1
|
Reiter S, Gordiy I, Kollmannsberger KL, Liu F, Thyrhaug E, Leister D, Warnan J, Hauer J, de Vivie-Riedle R. Molecular interactions of photosystem I and ZIF-8 in bio-nanohybrid materials. Phys Chem Chem Phys 2024; 26:23228-23239. [PMID: 39192757 DOI: 10.1039/d4cp03021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bio-nanohybrid devices featuring natural photocatalysts bound to a nanostructure hold great promise in the search for sustainable energy conversion. One of the major challenges of integrating biological systems is protecting them against harsh environmental conditions while retaining, or ideally enhancing their photophysical properties. In this mainly computational work we investigate an assembly of cyanobacterial photosystem I (PS I) embedded in a metal-organic framework (MOF), namely the zeolitic imidazolate framework ZIF-8. This complex has been reported experimentally [Bennett et al., Nanoscale Adv., 2019, 1, 94] but so far the molecular interactions between PS I and the MOF remained elusive. We show via absorption spectroscopy that PS I remains intact throughout the encapsulation-release cycle. Molecular dynamics (MD) simulations further confirm that the encapsulation has no noticeable structural impact on the photosystem. However, the MOF building blocks frequently coordinate to the Mg2+ ions of chlorophylls in the periphery of the antenna complex. High-level quantum mechanical calculations reveal charge-transfer interactions, which affect the excitonic network and thereby may reversibly change the fluorescence properties of PS I. Nevertheless, our results highlight the stability of PS I in the MOF, as the reaction center remains unimpeded by the heterogeneous environment, paving the way for applications in the foreseeable future.
Collapse
Affiliation(s)
- Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany.
| | - Igor Gordiy
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany.
| | - Kathrin L Kollmannsberger
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Feng Liu
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Erling Thyrhaug
- Professorship of Dynamic Spectroscopy, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany.
| | - Dario Leister
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Jürgen Hauer
- Professorship of Dynamic Spectroscopy, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany.
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany.
| |
Collapse
|
2
|
Sławski J, Maciejewski J, Szukiewicz R, Gieczewska K, Grzyb J. Quantum Dots Assembled with Photosynthetic Antennae on a Carbon Nanotube Platform: A Nanohybrid for the Enhancement of Light Energy Harvesting. ACS OMEGA 2023; 8:41991-42003. [PMID: 37969970 PMCID: PMC10633852 DOI: 10.1021/acsomega.3c07673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
The construction of artificial systems for solar energy harvesting is still a challenge. There needs to be a light-harvesting antenna with a broad absorption spectrum and then the possibility to transfer harvested energy to the reaction center, converting photons into a storable form of energy. Bioinspired and bioderivative elements may help in achieving this aim. Here, we present an option for light harvesting: a nanobiohybrid of colloidal, semiconductor quantum dots (QDs) and natural photosynthetic antennae assembled on the surface of a carbon nanotube. For that, we used QDs of cadmium telluride and cyanobacterial phycobilisome rods (PBSr) or light-harvesting complex II (LHCII) of higher plants. For this nanobiohybrid, we confirmed composition and organization using infrared spectroscopy, X-ray photoelectron spectroscopy, and high-resolution confocal microscopy. Then, we proved that within such an assembly, there is a resonance energy transfer from QD to PBSr or LHCII. When such a nanobiohybrid was further combined with thylakoids, the energy was transferred to photosynthetic reaction centers and efficiently powered the photosystem I reaction center. The presented construct is proof of a general concept, combining interacting elements on a platform of a nanotube, allowing further variation within assembled elements.
Collapse
Affiliation(s)
- Jakub Sławski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Jan Maciejewski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Rafał Szukiewicz
- Faculty
of Physics and Astronomy, University of
Wrocław, Maxa Borna
9, 50-204 Wrocław, Poland
| | - Katarzyna Gieczewska
- Department
of Plant Anatomy and Cytology, Institute of Experimental Plant Biology
and Biotechnology, Faculty of Biology, University
of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Grzyb
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
Passantino JM, Christiansen BA, Nabhan MA, Parkerson ZJ, Oddo TD, Cliffel DE, Jennings GK. Photoactive and conductive biohybrid films by polymerization of pyrrole through voids in photosystem I multilayer films. NANOSCALE ADVANCES 2023; 5:5301-5308. [PMID: 37767044 PMCID: PMC10521210 DOI: 10.1039/d3na00354j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The combination of conducting polymers with electro- and photoactive proteins into thin films holds promise for advanced energy conversion materials and devices. The emerging field of protein electronics requires conductive soft materials in a composite with electrically insulating proteins. The electropolymerization of pyrrole through voids in a drop-casted photosystem I (PSI) multilayer film enables the straightforward fabrication of photoactive and conductive biohybrid films. The rate of polypyrrole (PPy) growth is reduced by the presence of the PSI film but is insensitive to its thickness, suggesting that rapid diffusion of pyrrole through the voids within the PSI film enables initiation at vacant areas on the gold surface. The base thickness of the composite tends to increase with time, as PPy chains propagate through and beyond the PSI film, coalescing to exhibit a tubule-like morphology as observed by scanning electron microscopy. Increasing amounts of PPy greatly increase the capacitance of the composite films in a manner almost identical to that of pure PPy films grown from unmodified gold, consistent with a high polymer/aqueous interfacial area and a conductive composite film. While PPy is not photoactive here, all composite films, including those with large amounts of PPy, exhibit photocurrents when irradiated by white light in the presence of redox mediator species. Optimization of the Py electropolymerization time is necessary, as increasing amounts of PPy lead to decreased photocurrent density due to a combination of light absorbance by the polymer and reduced accessibility of redox species to active PSI sites.
Collapse
Affiliation(s)
- Joshua M Passantino
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Blake A Christiansen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Marc A Nabhan
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Zane J Parkerson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Tyler D Oddo
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University Nashville TN 37235-1822 USA
| | - G Kane Jennings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| |
Collapse
|
4
|
Pamu R, Khomami B, Mukherjee D. Observation of anomalous carotenoid and blind chlorophyll activations in photosystem I under synthetic membrane confinements. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183930. [PMID: 35398026 DOI: 10.1016/j.bbamem.2022.183930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The role of natural thylakoid membrane confinements in architecting the robust structural and electrochemical properties of PSI is not fully understood. Most PSI studies till date extract the proteins from their natural confinements that can lead to non-native conformations. Recently our group had successfully reconstituted PSI in synthetic lipid membranes using detergent-mediated liposome solubilizations. In this study, we investigate the alterations in chlorophylls and carotenoids interactions and reorganization in PSI based on spectral property changes induced by its confinement in anionic DPhPG and zwitterionic DPhPC phospholipid membranes. To this end, we employ a combination of absorption, fluorescence, and circular dichroism (CD) spectroscopic measurements. Our results indicate unique activation and alteration of photoresponses from the PSI carotenoid (Car) bands in PSI-DPhPG proteoliposomes that can tune the Excitation Energy Transfer (EET), otherwise absent in PSI at non-native environments. Specifically, we observe broadband light harvesting via enhanced absorption in the otherwise non-absorptive green region (500-580 nm) of the Chlorophylls (Chl) along with ~64% increase in the full-width half maximum of the Qy band (650-720 nm). The CD results indicate enhanced Chl-Chl and Chl-Car interactions along with conformational changes in protein secondary structures. Such distinct changes in the Car and Chl bands are not observed in PSI confined in DPhPC. The fundamental insights into membrane microenvironments tailoring PSI subunits reorganization and interactions provide novel strategies for tuning photoexcitation processes and rational designing of biotic-abiotic interfaces in PSI-based photoelectrochemical energy conversion systems.
Collapse
Affiliation(s)
- Ravi Pamu
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA
| | - Bamin Khomami
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA.
| | - Dibyendu Mukherjee
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Yamanoi Y, Nakae T, Nishihara H. Bio-organic-inorganic hybrid soft materials: photoelectric conversion systems based on photosystem I and II with molecular wires. CHEM LETT 2021. [DOI: 10.1246/cl.210111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshinori Yamanoi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toyotaka Nakae
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Nishihara
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| |
Collapse
|
6
|
Meredith SA, Yoneda T, Hancock AM, Connell SD, Evans SD, Morigaki K, Adams PG. Model Lipid Membranes Assembled from Natural Plant Thylakoids into 2D Microarray Patterns as a Platform to Assess the Organization and Photophysics of Light-Harvesting Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006608. [PMID: 33690933 PMCID: PMC11476343 DOI: 10.1002/smll.202006608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results.
Collapse
Affiliation(s)
- Sophie A. Meredith
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Takuro Yoneda
- Graduate School of Agricultural Science and Biosignal Research CenterKobe UniversityRokkodaicho 1‐1, NadaKobe657‐8501Japan
| | - Ashley M. Hancock
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Simon D. Connell
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Stephen D. Evans
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research CenterKobe UniversityRokkodaicho 1‐1, NadaKobe657‐8501Japan
| | - Peter G. Adams
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
7
|
Barhom H, Carmeli C, Carmeli I. Fabrication of Electronic Junctions between Oriented Multilayers of Photosystem I and the Electrodes of Optoelectronic Solid-State Devices. J Phys Chem B 2021; 125:722-728. [PMID: 33443424 DOI: 10.1021/acs.jpcb.0c08161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficient optoelectronic properties of photosynthetic proteins were explored in the quest for the fabrication of novel solid biohybrid devices. As most optoelectronic devices function in a dry environment, an attempt was made to fabricate an efficient electronic junction by covalent binding of photosynthetic reaction center proteins to metals, transparent semiconductor polymers, and solid semiconductors that function in a dry environment. The primary stages of photosynthesis take place in nanometric-size protein-chlorophyll complexes. Such is photosystem I (PSI), which generates a photovoltage of 1 V. The isolated PSI generates an absorbed light-energy conversion efficiency of ∼47% (∼23% solar energy) and internal quantum efficiency of ∼100%. The robust cyanobacterial PSI was used in the fabrication of solid-state optoelectronic devices by forming oriented multilayers from genetically engineered cysteine mutants between metal and transparent conducting semiconductor electrodes. Current-voltage measurements of the cells generated diode- and photodiode-like responses in the dark and the light, respectively. The cells were stable for many months in a dry environment. The generation of photocurrent and Voc indicated the formation of good electronic coupling between PSI and the electrodes, which can serve in the fabrication of solid-state biohybrid optoelectronic devices.
Collapse
Affiliation(s)
- Hani Barhom
- Departments of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chanoch Carmeli
- Departments of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itai Carmeli
- Department of Engineering and Institute for Nanotechnology, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
8
|
Bennett TH, Pamu R, Yang G, Mukherjee D, Khomami B. A new platform for development of photosystem I based thin films with superior photocurrent: TCNQ charge transfer salts derived from ZIF-8. NANOSCALE ADVANCES 2020; 2:5171-5180. [PMID: 36132048 PMCID: PMC9418745 DOI: 10.1039/d0na00220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/20/2020] [Indexed: 05/10/2023]
Abstract
The transmembrane photosynthetic protein complex Photosystem I (PSI) is highly sought after for incorporation into biohybrid photovoltaic devices due to its remarkable photoactive electrochemical properties, chiefly driving charge separation with ∼1 V potential and ∼100% quantum efficiency. In pursuit of these integrated technologies, three factors must be simultaneously tuned, namely, direct redox transfer steps, three-dimensional coordination and stabilization of PSI aggregates, and interfacial connectivity with conductive pathways. Building on our recent successful encapsulation of PSI in the metal-organic framework ZIF-8, herein we use the zinc and imidazole cations from this precursor to form charge transfer complexes with an extremely strong organic electron acceptor, TCNQ. Specifically, the PSI-Zn-H2mim-TCNQ charge transfer salt complex was drop cast on ITO to form dense films. Subsequent voltammetric cycling induced cation exchange and electrochemical annealing of the film was used to enhance electron conductivity giving rise to a photocurrent in the order of 15 μA cm-2. This study paves the way for a myriad of future opportunities for successful integration of this unique class of charge transfer salt complexes with biological catalysts and light harvesters.
Collapse
Affiliation(s)
- Tyler H Bennett
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
| | - Ravi Pamu
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Knoxville Tennessee 37996 USA
| | - Guang Yang
- Oak Ridge National Laboratory, Materials Science and Technology Division Oak Ridge TN 37830 USA
| | - Dibyendu Mukherjee
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
| | - Bamin Khomami
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
| |
Collapse
|
9
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
10
|
Ortiz-Torres MI, Fernández-Niño M, Cruz JC, Capasso A, Matteocci F, Patiño EJ, Hernández Y, González Barrios AF. Rational Design of Photo-Electrochemical Hybrid Devices Based on Graphene and Chlamydomonas reinhardtii Light-Harvesting Proteins. Sci Rep 2020; 10:3376. [PMID: 32099058 PMCID: PMC7042359 DOI: 10.1038/s41598-020-60408-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/07/2020] [Indexed: 11/17/2022] Open
Abstract
Dye-sensitized solar cells (DSSCs) have been highlighted as the promising alternative to generate clean energy based on low pay-back time materials. These devices have been designed to mimic solar energy conversion processes from photosynthetic organisms (the most efficient energy transduction phenomenon observed in nature) with the aid of low-cost materials. Recently, light-harvesting complexes (LHC) have been proposed as potential dyes in DSSCs based on their higher light-absorption efficiencies as compared to synthetic dyes. In this work, photo-electrochemical hybrid devices were rationally designed by adding for the first time Leu and Lys tags to heterologously expressed light-harvesting proteins from Chlamydomonas reinhardtii, thus allowing their proper orientation and immobilization on graphene electrodes. The light-harvesting complex 4 from C. reinhardtii (LHC4) was initially expressed in Escherichia coli, purified via affinity chromatography and subsequently immobilized on plasma-treated thin-film graphene electrodes. A photocurrent density of 40.30 ± 9.26 μA/cm2 was measured on devices using liquid electrolytes supplemented with a phosphonated viologen to facilitate charge transfer. Our results suggest that a new family of graphene-based thin-film photovoltaic devices can be manufactured from rationally tagged LHC proteins and opens the possibility to further explore fundamental processes of energy transfer for biological components interfaced with synthetic materials.
Collapse
Affiliation(s)
- Martha I Ortiz-Torres
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
- Nanomaterials Laboratory, Physics Department, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - Miguel Fernández-Niño
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Juan C Cruz
- GINIB Research Group, Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - Andrea Capasso
- International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal
| | - Fabio Matteocci
- C.H.O.S.E - Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, Via del politecnico 1, Rome, 00133, Italy
| | - Edgar J Patiño
- Superconductivity and Nanodevices Laboratory, Physics Department, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - Yenny Hernández
- Nanomaterials Laboratory, Physics Department, Universidad de Los Andes, Bogotá, 111711, Colombia.
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia.
| |
Collapse
|
11
|
Nishiori D, Zhu W, Salles R, Miyachi M, Yamanoi Y, Ikuta T, Maehashi K, Tomo T, Nishihara H. Photosensing System Using Photosystem I and Gold Nanoparticle on Graphene Field-Effect Transistor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42773-42779. [PMID: 31625385 DOI: 10.1021/acsami.9b14771] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a light sensor is fabricated based on photosystem I (PSI) and a graphene field-effect transistor (FET) that detects light at a high quantum yield under ambient conditions. We immobilized PSI on a micrometer-sized graphene FET using Au nanoparticles (AuNPs) and measured the I-V characteristics of the modified graphene FET before and after light irradiation. The source-drain current (Isd) increased upon illumination, exhibiting a photoresponsivity of 4.8 × 102 A W-1, and the charge neutrality point of graphene shifted by -12 mV. This system represents the first successful photosensing system based on proteins and a solution-gated graphene FET. The probable mechanism of this negative shift can be explained by the increase in negative charge carriers in graphene induced by a hole trap in the AuNP resulting from electron transfer from the AuNP to PSI. Photoresponses were only observed in the presence of two surface-active agents, n-hexyltrimethylammonium bromide and sodium dodecylbenzenesulfonate, because they caused the formation of a hydrophobic environment on the surface of the graphene. The lipid layer of these agents caused dissociation of ascorbate ions from the graphene sheet, thereby expanding the Debye screening length of the electrolyte solution. The hydrophobic environment above graphene also enhanced hole storage in the AuNP through electron transfer from the AuNP to PSI.
Collapse
Affiliation(s)
- Daiki Nishiori
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Wenchao Zhu
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Raphaël Salles
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mariko Miyachi
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Yoshinori Yamanoi
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Takashi Ikuta
- Division of Advanced Applied Physics, Institute of Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Nakacho , Koganei, Tokyo 184-8588 , Japan
| | - Kenzo Maehashi
- Division of Advanced Applied Physics, Institute of Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Nakacho , Koganei, Tokyo 184-8588 , Japan
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science , Tokyo University of Science , Kagurazaka 1-3 , Shinjuku-ku, Tokyo 162-8601 , Japan
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
12
|
Cherubin A, Destefanis L, Bovi M, Perozeni F, Bargigia I, de la Cruz Valbuena G, D’Andrea C, Romeo A, Ballottari M, Perduca M. Encapsulation of Photosystem I in Organic Microparticles Increases Its Photochemical Activity and Stability for Ex Vivo Photocatalysis. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:10435-10444. [PMID: 31372325 PMCID: PMC6662883 DOI: 10.1021/acssuschemeng.9b00738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/19/2019] [Indexed: 05/08/2023]
Abstract
Photosystem I (PSI) is a pigment binding multisubunit protein complex involved in the light phase of photosynthesis, catalyzing a light-dependent electron transfer reaction from plastocyanin to ferredoxin. PSI is characterized by a photochemical efficiency close to one, suggesting its possible application in light-dependent redox reaction in an extracellular context. The stability of PSI complexes isolated from plant cells is however limited if not embedded in a protective environment. Here we show an innovative solution for exploiting the photochemical properties of PSI, by encapsulation of isolated PSI complexes in PLGA (poly lactic-co-glycolic acid) organic microparticles. These encapsulated PSI complexes were able to catalyze light-dependent redox reactions with electron acceptors and donors outside the PLGA microparticles. Moreover, PSI complexes encapsulated in PLGA microparticles were characterized by a higher photochemical activity and stability compared with PSI complexes in detergent solution, suggesting their possible application for ex vivo photocatalysis.
Collapse
Affiliation(s)
- Arianna Cherubin
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Laura Destefanis
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michele Bovi
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Federico Perozeni
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Ilaria Bargigia
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Georgia
Institute of Technology, School of Chemistry
and Biochemistry, 901
Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Gabriel de la Cruz Valbuena
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department
of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
| | - Cosimo D’Andrea
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department
of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
| | - Alessandro Romeo
- Department
of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Massimiliano Perduca
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
13
|
Bennett TH, Vaughn MD, Davari SA, Park K, Mukherjee D, Khomami B. Jolly green MOF: confinement and photoactivation of photosystem I in a metal-organic framework. NANOSCALE ADVANCES 2019; 1:94-104. [PMID: 36132458 PMCID: PMC9473227 DOI: 10.1039/c8na00093j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2018] [Indexed: 05/03/2023]
Abstract
Photosystem I (PSI) is a ∼1000 kDa transmembrane protein that enables photoactivated charge separation with ∼1 V driving potential and ∼100% quantum efficiency during the photosynthetic process. Although such properties make PSI a potential candidate for integration into bio-hybrid solar energy harvesting devices, the grand challenge in orchestrating such integration rests on rationally designed 3D architectures that can organize and stabilize PSI in the myriad of harsh conditions in which it needs to function. The current study investigates the optical response and photoactive properties of PSI encapsulated in a highly stable nanoporous metal-organic framework (ZIF-8), denoted here as PSI@ZIF-8. The ZIF-8 framework provides a unique scaffold with a robust confining environment for PSI while protecting its precisely coordinated chlorophyll networks from denaturing agents. Significant blue shifts in the fluorescence emissions from UV-vis measurements reveal the successful confinement of PSI in ZIF-8. Pump-probe spectroscopy confirms the photoactivity of the PSI@ZIF-8 composites by revealing the successful internal charge separation and external charge transfer of P700 + and FB - even after exposure to denaturing agents and organic solvents. This work provides greater fundamental understanding of confinement effects on pigment networks, while significantly broadening the potential working environments for PSI-integrated bio-hybrid materials.
Collapse
Affiliation(s)
- Tyler H Bennett
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee Knoxville Tennessee 37996 USA
- Sustainable Energy Education & Research Center (SEERC), University of Tennessee Knoxville Tennessee 37996 USA
| | | | - Seyyed Ali Davari
- Department of Mechanical, Aerospace, & Biomedical Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee Knoxville Tennessee 37996 USA
| | - Kiman Park
- Department of Chemistry, University of Tennessee Knoxville Tennessee 37996 USA
| | - Dibyendu Mukherjee
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Department of Mechanical, Aerospace, & Biomedical Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee Knoxville Tennessee 37996 USA
- Sustainable Energy Education & Research Center (SEERC), University of Tennessee Knoxville Tennessee 37996 USA
| | - Bamin Khomami
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Department of Mechanical, Aerospace, & Biomedical Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Sustainable Energy Education & Research Center (SEERC), University of Tennessee Knoxville Tennessee 37996 USA
| |
Collapse
|
14
|
Feifel SC, Lokstein H, Hejazi M, Zouni A, Lisdat F. Unidirectional Photocurrent of Photosystem I on π-System-Modified Graphene Electrodes: Nanobionic Approaches for the Construction of Photobiohybrid Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10590-8. [PMID: 26348323 DOI: 10.1021/acs.langmuir.5b01625] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
One major vital element of the oxygenic photosynthesis is photosystem I (PSI). We report on the construction of graphene-based nanohybrid light-harvesting architectures consisting of PSI supercomplexes adsorbed onto π-system-modified graphene interfaces. The light-driven nanophotobioelectrochemical architectures have been designed on a modified carbon surface, on the basis of π-π-stacking interactions between polycyclic aromatic compounds and graphene. As a result of the remarkable features of graphene and the feasibility of purposeful surface property adjustment, well-defined photoelectrochemical responses have been displayed by the nanophotohybrid electrodes. In particular, the PSI-graphene electrodes utilizing naphthalene derivatives provided a suitable surface for the adsorption of PSI and display already at the open circuit potential (OCP) a high cathodic photocurrent output of 4.5 ± 0.1 μA/cm(2). By applying an overpotential and addition of a soluble electron acceptor (methyl viologen), the photocurrent density can be further magnified to 20 ± 0.5 μA/cm(2). On the contrary, the investigated anthracene-based PSI-graphene electrodes exhibit considerably smaller and not very directed photoelectrochemical responses. This study grants insights into the influences of different polycyclic aromatic compounds acting as an interface between the very large protein supercomplex PSI and graphene while supporting the electrochemical communication of the biomolecule with the electrode. It needs to be emphasized that solely the naphthalene-based photoelectrodes reveal unidirectional cathodic photocurrents, establishing the feasibility of utilizing this advanced approach for the construction of next-generation photovoltaic devices.
Collapse
Affiliation(s)
- Sven C Feifel
- Technical University of Applied Sciences Wildau , Hochschulring 1, 15745 Wildau, Germany
| | - Heiko Lokstein
- Institute of Molecular, Cell and System Biology, University of Glasgow , 120 University Place, Glasgow G12 8TA, Scotland
| | - Mahdi Hejazi
- Humboldt-Universität zu Berlin, Insitut für Biologie , Philippstrasse 13, 10099 Berlin, Germany
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Insitut für Biologie , Philippstrasse 13, 10099 Berlin, Germany
| | - F Lisdat
- Technical University of Applied Sciences Wildau , Hochschulring 1, 15745 Wildau, Germany
| |
Collapse
|
15
|
Nagy L, Magyar M, Szabó T, Hajdu K, Giotta L, Dorogi M, Milano F. Photosynthetic machineries in nano-systems. Curr Protein Pept Sci 2015; 15:363-73. [PMID: 24678673 PMCID: PMC4030625 DOI: 10.2174/1389203715666140327102757] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 11/25/2022]
Abstract
Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms,
where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The
protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications
are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite
materials have been assembled by using reaction centres and different carrier matrices for different purposes
in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides).
In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to
be overcome in the different applications. We will also show possible research directions for the close future in this specific
field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Milano
- Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. ter 1, 6720 Szeged, Hungary.
| |
Collapse
|
16
|
|
17
|
LeBlanc G, Gizzie E, Yang S, Cliffel DE, Jennings GK. Photosystem I protein films at electrode surfaces for solar energy conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10990-11001. [PMID: 24576007 DOI: 10.1021/la500129q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Over the course of a few billion years, nature has developed extraordinary nanomaterials for the efficient conversion of solar energy into chemical energy. One of these materials, photosystem I (PSI), functions as a photodiode capable of generating a charge separation with nearly perfect quantum efficiency. Because of the favorable properties and natural abundance of PSI, researchers around the world have begun to study how this protein complex can be integrated into modern solar energy conversion devices. This feature article describes some of the recent materials and methods that have led to dramatic improvements (over several orders of magnitude) in the photocurrents and photovoltages of biohybrid electrodes based on PSI, with an emphasis on the research activities in our laboratory.
Collapse
Affiliation(s)
- Gabriel LeBlanc
- Departments of †Chemistry and ‡Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | | | |
Collapse
|
18
|
Kim Y, Shin SA, Lee J, Yang KD, Nam KT. Hybrid system of semiconductor and photosynthetic protein. NANOTECHNOLOGY 2014; 25:342001. [PMID: 25091409 DOI: 10.1088/0957-4484/25/34/342001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.
Collapse
|
19
|
The peak effect of the photocurrent on the concentration of electron mediator (para-benzoquinone) in thylakoids. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.09.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
den Hollander MJ, Magis JG, Fuchsenberger P, Aartsma TJ, Jones MR, Frese RN. Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein-gold interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10282-10294. [PMID: 21728318 DOI: 10.1021/la2013528] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The utilization of proteins as nanodevices for solar cells, bioelectronics, and sensors generally necessitates the transfer of electrons to or from a conducting material. Here we report on efforts to maximize photocurrent generation by bacterial photosynthetic reaction center pigment-protein complexes (RCs) interfaced with a metal electrode. The possibility of adhering RCs to a bare gold electrode was investigated with a view to minimizing the distance for electron tunneling between the protein-embedded electron-transfer cofactors and the metal surface. Substantial photocurrents were achieved despite the absence of coating layers on the electrode or engineered linkers to achieve the oriented deposition of RCs on the surface. Comparison with SAM-covered gold electrodes indicating enhanced photocurrent densities was achieved because of the absence of an insulating layer between the photoactive pigments and the metal. Utilizing RCs surrounded by light-harvesting 1 complex resulted in higher photocurrents, surprisingly not due to enhanced photoabsorption but likely due to better surface coverage of uniformly oriented RC-LH1 complexes and the presence of a tetraheme cytochrome that could act as a connecting wire. The introduction of cytochrome-c (cyt-c) as a molecular relay also produced increases in current, probably by intercalating between the adhered RCs or RC-LH1 complexes and the electrode to mediate electron transfer. Varying the order in which components were introduced to the electrode indicated that dynamic rearrangements of RCs and cyt-c occurred at the bare metal surface. An upper limit for current generation could not be detected within the range of the illumination power available, with the maximum current density achieved by RC-LH1 complexes being on the order of 25 μA/cm(2). High currents could be generated consecutively for several hours or days under ambient conditions.
Collapse
Affiliation(s)
- Mart-Jan den Hollander
- Biophysics, Faculty of Mathematics and Natural Sciences, Leiden University, P.O. Box 9502, 2300RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Clavé G, Campidelli S. Efficient covalent functionalisation of carbon nanotubes: the use of “click chemistry”. Chem Sci 2011. [DOI: 10.1039/c1sc00342a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
22
|
Fan Z, Govorov AO. Plasmonic circular dichroism of chiral metal nanoparticle assemblies. NANO LETTERS 2010; 10:2580-7. [PMID: 20536209 DOI: 10.1021/nl101231b] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We describe from the theoretical point of view a plasmonic mechanism of optical activity in chiral complexes composed of metal nanoparticles (NPs). In our model, the circular dichroism (CD) signal comes from the Coulomb interaction between NPs. We show that the CD spectrum is very sensitive to the geometry and composition of a chiral complex and also has typically both positive and negative bands. In our calculations, the strongest CD signals were found for the helix geometry resembling helical structures of many biomolecules. For chiral tetramers and pyramids, the symmetry of a frame of a complex is very important for the formation of a strong CD response. Chiral natural molecules (peptides, DNA, etc.) often have strong CD signals in the UV range and typically show weak CD responses in the visible range of photon energies. In contrast to the natural molecules, the described mechanism of plasmonic CD is able to create strong CD signals in the visible wavelength range. This plasmonic mechanism offers a unique possibility to design colloidal and other nanostructures with strong optical chirality.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
| | | |
Collapse
|
23
|
Carmeli I, Lieberman I, Kraversky L, Fan Z, Govorov AO, Markovich G, Richter S. Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. NANO LETTERS 2010; 10:2069-74. [PMID: 20481472 DOI: 10.1021/nl100254j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The photosystem I (PS I) protein is one of nature's most efficient light harvesting complexes and exhibits outstanding optoelectronic properties. Here we demonstrate how metal nanoparticles which act as artificial antennas can enhance the light absorption of the protein. This hybrid system shows an increase in light absorption and of circular dichroism over the entire absorption band of the protein rather than at the specific plasmon resonance wavelength of spherical metal nanoparticles (NPs). This is explained by broad-resonant and nonresonant field enhancements caused by metal NP aggregates, by the high dielectric constant of the metal, and by NP-PS I-NP antenna junctions which effectively enhance light absorption in the PS I.
Collapse
Affiliation(s)
- Itai Carmeli
- Center for NanoScience and Nanotechnology and School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
24
|
Govorov AO, Fan Z, Hernandez P, Slocik JM, Naik RR. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. NANO LETTERS 2010; 10:1374-82. [PMID: 20184381 DOI: 10.1021/nl100010v] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Our calculations show that a nonchiral nanocrystal is able to dramatically change the circular dichroism (CD) of a chiral molecule when the nanocrystal and molecule form a complex and couple via dipole and multipole Coulomb interactions. Plasmon resonances of metal nanocrystals in the nanocrystal-molecule complex result in both the resonant enhancement of CD signals of molecules and the appearance of new spectral structures. Two mechanisms, in which a nanocrystal can influence the CD effect, have been identified. The first mechanism is the plasmon-induced change in the electromagnetic field inside the chiral molecule. The second is the optical absorption of the nanocrystal-molecule complex due to the chiral currents inside the metal nanocrystal induced by the dipole of the chiral molecule. The first mechanism creates a change in the angle between the effective electric and magnetic dipoles of the molecule. This mechanism can lead to symmetry breaking and to a plasmon-induced CD signal of the nonchiral molecule. Both mechanisms create interesting Fano-like shapes in the CD spectra. Importantly, the second mechanism gives the main contribution to the CD signal at the plasmon frequency when the absorption band of the chiral molecule is far from the plasmon resonance. This may happen in many cases since many biomolecules are optically active in the UV range, whereas plasmon resonances in commonly used nanometals are found at longer wavelengths. As concrete examples, the paper describes alpha-helix and calixarene ligand molecules coupled with metal nanocrystals. The above results are also applied to complexes incorporating semiconductor nanocrystals. The results obtained here can be used to design a variety of hybrid nanostructures with enhanced and tailored optical chirality in the visible wavelength range.
Collapse
Affiliation(s)
- Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA.
| | | | | | | | | |
Collapse
|
25
|
Kaniber SM, Brandstetter M, Simmel FC, Carmeli I, Holleitner AW. On-Chip Functionalization of Carbon Nanotubes with Photosystem I. J Am Chem Soc 2010; 132:2872-3. [DOI: 10.1021/ja910790x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone M. Kaniber
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 3, D-85748 Garching, Germany, Physik-Department, Technische Universität München, James Franck Strasse 1, D-85748 Garching, Germany, and Department of Chemistry, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Matthias Brandstetter
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 3, D-85748 Garching, Germany, Physik-Department, Technische Universität München, James Franck Strasse 1, D-85748 Garching, Germany, and Department of Chemistry, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Friedrich C. Simmel
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 3, D-85748 Garching, Germany, Physik-Department, Technische Universität München, James Franck Strasse 1, D-85748 Garching, Germany, and Department of Chemistry, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Itai Carmeli
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 3, D-85748 Garching, Germany, Physik-Department, Technische Universität München, James Franck Strasse 1, D-85748 Garching, Germany, and Department of Chemistry, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Alexander W. Holleitner
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 3, D-85748 Garching, Germany, Physik-Department, Technische Universität München, James Franck Strasse 1, D-85748 Garching, Germany, and Department of Chemistry, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|