over the production of these functional structures necessitates a thorough understanding of the surface morphology dynamics with nanometer-scale spatial resolution and picosecond-scale temporal resolution. In this study, we show that single XFEL pulses can elucidate structural changes on surfaces induced by laser-generated plasmas using grazing-incidence small-angle X-ray scattering (GISAXS). Using aluminium-coated multilayer samples we distinguish between sub-picosecond (ps) surface morphology dynamics and subsequent multi-ps subsurface density dynamics with nanometer-depth sensitivity. The observed subsurface density dynamics serve to validate advanced simulation models representing matter under extreme conditions. Our findings promise to open new avenues for laser material-nanoprocessing and high-energy-density science.
Collapse
Affiliation(s)
- Lisa Randolph
- Department Physik, University of Siegen, 57072 Siegen, Germany
- European XFEL, 22869 Schenefeld, Germany
| | - Mohammadreza Banjafar
- European XFEL, 22869 Schenefeld, Germany
- Fakultät Physik, TU Dresden, 01069 Dresden, Germany
| | - Toshinori Yabuuchi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo 679-5198, Hyogo, Japan
- RIKEN SPring-8 Center, Sayo 679-5148, Hyogo, Japan
| | - Carsten Baehtz
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Michael Bussmann
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Center for Advanced Systems Understanding (CASUS), 02826 Görlitz, Germany
| | - Nicholas P. Dover
- The John Adams Institute for Accelerator Science, Imperial College London, London SW7 2BW, UK
| | - Lingen Huang
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Yuichi Inubushi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo 679-5198, Hyogo, Japan
- RIKEN SPring-8 Center, Sayo 679-5148, Hyogo, Japan
| | - Gerhard Jakob
- Institute of Physics, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Mathias Kläui
- Institute of Physics, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Dmitriy Ksenzov
- Department Physik, University of Siegen, 57072 Siegen, Germany
| | | | | | - Mamiko Nishiuchi
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, Kyoto 619-0215, Japan
| | - Özgül Öztürk
- Department Physik, University of Siegen, 57072 Siegen, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, TU Dortmund, 44221 Dortmund, Germany
| | - Alexander Pelka
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | | | - Jan-Patrick Schwinkendorf
- European XFEL, 22869 Schenefeld, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | | | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo 679-5198, Hyogo, Japan
- RIKEN SPring-8 Center, Sayo 679-5148, Hyogo, Japan
| | - Thomas E. Cowan
- Fakultät Physik, TU Dresden, 01069 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Thomas Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Christian Gutt
- Department Physik, University of Siegen, 57072 Siegen, Germany
| | | |
Collapse
|
2
|
Coffey AH, Slack J, Cornell E, Yang LL, Anderson K, Wang K, Dou L, Zhu C. In situ spin coater for multimodal grazing incidence x-ray scattering studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:093906. [PMID: 37756552 DOI: 10.1063/5.0159297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
We present herein a custom-made, in situ, multimodal spin coater system with an integrated heating stage that can be programmed with spinning and heating recipes and that is coupled with synchrotron-based, grazing-incidence wide- and small-angle x-ray scattering. The spin coating system features an adaptable experimental chamber, with the ability to house multiple ancillary probes such as photoluminescence and visible optical cameras, to allow for true multimodal characterization and correlated data analysis. This system enables monitoring of structural evolutions such as perovskite crystallization and polymer self-assembly across a broad length scale (2 Å-150 nm) with millisecond temporal resolution throughout a complete thin film fabrication process. The use of this spin coating system allows scientists to gain a deeper understanding of temporal processes of a material system, to develop ideal conditions for thin film manufacturing.
Collapse
Affiliation(s)
- Aidan H Coffey
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jonathan Slack
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Earl Cornell
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Lee L Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kevan Anderson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Zastrau U, Appel K, Baehtz C, Baehr O, Batchelor L, Berghäuser A, Banjafar M, Brambrink E, Cerantola V, Cowan TE, Damker H, Dietrich S, Di Dio Cafiso S, Dreyer J, Engel HO, Feldmann T, Findeisen S, Foese M, Fulla-Marsa D, Göde S, Hassan M, Hauser J, Herrmannsdörfer T, Höppner H, Kaa J, Kaever P, Knöfel K, Konôpková Z, Laso García A, Liermann HP, Mainberger J, Makita M, Martens EC, McBride EE, Möller D, Nakatsutsumi M, Pelka A, Plueckthun C, Prescher C, Preston TR, Röper M, Schmidt A, Seidel W, Schwinkendorf JP, Schoelmerich MO, Schramm U, Schropp A, Strohm C, Sukharnikov K, Talkovski P, Thorpe I, Toncian M, Toncian T, Wollenweber L, Yamamoto S, Tschentscher T. The High Energy Density Scientific Instrument at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1393-1416. [PMID: 34475288 PMCID: PMC8415338 DOI: 10.1107/s1600577521007335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The European XFEL delivers up to 27000 intense (>1012 photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses.
Collapse
Affiliation(s)
- Ulf Zastrau
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Karen Appel
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Carsten Baehtz
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Oliver Baehr
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Mohammadreza Banjafar
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Thomas E. Cowan
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Horst Damker
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Jörn Dreyer
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Hans-Olaf Engel
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Manon Foese
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Mohammed Hassan
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Jens Hauser
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | - Hauke Höppner
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Johannes Kaa
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Peter Kaever
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Klaus Knöfel
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | | | - Jona Mainberger
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Mikako Makita
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Emma E. McBride
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Dominik Möller
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | - Alexander Pelka
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | | | - Michael Röper
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Wolfgang Seidel
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Andreas Schropp
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Peter Talkovski
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ian Thorpe
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Monika Toncian
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Toma Toncian
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | - Shingo Yamamoto
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | |
Collapse
|
4
|
Li N, Chen W, Song L, Guo R, Scheel MA, Yang D, Körstgens V, Schwartzkopf M, Roth SV, Müller-Buschbaum P. In Situ Study of Order Formation in Mesoporous Titania Thin Films Templated by a Diblock Copolymer during Slot-Die Printing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57627-57637. [PMID: 33295752 DOI: 10.1021/acsami.0c18851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Slot-die printing, a large-scale deposition technique, is applied to fabricate mesoporous titania films. Printing is interesting, for example, for scaling up solar cells where titania films with an interconnected mesoporous network and a large surface-to-volume ratio are desired as photoanodes. A fundamental understanding of the structure evolution during printing is of high significance in tailoring these films. In this work, we provide important insights into the self-assembly of the slot-die-printed titania/polystyrene-block-poly(ethylene oxide) (PS-b-PEO) micelles into ordered hybrid structures in real time via in situ grazing-incidence small-angle X-ray scattering (GISAXS). GISAXS allows for tracking both vertical and lateral structure development of the film formation process. In the hybrid film, a face-centered cubic (FCC) structure is preferentially formed at the interfaces with air and with the substrate, while a defect-rich mixed FCC and body-centered cubic (BCC) structure forms in the bulk. After calcination, the surface and inner morphologies of the obtained nanostructured titania films are compared with the spin-coated analogues. In the printed films, the initially formed nanoscale structure of the hybrid film is preserved, and the resulting mesoporous titania film shows a superior order as compared with the spin-coated thin films which can be beneficial for future applications.
Collapse
Affiliation(s)
- Nian Li
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Wei Chen
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Lin Song
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Youyixilu 127, Xi'an 710072, Shaanxi, China
| | - Renjun Guo
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Manuel A Scheel
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Dan Yang
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Volker Körstgens
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Stephan V Roth
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
5
|
Brett CJ, Mittal N, Ohm W, Gensch M, Kreuzer LP, Körstgens V, Månsson M, Frielinghaus H, Müller-Buschbaum P, Söderberg LD, Roth SV. Water-Induced Structural Rearrangements on the Nanoscale in Ultrathin Nanocellulose Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00531] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Calvin J. Brett
- Department of Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | - Nitesh Mittal
- Department of Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Wiebke Ohm
- Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | - Marc Gensch
- Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | | | | | - Martin Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm 164 40, Sweden
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Garching 52428, Germany
| | | | - L. Daniel Söderberg
- Department of Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Stephan V. Roth
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| |
Collapse
|
6
|
Glier TE, Akinsinde L, Paufler M, Otto F, Hashemi M, Grote L, Daams L, Neuber G, Grimm-Lebsanft B, Biebl F, Rukser D, Lippmann M, Ohm W, Schwartzkopf M, Brett CJ, Matsuyama T, Roth SV, Rübhausen M. Functional Printing of Conductive Silver-Nanowire Photopolymer Composites. Sci Rep 2019; 9:6465. [PMID: 31015552 PMCID: PMC6478917 DOI: 10.1038/s41598-019-42841-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/08/2019] [Indexed: 11/09/2022] Open
Abstract
We investigated the fabrication and functional behaviour of conductive silver-nanowire-polymer composites for prospective use in printing applications. Silver-nanowires with an aspect ratio of up to 1000 were synthesized using the polyol route and embedded in a UV-curable and printable polymer matrix. Sheet resistances in the composites down to 13 Ω/sq at an optical transmission of about 90% were accomplished. The silver-nanowire composite morphology and network structure was investigated by electron microscopy, atomic force microscopy, profilometry, ellipsometry as well as surface sensitive X-ray scattering. By implementing different printing applications, we demonstrate that our silver nanowires can be used in different polymer composites. On the one hand, we used a tough composite for a 2D-printed film as top contact on a solar cell. On the other hand, a flexible composite was applied for a 3D-printed flexible capacitor.
Collapse
Affiliation(s)
- Tomke E Glier
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Lewis Akinsinde
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Malwin Paufler
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Ferdinand Otto
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Maryam Hashemi
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lukas Grote
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lukas Daams
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Gerd Neuber
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Benjamin Grimm-Lebsanft
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Florian Biebl
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Dieter Rukser
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Wiebke Ohm
- DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Calvin J Brett
- DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Mechanics, KTH Royal Institute of Technology, Teknikringen 8, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Toru Matsuyama
- Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Stephan V Roth
- DESY, Notkestrasse 85, 22607, Hamburg, Germany.
- Department of Fiber and Polymertechnology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden.
| | - Michael Rübhausen
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
7
|
Berlinghof M, Bär C, Haas D, Bertram F, Langner S, Osvet A, Chumakov A, Will J, Schindler T, Zech T, Brabec CJ, Unruh T. Flexible sample cell for real-time GISAXS, GIWAXS and XRR: design and construction. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1664-1672. [PMID: 30407176 DOI: 10.1107/s1600577518013218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Since the properties of functional materials are highly dependent on their specific structure, and since the structural changes, for example during crystallization, induced by coating and annealing processes are significant, the study of structure and its formation is of interest for fundamental and applied science. However, structure analysis is often limited to ex situ determination of final states due to the lack of specialized sample cells that enable real-time investigations. The lack of such cells is mainly due to their fairly complex design and geometrical restrictions defined by the beamline setups. To overcome this obstacle, an advanced sample cell has been designed and constructed; it combines automated doctor blading, solvent vapor annealing and sample hydration with real-time grazing-incidence wide- and small-angle scattering (GIWAXS/GISAXS) and X-ray reflectivity (XRR). The sample cell has limited spatial requirements and is therefore widely usable at beamlines and laboratory-scale instruments. The cell is fully automatized and remains portable, including the necessary electronics. In addition, the cell can be used by interested scientists in cooperation with the Institute for Crystallography and Structural Physics and is expandable with regard to optical secondary probes. Exemplary research studies are presented, in the form of coating of P3HT:PC61PM thin films, solvent vapor annealing of DRCN5T:PC71BM thin films, and hydration of supported phospholipid multilayers, to demonstrate the capabilities of the in situ cell.
Collapse
Affiliation(s)
- M Berlinghof
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Staudtstraße 3, 91058 Erlangen, Germany
| | - C Bär
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Staudtstraße 3, 91058 Erlangen, Germany
| | - D Haas
- DESY Photon Science, Notkestraße 85, 22607 Hamburg, Germany
| | - F Bertram
- DESY Photon Science, Notkestraße 85, 22607 Hamburg, Germany
| | - S Langner
- Institute Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany
| | - A Osvet
- Institute Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany
| | - A Chumakov
- The European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - J Will
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Staudtstraße 3, 91058 Erlangen, Germany
| | - T Schindler
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Staudtstraße 3, 91058 Erlangen, Germany
| | - T Zech
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Staudtstraße 3, 91058 Erlangen, Germany
| | - C J Brabec
- Institute Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany
| | - T Unruh
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Staudtstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Yang Z, Wang M, Li J, Dou J, Qiu H, Shao J. Spray-Coated CsPbBr 3 Quantum Dot Films for Perovskite Photodiodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26387-26395. [PMID: 30001101 DOI: 10.1021/acsami.8b07334] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Large-area film deposition and high material utilization ratio are the crucial factors for large-scale application of perovskite optoelectronics. Recently, all-inorganic halide perovskite CsPbBr3 has attracted great attention because of its high phase stability, thermal stability, and photostability. However, most reported perovskite devices were fabricated by spin-coating, suffering from a low material utilization ratio of 1% and a small coverage area. Here, we developed a spray-coating technique to fabricate a CsPbBr3 quantum dot (QD) film photodiode which had a high material utilization ratio of 32% and a deposition rate of 9 nm/s. The film growth process was studied, and substrate temperature and spray time were two key factors for the deposition of uniform and crack-free QD films. The spray-coated photodiode was demonstrated to be more suitable for working in the photodetector mode because a low dark current density of 4 × 10-4 mA cm-2 resulting from an extremely low recombination current contributed to a high detectivity of 1 × 1014 Jones. A high responsivity of 3 A W-1 was obtained at -0.7 V under 365 nm illumination, resulting from a low charge-transfer resistance and a high charge recombination resistance. We believe that the spray deposition technique will benefit the fabrication of perovskite QD film optoelectronics on a large scale.
Collapse
|
9
|
Su B, Caller-Guzman HA, Körstgens V, Rui Y, Yao Y, Saxena N, Santoro G, Roth SV, Müller-Buschbaum P. Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43724-43732. [PMID: 29182302 DOI: 10.1021/acsami.7b14850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH3NH3PbI3) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.
Collapse
Affiliation(s)
- Bo Su
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| | - Herbert A Caller-Guzman
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| | - Volker Körstgens
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620, P. R. China
| | - Yuan Yao
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| | - Nitin Saxena
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| | - Gonzalo Santoro
- Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85, 22607 Hamburg, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85, 22607 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
10
|
Shen J, Li F, Cao Z, Barat D, Tu G. Light Scattering in Nanoparticle Doped Transparent Polyimide Substrates. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14990-14997. [PMID: 28397490 DOI: 10.1021/acsami.7b03070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here we demonstrate a simple and effective method of fabricating polymeric scattering substrate for flexible organic light-emitting diodes (OLEDs) that require no costly patterning, etching, or molding processes, aspects that are desirable for the commercialization of large-scale lighting panels. Systematic study of the influences of relative index of refraction, particle size, and doping concentration on transmittance and haze of transparent colorless polyimide (cPI) films was carried out. It was found that the reduction of transmittance and haze of the doped films decreases along with the decrease of the difference of refractive index between the particles and polymer matrix, and it could be compensated by the increase of particle size or doping concentration.
Collapse
Affiliation(s)
- Jiulin Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , 1037 Luoyu Road, Wuhan 430074, China
| | - Fu Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , 1037 Luoyu Road, Wuhan 430074, China
| | - Zhonghuan Cao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , 1037 Luoyu Road, Wuhan 430074, China
| | - David Barat
- PSA Groupe, Direction Scientifique, Centre Technique de Vélizy , route de Gisy, 78140 Vélizy-Villacoublay, France
| | - Guoli Tu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
11
|
Schwartzkopf M, Roth SV. Investigating Polymer-Metal Interfaces by Grazing Incidence Small-Angle X-Ray Scattering from Gradients to Real-Time Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E239. [PMID: 28335367 PMCID: PMC5302712 DOI: 10.3390/nano6120239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 01/13/2023]
Abstract
Tailoring the polymer-metal interface is crucial for advanced material design. Vacuum deposition methods for metal layer coating are widely used in industry and research. They allow for installing a variety of nanostructures, often making use of the selective interaction of the metal atoms with the underlying polymer thin film. The polymer thin film may eventually be nanostructured, too, in order to create a hierarchy in length scales. Grazing incidence X-ray scattering is an advanced method to characterize and investigate polymer-metal interfaces. Being non-destructive and yielding statistically relevant results, it allows for deducing the detailed polymer-metal interaction. We review the use of grazing incidence X-ray scattering to elucidate the polymer-metal interface, making use of the modern synchrotron radiation facilities, allowing for very local studies via in situ (so-called "stop-sputter") experiments as well as studies observing the nanostructured metal nanoparticle layer growth in real time.
Collapse
Affiliation(s)
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany.
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| |
Collapse
|