1
|
Keshavarz Shahbaz S, Koushki K, Izadi O, Penson PE, Sukhorukov VN, Kesharwani P, Sahebkar A. Advancements in curcumin-loaded PLGA nanoparticle delivery systems: progressive strategies in cancer therapy. J Drug Target 2024:1-26. [PMID: 39106154 DOI: 10.1080/1061186x.2024.2389892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Cancer is a leading cause of death worldwide, and imposes a substantial socioeconomic burden with little impact especially on aggressive types of cancer. Conventional therapies have many serious side effects including generalised systemic toxicity which limits their long-term use. Tumour resistance and recurrence is another main problem associated with conventional therapy. Purified or extracted natural products have been investigated as cost-effective cancer chemoprotective agents with the potential to reverse or delaying carcinogenesis. Curcumin (CUR) as a natural polyphenolic component, exhibits many pharmacological activities such as anti-cancer, anti-inflammatory, anti-microbial, activity against neurodegenerative diseases including Alzheimer, antidiabetic activities (type II diabetes), anticoagulant properties, wound healing effects in both preclinical and clinical studies. Despite these effective protective properties, CUR has several limitations, including poor aqueous solubility, low bioavailability, chemical instability, rapid metabolism and a short half-life time. To overcome the pharmaceutical problems associated with free CUR, novel nanomedicine strategies (including polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs have been developed. These formulations have the potential to improve the therapeutic efficacy of curcuminoids. In this review, we comprehensively summarise and discuss recent in vitro and in vivo studies to explore the pharmaceutical significance and clinical benefits of PLGA-NPs delivery system to improve the efficacy of CUR in the treatment of cancer.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Omid Izadi
- Department of Industrial Engineering, ACECR Institute of Higher Education Kermanshah, Kermanshah, Iran
| | - Peter E Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Rather GA, Selvakumar P, Srinivas KS, Natarajan K, Kaushik A, Rajan P, Lee SR, Sing WL, Alkhamees M, Lian S, Holley M, Do Jung Y, Lakshmanan VK. Facile synthesis of elastin nanogels encapsulated decursin for castrated resistance prostate cancer therapy. Sci Rep 2024; 14:15095. [PMID: 38956125 PMCID: PMC11219748 DOI: 10.1038/s41598-024-65999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Nanogels offer hope for precise drug delivery, while addressing drug delivery hurdles is vital for effective prostate cancer (PCa) management. We developed an injectable elastin nanogels (ENG) for efficient drug delivery system to overcome castration-resistant prostate cancer (CRPC) by delivering Decursin, a small molecule inhibitor that blocks Wnt/βcatenin pathways for PCa. The ENG exhibited favourable characteristics such as biocompatibility, flexibility, and low toxicity. In this study, size, shape, surface charge, chemical composition, thermal stability, and other properties of ENG were used to confirm the successful synthesis and incorporation of Decursin (DEC) into elastin nanogels (ENG) for prostate cancer therapy. In vitro studies demonstrated sustained release of DEC from the ENG over 120 h, with a pH-dependent release pattern. DU145 cell line induces moderate cytotoxicity of DEC-ENG indicates that nanomedicine has an impact on cell viability and helps strike a balance between therapeutics efficacy and safety while the EPR effect enables targeted drug delivery to prostate tumor sites compared to free DEC. Morphological analysis further supported the effectiveness of DEC-ENG in inducing cell death. Overall, these findings highlight the promising role of ENG-encapsulated decursin as a targeted drug delivery system for CRPC.
Collapse
Affiliation(s)
- Gulzar Ahmed Rather
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, 600116, India
| | - Preethi Selvakumar
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, 600116, India
| | - K Satish Srinivas
- Department of Radiation Oncology, Faculty of Medicine, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, 600 116, India
| | - K Natarajan
- Department of Urology, Faculty of Medicine, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, 600 116, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| | - Prabhakar Rajan
- Centre for Cancer Cell and Molecular Biology, Cancer Research, Barts Cancer Institute, UK City of London Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Seung-Rock Lee
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Hwasun, 58128, Korea
| | - Wong Ling Sing
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Mohammad Alkhamees
- Department of Urology, College of Medicine, Majmaah University, 11952, Al Majmaah, Saudi Arabia
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Merrel Holley
- International Hyperbaric Medical Foundation, The Tissue & Organ Regeneration Institute, Greater New Orleans, USA
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Hwasun, 58128, Korea.
| | - Vinoth-Kumar Lakshmanan
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, 600116, India.
| |
Collapse
|
3
|
Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, Mostafa EM. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers (Basel) 2023; 15:1123. [PMID: 36904364 PMCID: PMC10007077 DOI: 10.3390/polym15051123] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In the last few decades, several natural bioactive agents have been widely utilized in the treatment and prevention of many diseases owing to their unique and versatile therapeutic effects, including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications. Different drug delivery platforms have developed in this regard, and a captivating tool of this has been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer proficient delivery of various natural bioactive agents with good entrapment potential and stability, an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In addition, surface decoration and polymer functionalization have opened the door to improving the characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented. The review focuses on frequently used polymeric materials and their corresponding methods of fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded with natural bioactive agents in the literature, and the potential role of polymer functionalization, hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate for the delivery of natural bioactive agents as well as the challenges and the combating tools used to overcome any hurdles.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| |
Collapse
|
4
|
Development and characterization of DEC-205 receptor targeted Potentilla anserina L polysaccharide PLGA nanoparticles as an antigen delivery system to enhance in vitro and in vivo immune responses in mice. Int J Biol Macromol 2022; 224:998-1011. [DOI: 10.1016/j.ijbiomac.2022.10.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
5
|
Díez-Pascual AM. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3251. [PMID: 35591584 PMCID: PMC9104878 DOI: 10.3390/ma15093251] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
Nanomedicine is a speedily growing area of medical research that is focused on developing nanomaterials for the prevention, diagnosis, and treatment of diseases. Nanomaterials with unique physicochemical properties have recently attracted a lot of attention since they offer a lot of potential in biomedical research. Novel generations of engineered nanostructures, also known as designed and functionalized nanomaterials, have opened up new possibilities in the applications of biomedical approaches such as biological imaging, biomolecular sensing, medical devices, drug delivery, and therapy. Polymers, natural biomolecules, or synthetic ligands can interact physically or chemically with nanomaterials to functionalize them for targeted uses. This paper reviews current research in nanotechnology, with a focus on nanomaterial functionalization for medical applications. Firstly, a brief overview of the different types of nanomaterials and the strategies for their surface functionalization is offered. Secondly, different types of functionalized nanomaterials are reviewed. Then, their potential cytotoxicity and cost-effectiveness are discussed. Finally, their use in diverse fields is examined in detail, including cancer treatment, tissue engineering, drug/gene delivery, and medical implants.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
6
|
Mohanty S, Konkimalla VB, Pal A, Sharma T, Si SC. Naringin as Sustained Delivery Nanoparticles Ameliorates the Anti-inflammatory Activity in a Freund's Complete Adjuvant-Induced Arthritis Model. ACS OMEGA 2021; 6:28630-28641. [PMID: 34746558 PMCID: PMC8567265 DOI: 10.1021/acsomega.1c03066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/05/2021] [Indexed: 05/08/2023]
Abstract
Naringin (NAR), a naturally occurring essential flavonoid, present in grapefruit and Chinese herbal medicines, creates great interest in researchers due to its diverse biological and pharmacological activities. However, further development of NAR is hindered due to its poor water solubility and dissolution rates in GIT. To address these limitations, in this study, we report polymeric nanoparticles (NPs) of NAR (NAR-PLGA-NPs) for enhancing the oral NAR efficiency, with a biodegradable polymer (PLGA) to improve its absorption and bioavailability. NAR-PLGA-NPs were fabricated by a modified solvent emulsification-evaporation technique. Physicochemical properties were evaluated by SEM, particle size distribution, entrapment efficiency, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). In vitro drug release and ex vivo permeation studies were carried out in phosphate buffer (pH 6.8) for 24 h. Furthermore, in vivo anti-arthritic studies were performed on a mouse model, and the results were compared with free NAR. The modulation of inflammatory mediators was also evidently supported by docking studies. Optimized nanoformulation FN4 (NAR-PLGA-NPs) prepared with acetone-ethanol (2:1) as a solvent system in a combination of stabilizers, i.e., poloxamer-188 and sodium deoxylate (1:1), along with 2% PVA solution, was prepared. From size characterization studies, it was observed that nanoformulations possessed a low particle size (179.7 ± 2.05 nm), a low polydispersity index (0.206 ± 0.001), and a negative zeta potential (-9.18 ± 0.78 mV) with a maximum entrapment efficiency (74 ± 3.61%). The drug release followed a Korsmeyer-Peppas release kinetic model (anomalous non-Fickian diffusion), providing greater NAR release after lyophilization (82.11 ± 3.65%) drug release in pH 6.8 phosphate buffer for 24 h. Ex vivo permeation analysis through an isolated goat intestinal membrane revealed 80.02 ± 3.69% drug release in 24 h. Encapsulation of a drug into PLGA is well described by the results of FTIR, DSC, and XRD. Finally, the therapeutic efficacy of optimized FN4 (NAR-PLGA-NPs) and its possible application on RA were further confirmed in a Freund's complete adjuvant-induced rat arthritic model as against free NAR at a dose of 20 mg/kg body wt. Our findings demonstrate that sustained action of NAR from optimized FN4 NPs with a rate-controlling polymeric carrier system exhibited prolonged circulation time and reduced arthritic inflammation, hence indicating the possibility as a novel strategy to secure the unpropitious biological interactions of hydrophobic NAR in a gastric environment.
Collapse
Affiliation(s)
- Sangeeta Mohanty
- School
of Pharmaceutical Sciences, Siksha O Anusandhan
Deemed to be University, Bhubaneswar 751030, India
| | - V. Badireenath Konkimalla
- School
of Biological Sciences, National Institute
of Science Education and Research HBNI, Bhubaneswar 752050, India
| | - Abhisek Pal
- Gitam
School of Pharmacy, Gitam Deemed to be University, Hyderabad 502329, India
| | - Tripti Sharma
- School
of Pharmaceutical Sciences, Siksha O Anusandhan
Deemed to be University, Bhubaneswar 751030, India
| | - Sudam Chandra Si
- School
of Pharmaceutical Sciences, Siksha O Anusandhan
Deemed to be University, Bhubaneswar 751030, India
| |
Collapse
|
7
|
Bhattacharya T, Dutta S, Akter R, Rahman MH, Karthika C, Nagaswarupa HP, Murthy HCA, Fratila O, Brata R, Bungau S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021; 11:1176. [PMID: 34439842 PMCID: PMC8394348 DOI: 10.3390/biom11081176] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most common type of cancer and an important contributor to female mortality. Several genes and epigenetic modifications are involved in the development and progression of BC. Research in phytochemistry, nutrigenomics, and nutrigenetics has provided strong evidence that certain phytonutrients are able to modulate gene expression at transcriptional and post-transcriptional levels. Such phytonutrients may also be beneficial to prevent and treat BC. In this review, we will focus on the nutrigenomic effects of various phytochemicals including polyphenols, phytosterols, terpenoids, alkaloids, and other compounds from different sources. Overall, these phytonutrients are found to inhibit BC cell proliferation, differentiation, invasion, metastasis, angiogenesis, and induce apoptotic cell death by targeting various molecular pathways. They also alter epigenetic mechanisms and enhance the chemosensitivity and radiosensitivity of cancer cells. Such phytochemicals may be used for the effective management of BC patients in the clinical setting in the future. The present article aims to summarize the specific molecular pathways involved in the genetic effects of phytochemicals in BC.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
- Techno India NJR Institute of Technology, Udaipur, Rajasthan 313003, India
| | - Soumam Dutta
- Food and Nutrition Division, University of Calcutta, Calcutta 700027, India;
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | | | - Hanabe Chowdappa Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
8
|
Ferreira NN, de Oliveira Junior E, Granja S, Boni FI, Ferreira LMB, Cury BSF, Santos LCR, Reis RM, Lima EM, Baltazar F, Gremião MPD. Nose-to-brain co-delivery of drugs for glioblastoma treatment using nanostructured system. Int J Pharm 2021; 603:120714. [PMID: 34015380 DOI: 10.1016/j.ijpharm.2021.120714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Mutations on the epidermal growth factor receptor (EGFR), induction of angiogenesis, and reprogramming cellular energetics are all biological features acquired by tumor cells during tumor development, and also known as the hallmarks of cancer. Targeted therapies that combine drugs that are capable of acting against such concepts are of great interest, since they can potentially improve the therapeutic efficacy of treatments of complex pathologies, such as glioblastoma (GBM). However, the anatomical location and biological behavior of this neoplasm imposes great challenges for targeted therapies. A novel strategy that combines alpha-cyano-4-hydroxycinnamic acid (CHC) with the monoclonal antibody cetuximab (CTX), both carried onto a nanotechnology-based delivery system, is herein proposed for GBM treatment via nose-to-brain delivery. The biological performance of Poly (D,L-lactic-co-glycolic acid)/chitosan nanoparticles (NP), loaded with CHC, and conjugated with CTX by covalent bonds (conjugated NP) were extensively investigated. The NP platforms were able to control CHC release, indicating that drug release was driven by the Weibull model. An ex vivo study with nasal porcine mucosa demonstrated the capability of these systems to promote CHC and CTX permeation. Blot analysis confirmed that CTX, covalently associated to NP, impairs EGRF activation. The chicken chorioallantoic membrane assay demonstrated a trend of tumor reduction when conjugated NP were employed. Finally, images acquired by fluorescence tomography evidenced that the developed nanoplatform was effective in enabling nose-to-brain transport upon nasal administration. In conclusion, the developed delivery system exhibited suitability as an effective novel co-delivery approaches for GBM treatment upon intranasal administration.
Collapse
Affiliation(s)
- Natália N Ferreira
- School of Pharmaceutical Science, São Paulo State University, UNESP, Rodovia Araraquara/Jaú Km 01, Araraquara, São Paulo, Brazil.
| | - Edilson de Oliveira Junior
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Fernanda I Boni
- School of Pharmaceutical Science, São Paulo State University, UNESP, Rodovia Araraquara/Jaú Km 01, Araraquara, São Paulo, Brazil.
| | - Leonardo M B Ferreira
- School of Pharmaceutical Science, São Paulo State University, UNESP, Rodovia Araraquara/Jaú Km 01, Araraquara, São Paulo, Brazil
| | - Beatriz S F Cury
- School of Pharmaceutical Science, São Paulo State University, UNESP, Rodovia Araraquara/Jaú Km 01, Araraquara, São Paulo, Brazil.
| | - Lilian C R Santos
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Eliana M Lima
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maria Palmira D Gremião
- School of Pharmaceutical Science, São Paulo State University, UNESP, Rodovia Araraquara/Jaú Km 01, Araraquara, São Paulo, Brazil.
| |
Collapse
|
9
|
Ahmad E, Ali A, Fatima MT, Nimisha, Apurva, Kumar A, Sumi MP, Sattar RSA, Mahajan B, Saluja SS. Ligand decorated biodegradable nanomedicine in the treatment of cancer. Pharmacol Res 2021; 167:105544. [PMID: 33722711 DOI: 10.1016/j.phrs.2021.105544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Cancer is one of the major global health problems, responsible for the second-highest number of deaths. The genetic and epigenetic changes in the oncogenes or tumor suppressor genes alter the regulatory pathways leading to its onset and progression. Conventional methods are used in appropriate combinations for the treatment. Surgery effectively treats localized tumors; however, it fails to treat metastatic tumors, leading to a spread in other organs, causing a high recurrence rate and death. Among the different strategies, the nanocarriers-based approach is highly sought for, but its nonspecific delivery can cause a profound side effect on healthy cells. Targeted nanomedicine has the advantage of targeting cancer cells specifically by interacting with the receptors overexpressed on their surface, overcoming its non-specificity to target healthy cells. Nanocarriers prepared from biodegradable and biocompatible materials are decorated with different ligands by encapsulating therapeutic or diagnostic agents or both to target cancer cells overexpressing the receptors. Scientists are now utilizing a theranostic approach to simultaneously evaluate nanocarrier bio-distribution and its effect on the treatment regime. Herein, we have summarized the recent 5-year efforts in the development of the ligands decorated biodegradable nanocarriers, as a targeted nanomedicine approach, which has been highly promising in the treatment of cancer.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna 810507, India
| | - Munazza Tamkeen Fatima
- Department of Pharmaceutical Science, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant, Postgraduate Institute of Medical, Education and Research (GIPMER), New Delhi 110002, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India; Department of GI Surgery, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India.
| |
Collapse
|
10
|
Mondal L, Mukherjee B, Das K, Bhattacharya S, Dutta D, Chakraborty S, Pal MM, Gaonkar RH, Debnath MC. CD-340 functionalized doxorubicin-loaded nanoparticle induces apoptosis and reduces tumor volume along with drug-related cardiotoxicity in mice. Int J Nanomedicine 2019; 14:8073-8094. [PMID: 31632019 PMCID: PMC6790403 DOI: 10.2147/ijn.s220740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022] Open
Abstract
Background and objective Targeted drug delivery of nanoparticles decorated with site-specific recognition ligands is of considerable interest to minimize cytotoxicity of chemotherapeutics in the normal cells. The study was designed to develop CD-340 antibody-conjugated polylactic-co-glycolic acid (PLGA) nanoparticles loaded with a highly water-soluble potent anticancer drug, doxorubicin (DOX), to specifically deliver entrapped DOX to breast cancer cells. Methods The study showed how to incorporate water-soluble drug in a hydrophobic PLGA (85:15) based matrix which otherwise shows poor drug loading due to leaching effect. The optimized formulation was covalently conjugated to anti-human epidermal growth factor receptor-2 (HER2) antibody (CD-340). Surface conjugation of the ligand was assessed by flow cytometry, confocal microscopy, and gel electrophoresis. Selectivity and cytotoxicity of the experimental nanoparticles were tested on human breast cancer cells SKBR-3, MCF-7, and MDA-MB-231. Both CD-340-conjugated and unconjugated nanoparticles were undergone in vitro and in vivo characterization. Result Higher level of incorporation of DOX (8.5% W/W), which otherwise shows poor drug loading due to leaching effect of the highly water-soluble drug, was seen in this method. In HER2-overexpressing tumor xenograft model, radiolabeled antibody-conjugated nanoparticles showed preferentially more of the formulation accumulation in the tumor area when compared to the treatments with the unconjugated one or with the other control groups of mice. The ligand conjugated nanoparticles showed considerable potential in reduction of tumor growth and cardiac toxicity of DOX in mice, a prominent side-effect of the drug. Conclusion In conclusion, CD-340-conjugated PLGA nanoparticles containing DOX preferentially delivered encapsulated drug to the breast cancer cells and in breast tumor and reduced the breast tumor cells by apoptosis. Site-specific delivery of the formulation to neoplastic cells did not affect normal cells and showed a drastic reduction of DOX-related cardiotoxicity.
Collapse
Affiliation(s)
- Laboni Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kaushik Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | | | - Debasmita Dutta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Shreyasi Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Murari Mohan Pal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Raghuvir H Gaonkar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
11
|
Abriata JP, Turatti RC, Luiz MT, Raspantini GL, Tofani LB, do Amaral RLF, Swiech K, Marcato PD, Marchetti JM. Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:347-355. [DOI: 10.1016/j.msec.2018.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/11/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
|
12
|
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine 2018; 13:3921-3935. [PMID: 30013345 PMCID: PMC6038858 DOI: 10.2147/ijn.s165210] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients treated with conventional cancer chemotherapy suffer from side effects of the drugs due to non-selective action of chemotherapeutic drugs to normal cells. Active targeting nanoparticles that are conjugated to targeting ligands on the surface of nanoparticles play an important role in improving drug selectivity to the cancer cell. Several chemotherapeutic drugs and traditional/herbal medicines reported for anticancer activities have been investigated for their selective delivery to cancer cells by active targeting nanoparticles. This systematic review summarizes reports on this application. Literature search was conducted through PubMed database search up to March 2017 using the terms nanoparticle, chemotherapy, traditional medicine, herbal medicine, natural medicine, natural compound, cancer treatment, and active targeting. Out of 695 published articles, 61 articles were included in the analysis based on the predefined inclusion and exclusion criteria. The targeting ligands included proteins/peptides, hyaluronic acid, folic acid, antibodies/antibody fragments, aptamer, and carbohydrates/polysaccharides. In vitro and in vivo studies suggest that active targeting nanoparticles increase selectivity in cellular uptake and/or cytotoxicity over the conventional chemotherapeutic drugs and non-targeted nanoparticle platform, particularly enhancement of drug efficacy and safety. However, clinical studies are required to confirm these findings.
Collapse
Affiliation(s)
- Nadda Muhamad
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand,
| | - Tullayakorn Plengsuriyakarn
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand, .,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand,
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand, .,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand,
| |
Collapse
|
13
|
Kozlu S, Sahin A, Ultav G, Yerlikaya F, Calis S, Capan Y. Development and in vitro evaluation of doxorubicin and celecoxib co-loaded bone targeted nanoparticles. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Hurtado M, Sankpal UT, Ranjan A, Maram R, Vishwanatha JK, Nagaraju GP, El-Rayes BF, Basha R. Investigational agents to enhance the efficacy of chemotherapy or radiation in pancreatic cancer. Crit Rev Oncol Hematol 2018; 126:201-207. [PMID: 29759562 DOI: 10.1016/j.critrevonc.2018.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) continues to be a fatal malignancy. With standard treatments having modest impact, alternative courses of actions are being investigated such as enhancing the efficacy of standard treatment through sensitization of PC cells to chemotherapy or radiation. This review emphasizes investigational agents that increase the responses to chemotherapy or radiation in PC models. Our group has extensively investigated on Curcumin (Cur), analogs (EF31, UBS109, and L49H37), nanoparticles and a small molecule Tolfenamic acid (TA) for enhancing therapeutic efficacy in both in vitro and in vivo assays. Cur has a low level of toxicity and promising anti-cancer activity, however, its clinical development has been limited by low bioavailability. Cur analogs and nanoparticles were synthesized to improve Cur's efficacy and bioavailability. These compounds were found to be effective in enhancing the therapeutic effects of chemotherapy in pre-clinical models. Small molecules such as NSAIDs have also been tested for the anti-cancer activity and induction of response of chemotherapy and radiation. Interest in TA, a NSAID, has recently increased due to promising preclinical data demonstrating its anti-cancer properties with minimum toxicity. TA also synergistically increased the response of XRT in PC cells and in an orthotropic mouse model. With strong preclinical evidence, research aimed at developing less toxic therapies for PC using Cur analogues or TA is ready for translation into clinical testing.
Collapse
Affiliation(s)
- Myrna Hurtado
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Umesh T Sankpal
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Amalendu Ranjan
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rajasekhar Maram
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jamboor K Vishwanatha
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| | - Riyaz Basha
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
15
|
Sun Q, Zhang L, Xu T, Ying J, Xia B, Jing H, Tong P. Combined use of adipose derived stem cells and TGF-β3 microspheres promotes articular cartilage regeneration in vivo. Biotech Histochem 2018; 93:168-176. [PMID: 29393693 DOI: 10.1080/10520295.2017.1401663] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We investigated enhancement of articular cartilage regeneration using a combination of human adipose derived stem cells (hADSCs) and TGF-β3 microspheres (MS) in vivo. Poly-lactic-co-glycolic acid (PLGA)MS were prepared using a solid/oil/water emulsion solvent evaporation-extraction method. The morphology of the MS was evaluated by scanning electron microscopy (SEM). The release characteristic of the TGF-β3 MS was evaluated. A New Zealand rabbit model for experimental osteoarthritis (OA) was established using the anterior medial meniscus excision method. Thirty OA rabbits were divided randomly into three groups according to different treatments of the right knee joints on day 7 after surgery: hADSCs/MS group received injection of both hADSCs and TGF-β3 MS; hADSCs group was injected with hADSCs; control group was injected with normal saline. Gross observation, histological staining and RT-PCR for collagen II and aggrecan) were used to assess the severity of OA and for evaluating the effect of combined use of hADSCs and TGF-β3 MS on articular cartilage regeneration in vivo. The MS were spherical with a smooth surface and the average diameter was 28 ± 2.3 µm. The encapsulation efficiency test showed that 73.8 ± 2.9% of TGF-β3 were encapsulated in the MS. The release of TGF- β3 lasted for at least 30 days. At both 6 and 12 weeks after injection, three groups exhibited different degrees of OA. Histological analysis showed that the hADSCs/MS group exhibited less OA than the hADSCs group, and the control group exhibited the most severe OA. Real-time RT-PCR showed that the gene expression of both collagen II and aggrecan were significantly up-regulated in the hADSCs/MS group. At 12 weeks after injection, the hADSCs/MS group also exhibited less OA than the other two groups. Combined use of hADSCs and TGF-β3 MS promoted articular cartilage regeneration in rabbit OA models.
Collapse
Affiliation(s)
- Q Sun
- a Department of Orthopaedic Surgery , Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University , Hangzhou.,b Zhejiang Chinese Medical University , Hangzhou
| | - L Zhang
- b Zhejiang Chinese Medical University , Hangzhou
| | - T Xu
- b Zhejiang Chinese Medical University , Hangzhou
| | - J Ying
- b Zhejiang Chinese Medical University , Hangzhou
| | - B Xia
- d Shaoxing Chinese Medical Hospital , Shaoxing , China
| | - H Jing
- b Zhejiang Chinese Medical University , Hangzhou
| | - P Tong
- c Department of Orthopaedic Surgery , The First Affiliated Hospital of Zhejiang Chinese Medical University , Hangzhou
| |
Collapse
|
16
|
Jahan ST, Sadat SM, Haddadi A. Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine. Int J Nanomedicine 2018; 13:367-386. [PMID: 29391795 PMCID: PMC5768188 DOI: 10.2147/ijn.s144266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The aim of this research was to develop a targeted antigen–adjuvant assembled delivery system that will enable dendritic cells (DCs) to efficiently mature to recognize antigens released from tumor cells. It is important to target the DCs with greater efficiency to prime T cell immune responses. In brief, model antigen, ovalbumin (OV), and monophosphoryl lipid A adjuvant were encapsulated within the nanoparticle (NP) by double emulsification solvent evaporation method. Targeted NPs were obtained through ligand incorporation via physical adsorption or chemical conjugation process. Intracellular uptake of the NPs and the maturation of DCs were evaluated with flow cytometry. Remarkably, the developed delivery system had suitable physicochemical properties, such as particle size, surface charge, OV encapsulation efficiency, biphasic OV release pattern, and safety profile. The ligand modified formulations had higher targeting efficiency than the non-tailored NPs. This was also evident when the targeted formulations expressed comparatively higher fold increase in surface activation markers such as CD40, CD86, and major histocompatibility complex class II molecules. The maturation of DCs was further confirmed through secretion of extracellular cytokines compared to control cells in the DC microenvironment. Physicochemical characterization of NPs was performed based on the polymer end groups, their viscosities, and ligand-NP bonding type. In conclusion, the DC stimulatory response was integrated to develop a relationship between the NP structure and desired immune response. Therefore, the present study narrates a comparative evaluation of some selected parameters to choose a suitable formulation useful for in vivo cancer immunotherapy.
Collapse
Affiliation(s)
- Sheikh Tasnim Jahan
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sams Ma Sadat
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Azita Haddadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
17
|
Targeted Therapeutic Nanoparticles: An Immense Promise to Fight against Cancer. JOURNAL OF DRUG DELIVERY 2017; 2017:9090325. [PMID: 29464123 PMCID: PMC5804325 DOI: 10.1155/2017/9090325] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/17/2022]
Abstract
In nanomedicine, targeted therapeutic nanoparticle (NP) is a virtual outcome of nanotechnology taking the advantage of cancer propagation pattern. Tying up all elements such as therapeutic or imaging agent, targeting ligand, and cross-linking agent with the NPs is the key concept to deliver the payload selectively where it intends to reach. The microenvironment of tumor tissues in lymphatic vessels can also help targeted NPs to achieve their anticipated accumulation depending on the formulation objectives. This review accumulates the application of poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) based NP systems, with a specific perspective in cancer. Nowadays, PLGA, PEG, or their combinations are the mostly used polymers to serve the purpose of targeted therapeutic NPs. Their unique physicochemical properties along with their biological activities are also discussed. Depending on the biological effects from parameters associated with existing NPs, several advantages and limitations have been explored in teaming up all the essential facts to give birth to targeted therapeutic NPs. Therefore, the current article will provide a comprehensive review of various approaches to fabricate a targeted system to achieve appropriate physicochemical properties. Based on such findings, researchers can realize the benefits and challenges for the next generation of delivery systems.
Collapse
|
18
|
Gdowski AS, Ranjan A, Sarker MR, Vishwanatha JK. Bone-targeted cabazitaxel nanoparticles for metastatic prostate cancer skeletal lesions and pain. Nanomedicine (Lond) 2017; 12:2083-2095. [PMID: 28805551 PMCID: PMC5585843 DOI: 10.2217/nnm-2017-0190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: The aim of this study was to develop a novel cabazitaxel bone targeted nanoparticle (NP) system for improved drug delivery to the bone microenvironment. Materials & methods: Nanoparticles were developed using poly(D,L-lactic-co-glycolic acid) and cabazitaxel as the core with amino-bisphosphonate surface conjugation. Optimization of nanoparticle physiochemical properties, in vitro evaluation in prostate cancer cell lines and in vivo testing in an intraosseous model of metastatic prostate cancer was performed. Results: This bone targeted cabazitaxel nanocarrier system showed significant reduction in tumor burden, while at the same time maintaining bone structure integrity and reducing pain in the mouse tumor limb. Conclusion: This bone microenvironment targeted nanoparticle system and clinically relevant approach of evaluation represents a promising advancement for treating bone metastatic cancer.
Collapse
Affiliation(s)
- Andrew S Gdowski
- Institute for Molecular Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Amalendu Ranjan
- Institute for Molecular Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Marjana R Sarker
- Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Jamboor K Vishwanatha
- Institute for Molecular Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| |
Collapse
|
19
|
Zhen Z, Tang W, Wang M, Zhou S, Wang H, Wu Z, Hao Z, Li Z, Liu L, Xie J. Protein Nanocage Mediated Fibroblast-Activation Protein Targeted Photoimmunotherapy To Enhance Cytotoxic T Cell Infiltration and Tumor Control. NANO LETTERS 2017; 17:862-869. [PMID: 28027646 DOI: 10.1021/acs.nanolett.6b04150] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs) are found in many types of cancer and play an important role in tumor growth and metastasis. Fibroblast-activation protein (FAP), which is overexpressed on the surface of CAFs, has been proposed as a universal tumor targeting antigen. However, recent studies show that FAP is also expressed on multipotent bone marrow stem cells. A systematic anti-FAP therapy may lead to severe side effects and even death. Hence, there is an urgent need of a therapy that can selectively kill CAFs without causing systemic toxicity. Herein we report a nanoparticle-based photoimmunotherapy (nano-PIT) approach that addresses the need. Specifically, we exploit ferritin, a compact nanoparticle protein cage, as a photosensitizer carrier, and we conjugate to the surface of ferritin a FAP-specific single chain variable fragment (scFv). With photoirradiation, the enabled nano-PIT efficiently eliminates CAFs in tumors but causes little damage to healthy tissues due to the localized nature of the treatment. Interestingly, while not directly killing cancer cells, the nano-PIT caused efficient tumor suppression in tumor-bearing immunocompetent mice. Further investigations found that the nano-PIT led to suppressed C-X-C motif chemokine ligand 12 (CXCL12) secretion and extracellular matrix (ECM) deposition, both of which are regulated by CAFs in untreated tumors and mediate T cell exclusion that prevents physical contact between T cells and cancer cells. By selective killing of CAFs, the nano-PIT reversed the effect, leading to significantly enhanced T cell infiltration, followed by efficient tumor suppression. Our study suggests a new and safe CAF-targeted therapy and a novel strategy to modulate tumor microenvironment (TME) for enhanced immunity against cancer.
Collapse
Affiliation(s)
- Zipeng Zhen
- Department of Radiology, China-Japan Union Hospital, Jilin University , Changchun 130033, China
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Wei Tang
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Shiyi Zhou
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Zhonglin Hao
- Department of Internal Medicine, Medical College of Georgia, Augusta University , Augusta, Georgia 30912, United States
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital, Jilin University , Changchun 130033, China
| | - Jin Xie
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Huo X, Liu P, Zhu J, Liu X, Ju H. Electrochemical immunosensor constructed using TiO2 nanotubes as immobilization scaffold and tracing tag. Biosens Bioelectron 2016; 85:698-706. [DOI: 10.1016/j.bios.2016.05.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/03/2016] [Accepted: 05/17/2016] [Indexed: 12/24/2022]
|
21
|
Kokate RA, Chaudhary P, Sun X, Thamake SI, Maji S, Chib R, Vishwanatha JK, Jones HP. Rationalizing the use of functionalized poly-lactic-co-glycolic acid nanoparticles for dendritic cell-based targeted anticancer therapy. Nanomedicine (Lond) 2016; 11:479-94. [PMID: 26892440 DOI: 10.2217/nnm.15.213] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Delivery of PLGA (poly [D, L-lactide-co-glycolide])-based biodegradable nanoparticles (NPs) to antigen presenting cells, particularly dendritic cells, has potential for cancer immunotherapy. MATERIALS & METHODS Using a PLGA NP vaccine construct CpG-NP-Tag (CpG-ODN-coated tumor antigen [Tag] encapsulating NP) prepared using solvent evaporation technique we tested the efficacy of ex vivo and in vivo use of this construct as a feasible platform for immune-based therapy. RESULTS CpG-NP-Tag NPs were avidly endocytosed and localized in the endosomal compartment of bone marrow-derived dendritic cells. Bone marrow-derived dendritic cells exposed to CpG-NP-Tag NPs exhibited an increased maturation (higher CD80/86 expression) and activation status (enhanced IL-12 secretion levels). In vivo results demonstrated attenuation of tumor growth and angiogenesis as well as induction of potent cytotoxic T-lymphocyte responses. CONCLUSION Collectively, results validate dendritic cells stimulatory response to CpG-NP-Tag NPs (ex vivo) and CpG-NP-Tag NPs' tumor inhibitory potential (in vivo) for therapeutic applications, respectively.
Collapse
Affiliation(s)
- Rutika A Kokate
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Pankaj Chaudhary
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Xiangle Sun
- Department of Cell Biology & Immunology, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Sanjay I Thamake
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA.,RadioMedix Inc., 9701 Richmond Avenue, Suite 222, Houston, TX 77042, USA
| | - Sayantan Maji
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Rahul Chib
- Department of Cell Biology & Immunology, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Jamboor K Vishwanatha
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Harlan P Jones
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| |
Collapse
|
22
|
Jahan ST, Haddadi A. Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles. Int J Nanomedicine 2015; 10:7371-84. [PMID: 26677326 PMCID: PMC4677653 DOI: 10.2147/ijn.s90866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to assess the effect of various formulation parameters on anti-CD205 antibody decorated poly(d, l-lactide co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to target dendritic cells (DCs). In brief, emulsification solvent evaporation technique was adapted to design NP formulations using two different viscosity grades (low and high) of both ester and carboxylic acid terminated PLGA. Incorporation of ligand was achieved following physical adsorption or chemical conjugation processes. The physicochemical characterizations of formulations were executed to assess the effects of different solvents (chloroform and ethyl acetate), stabilizer percentage, polymer types, polymer viscosities, ligand-NP bonding types, cross-linkers, and cryoprotectants (sucrose and trehalose). Modification of any of these parameters shows significant improvement of physicochemical properties of NPs. Ethyl acetate was the solvent of choice for the formulations to ensure better emulsion formation. Infrared spectroscopy confirmed the presence of anti-CD205 antibody in the NP formulation. Finally, cytotoxicity assay confirmed the safety profile of the NPs for DCs. Thus, ligand modified structurally concealed PLGA NPs is a promising delivery tool for targeting DCs in vivo.
Collapse
Affiliation(s)
- Sheikh Tasnim Jahan
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Azita Haddadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
23
|
Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic Applications of Curcumin Nanoformulations. AAPS JOURNAL 2015; 17:1341-56. [PMID: 26335307 DOI: 10.1208/s12248-015-9811-z] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
Abstract
Curcumin (diferuloylmethane) is a bioactive and major phenolic component of turmeric derived from the rhizomes of curcuma longa linn. For centuries, curcumin has exhibited excellent therapeutic benefits in various diseases. Owing to its anti-oxidant and anti-inflammatory properties, curcumin plays a significant beneficial and pleiotropic regulatory role in various pathological conditions including cancer, cardiovascular disease, Alzheimer's disease, inflammatory disorders, neurological disorders, and so on. Despite such phenomenal advances in medicinal applications, the clinical implication of native curcumin is hindered due to low solubility, physico-chemical instability, poor bioavailability, rapid metabolism, and poor pharmacokinetics. However, these issues can be overcome by utilizing an efficient delivery system. Active scientific research was initiated in 2005 to improve curcumin's pharmacokinetics, systemic bioavailability, and biological activity by encapsulating or by loading curcumin into nanoform(s) (nanoformulations). A significant number of nanoformulations exist that can be translated toward medicinal use upon successful completion of pre-clinical and human clinical trials. Considering this perspective, current review provides an overview of an efficient curcumin nanoformulation for a targeted therapeutic option for various human diseases. In this review article, we discuss the clinical evidence, current status, and future opportunities of curcumin nanoformulation(s) in the field of medicine. In addition, this review presents a concise summary of the actions required to develop curcumin nanoformulations as pharmaceutical or nutraceutical candidates.
Collapse
Affiliation(s)
- Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA.
| | - Prashanth K Bhusetty Nagesh
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA.
| |
Collapse
|
24
|
Kokate RA, Thamake SI, Chaudhary P, Mott B, Raut S, Vishwanatha JK, Jones HP. Enhancement of anti-tumor effect of particulate vaccine delivery system by 'bacteriomimetic' CpG functionalization of poly-lactic-co-glycolic acid nanoparticles. Nanomedicine (Lond) 2015; 10:915-29. [PMID: 25867857 DOI: 10.2217/nnm.14.144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Low immunogenicity remains a major obstacle in realizing the full potential of cancer vaccines. In this study, we evaluated CpG-coated tumor antigen (Tag)-encapsulating 'bacteriomimetic' nanoparticles (CpG-nanoparticle [NP]-Tag NPs) as an approach to enhance anti-tumor immunity. MATERIALS & METHODS CpG-NP-Tag NPs were synthesized, characterized for their physicochemical properties and tested in vivo. RESULTS We found CpG predosing followed by intraperitoneal (IP) immunization with CpG-NP-Tag NPs significantly attenuated tumor growth in female BALB/c mice compared with respective controls. Histopathological and Immunofluorescence data revealed CpG-NP-Tag tumors had lower proliferation, higher apoptotic activity, greater CD4(+) and CD8(+) T cell infiltration as well as higher IFN-γ levels as compared with control groups. CONCLUSION Our findings suggest CpG-NP-Tag NPs can enhance anti-tumor effect of nanoparticulate tumor vaccination system.
Collapse
Affiliation(s)
- Rutika A Kokate
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Li YH, Wang ZD, Wang W, Ding CW, Zhang HX, Li JM. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro. Exp Biol Med (Maywood) 2015; 240:1465-71. [PMID: 25877763 DOI: 10.1177/1535370215579142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/28/2015] [Indexed: 11/15/2022] Open
Abstract
The composite of poly-lactic-co-glycolic acid (PLGA) and calcium phosphate cements (CPC) are currently widely used in bone tissue engineering. However, the properties and biocompatibility of the alendronate-loaded PLGA/CPC (APC) porous scaffolds have not been characterized. APC scaffolds were prepared by a solid/oil/water emulsion solvent evaporation method. The morphology, porosity, and mechanical strength of the scaffolds were characterized. Bone marrow mesenchymal stem cells (BMSCs) from rabbit were cultured, expanded and seeded on the scaffolds, and the cell morphology, adhesion, proliferation, cell cycle and osteogenic differentiation of BMSCs were determined. The results showed that the APC scaffolds had a porosity of 67.43 ± 4.2% and pore size of 213 ± 95 µm. The compressive strength for APC was 5.79 ± 1.21 MPa, which was close to human cancellous bone. The scanning electron microscopy, cell counting kit-8 assay, flow cytometry and ALP activity revealed that the APC scaffolds had osteogenic potential on the BMSCs in vitro and exhibited excellent biocompatibility with engineered bone tissue. APC scaffolds exhibited excellent biocompatibility and osteogenesis potential and can potentially be used for bone tissue engineering.
Collapse
Affiliation(s)
- Yu-Hua Li
- Department of Orthopedics, Shandong University Qilu Hospital, Shandong 250012, China
| | - Zhen-Dong Wang
- Department of Orthopedics, The People's Hospital of Lanshan, Shandong 276800, China
| | - Wei Wang
- Department of Orthopedics, The 3rd Hospital of Yan Kuang Group Company Limited, Shandong 272100, China
| | - Chang-Wei Ding
- Department of Spinal Surgery, The 2nd People's Hospital of Jining, Shandong 272100, China
| | - Hao-Xuan Zhang
- Department of Orthopedics, Shandong University Qilu Hospital, Shandong 250012, China
| | - Jian-Min Li
- Department of Orthopedics, Shandong University Qilu Hospital, Shandong 250012, China
| |
Collapse
|
26
|
Mukerjee A, Iyidogan P, Castellanos-Gonzalez A, Cisneros JA, Czyzyk D, Ranjan AP, Jorgensen WL, White AC, Vishwanatha JK, Anderson KS. A nanotherapy strategy significantly enhances anticryptosporidial activity of an inhibitor of bifunctional thymidylate synthase-dihydrofolate reductase from Cryptosporidium. Bioorg Med Chem Lett 2015; 25:2065-7. [PMID: 25900220 PMCID: PMC4416209 DOI: 10.1016/j.bmcl.2015.03.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Cryptosporidiosis, a gastrointestinal disease caused by protozoans of the genus Cryptosporidium, is a common cause of diarrheal diseases and often fatal in immunocompromised individuals. Bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis (C. hominis) has been a molecular target for inhibitor design. C. hominis TS-DHFR inhibitors with nM potency at a biochemical level have been developed however drug delivery to achieve comparable antiparasitic activity in Cryptosporidium infected cell culture has been a major hurdle for designing effective therapies. Previous mechanistic and structural studies have identified compound 906 as a nM C. hominis TS-DHFR inhibitor in vitro, having μM antiparasitic activity in cell culture. In this work, proof of concept studies are presented using a nanotherapy approach to improve drug delivery and the antiparasitic activity of 906 in cell culture. We utilized PLGA nanoparticles that were loaded with 906 (NP-906) and conjugated with antibodies to the Cryptosporidium specific protein, CP2, on the nanoparticle surface in order to specifically target the parasite. Our results indicate that CP2 labeled NP-906 (CP2-NP-906) reduces the level of parasites by 200-fold in cell culture, while NP-906 resulted in 4.4-fold decrease. Moreover, the anticryptosporidial potency of 906 improved 15 to 78-fold confirming the utility of the antibody conjugated nanoparticles as an effective drug delivery strategy.
Collapse
Affiliation(s)
- Anindita Mukerjee
- Department of Molecular Biology & Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Pinar Iyidogan
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Alejandro Castellanos-Gonzalez
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - José A Cisneros
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520, USA
| | - Daniel Czyzyk
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Amalendu Prakash Ranjan
- Department of Molecular Biology & Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - William L Jorgensen
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520, USA
| | - A Clinton White
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jamboor K Vishwanatha
- Department of Molecular Biology & Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Moura CC, Segundo MA, Neves JD, Reis S, Sarmento B. Co-association of methotrexate and SPIONs into anti-CD64 antibody-conjugated PLGA nanoparticles for theranostic application. Int J Nanomedicine 2014; 9:4911-22. [PMID: 25364249 PMCID: PMC4211909 DOI: 10.2147/ijn.s68440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease with severe consequences for the quality of life of sufferers. Regrettably, the inflammatory process involved remains unclear, and finding successful therapies as well as new means for its early diagnosis have proved to be daunting tasks. As macrophages are strongly associated with RA inflammation, effective diagnosis and therapy may encompass the ability to target these cells. In this work, a new approach for targeted therapy and imaging of RA was developed based on the use of multifunctional polymeric nanoparticles. Methods Poly(lactic-co-glycolic acid) nanoparticles were prepared using a single emulsion-evaporation method and comprisaed the co-association of superparamagnetic iron oxide nanoparticles (SPIONs) and methotrexate. The nanoparticles were further functionalized with an antibody against the macrophage-specific receptor, CD64, which is overexpressed at sites of RA. The devised nanoparticles were characterized for mean particle size, polydispersity index, zeta potential, and morphology, as well as the association of SPIONs, methotrexate, and the anti-CD64 antibody. Lastly, the cytotoxicity of the developed nanoparticles was assessed in RAW 264.7 cells using standard MTT and LDH assays. Results The nanoparticles had a mean diameter in the range of 130–200 nm and zeta potential values ranging from −32 mV to −16 mV. Association with either methotrexate or SPIONs did not significantly affect the properties of the nanoparticles. Conjugation with the anti-CD64 antibody, in turn, caused a slight increase in size and surface charge. Transmission electron microscopy confirmed the association of SPIONs within the poly(lactic-co-glycolic acid) matrix. Both anti-CD64 and methotrexate association were confirmed by Fourier transform infrared spectroscopy, and quantified yielding values as high as 36% and 79%, respectively. In vitro toxicity studies confirmed the methotrexate-loaded nanosystem to be more effective than the free drug. Conclusion Multifunctional anti-CD64-conjugated poly(lactic-co-glycolic acid) nanoparticles for the combined delivery of methotrexate and SPIONs were successfully prepared and characterized. This nanosystem has the potential to provide a new theranostic approach for the management of RA.
Collapse
Affiliation(s)
- Catarina Costa Moura
- REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal ; Faculty of Engineering, University of Porto, Porto, Portugal
| | - Marcela A Segundo
- REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José das Neves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto de Ciências da Saúde-Norte, Gandra PRD, Portugal ; INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - Salette Reis
- REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto de Ciências da Saúde-Norte, Gandra PRD, Portugal ; INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
PEG-detachable lipid–polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells. Anticancer Drugs 2014; 25:751-66. [DOI: 10.1097/cad.0000000000000092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
|
30
|
Functionalized nanospheres for targeted delivery of paclitaxel. J Control Release 2013; 171:315-21. [DOI: 10.1016/j.jconrel.2013.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
|
31
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des 2013; 19:1994-2010. [PMID: 23116309 PMCID: PMC3640558 DOI: 10.2174/138161213805289219] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/22/2012] [Indexed: 11/22/2022]
Abstract
Cancer is the second leading cause of death in the United States. Conventional therapies cause widespread systemic toxicity and lead to serious side effects which prohibit their long term use. Additionally, in many circumstances tumor resistance and recurrence is commonly observed. Therefore, there is an urgent need to identify suitable anticancer therapies that are highly precise with minimal side effects. Curcumin is a natural polyphenol molecule derived from the Curcuma longa plant which exhibits anticancer, chemopreventive, chemo- and radio-sensitization properties. Curcumin's widespread availability, safety, low cost and multiple cancer fighting functions justify its development as a drug for cancer treatment. However, various basic and clinical studies elucidate curcumin's limited efficacy due to its low solubility, high rate of metabolism, poor bioavailability and pharmacokinetics. A growing list of nanomedicine(s) using first line therapeutic drugs have been approved or are under consideration by the Food and Drug Administration (FDA) to improve human health. These nanotechnology strategies may help to overcome challenges and ease the translation of curcumin from bench to clinical application. Prominent research is reviewed which shows that advanced drug delivery of curcumin (curcumin nanoformulations or curcumin nanomedicine) is able to leverage therapeutic benefits by improving bioavailability and pharmacokinetics which in turn improves binding, internalization and targeting of tumor(s). Outcomes using these novel drug delivery systems have been discussed in detail. This review also describes the tumor-specific drug delivery system(s) that can be highly effective in destroying tumors. Such new approaches are expected to lead to clinical trials and to improve cancer therapeutics.
Collapse
Affiliation(s)
- Murali M. Yallapu
- Cancer Biology Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD 57104, USA
| | - Meena Jaggi
- Cancer Biology Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD 57104, USA
- Department of OB/GYN and Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA
| | - Subhash C. Chauhan
- Cancer Biology Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD 57104, USA
- Department of OB/GYN and Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA
| |
Collapse
|
33
|
Oliveira MF, Guimarães PPG, Gomes ADM, Suárez D, Sinisterra RD. Strategies to target tumors using nanodelivery systems based on biodegradable polymers, aspects of intellectual property, and market. J Chem Biol 2012; 6:7-23. [PMID: 24294318 DOI: 10.1007/s12154-012-0086-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/15/2012] [Indexed: 12/17/2022] Open
Affiliation(s)
- Michele F Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Avenida Pres. Antônio Carlos 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais Brazil
| | | | | | | | | |
Collapse
|
34
|
Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials 2012; 33:7164-73. [DOI: 10.1016/j.biomaterials.2012.06.026] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/16/2012] [Indexed: 11/19/2022]
|
35
|
Aravind A, Yoshida Y, Maekawa T, Kumar DS. Aptamer-conjugated polymeric nanoparticles for targeted cancer therapy. Drug Deliv Transl Res 2012; 2:418-36. [DOI: 10.1007/s13346-012-0104-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Aravind A, Jeyamohan P, Nair R, Veeranarayanan S, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng 2012; 109:2920-31. [PMID: 22615073 DOI: 10.1002/bit.24558] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/28/2012] [Accepted: 05/07/2012] [Indexed: 01/18/2023]
Abstract
Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug-loaded PLGA-lecithin-PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The drug-loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF-7 and GI-1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug-loading studies indicated that under the same drug loading, the aptamer-targeted NPs show enhanced cancer killing effect compared to the corresponding non-targeted NPs. In addition, the PLGA-lecithin-PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer-PLGA-lecithin-PEG NPs are potential carrier candidates for differential targeted drug delivery.
Collapse
Affiliation(s)
- Athulya Aravind
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University Kawagoe, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Is dialysis a reliable method for studying drug release from nanoparticulate systems?-A case study. Int J Pharm 2012; 434:28-34. [PMID: 22617795 DOI: 10.1016/j.ijpharm.2012.05.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 12/25/2022]
Abstract
The kinetics of in vitro drug release from nanoparticulate systems is extensive, though uncritically, being studied by dialysis. Evaluating the actual relevance of dialysis data to drug release was the purpose of this study. Diclofenac- or ofloxacin-loaded chitosan nanoparticles crosslinked with tripolyphosphate were prepared and characterized. With each drug, dynamic dialysis was applied to nanoparticle dispersion, solution containing dissolved chitosan·HCl, and solution of plain drug. Drug kinetics in receiving phase (KRP), nanoparticle matrix (KNM) and nanoparticle dispersion medium (KDM) were determined. Release of each drug from nanoparticles was also assessed by ultracentrifugation. Although KRP data may be interpreted in terms of sustained release from nanoparticles, KNM and KDM data show that, with both drugs, the process was in fact controlled by permeation across dialysis membrane. Analysis of KRP data reveals a reversible interaction of diclofenac with dispersed nanoparticle surface, similar to the interaction of this drug with dissolved chitosan·HCl. No such interactions are noticed with ofloxacin. The results from the ultracentrifugation method agree with the above interpretation of dialysis data. This case study shows that dialysis data from a nanoparticle dispersion is not necessarily descriptive of sustained-release from nanoparticles, hence, if interpreted uncritically, it may be misleading.
Collapse
|
38
|
Lu Y, Ding N, Yang C, Huang L, Liu J, Xiang G. Preparation and in vitro evaluation of a folate-linked liposomal curcumin formulation. J Liposome Res 2012; 22:110-9. [PMID: 22372871 DOI: 10.3109/08982104.2011.627514] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Curcumin (CUR), a plant-derived compound, exhibits versatile antitumor effects. However, its poor hydrophilic property limits its application. To circumvent these drawbacks, we encapsulated CUR in liposomes modified with folic acid for better solubility and enhanced tumor targeting. This novel formulation was prepared by a film-dispersion method and characterized by size, zeta potential, drug-loading efficiency, and physical-condition stability. In vitro, cellular uptake efficiency, cytotoxicity, and apoptosis analysis by flow cytometry were performed to evaluate tumor targeting and killing ability. Results showed that the folate-receptor (FR)-targeted liposomal CUR (F-CUR-L) performed with improved solubility, sufficient stability, and enhanced antitumor activity. Mean diameter, zeta potential, and drug-loading efficiency were 182 nm, -26 mV, and 68%, respectively, and this formulation exhibited stability in storage at 4 °C for 1 month. In vitro, FR-positive cells endocytosed more F-CUR-L than nontargeted liposomal CUR (CUR-L); thus, the former induced more cellular proliferation inhibition and higher apoptosis than the latter, and the enhanced targeting could be hindered by 1 mM of free folic acid. Further, KB cells were more sensitive to F-CUR-L, compared to Hela cells. Finally, the two kinds of tumor cells treated with F-CUR-L also showed dose- and time-dependent apoptosis.
Collapse
Affiliation(s)
- Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
39
|
Aravind A, Varghese SH, Veeranarayanan S, Mathew A, Nagaoka Y, Iwai S, Fukuda T, Hasumura T, Yoshida Y, Maekawa T, Kumar DS. Aptamer-labeled PLGA nanoparticles for targeting cancer cells. Cancer Nanotechnol 2012; 3:1-12. [PMID: 26069492 PMCID: PMC4452037 DOI: 10.1007/s12645-011-0024-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death in most parts of the world and is a very serious cause of concern particularly in developing countries. In this work, we prepared and evaluated the aptamer-labeled paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Apt-PTX-PLGA NPs) which can ameliorate drug bioavailability and enable accurate drug targeting to cancer cells with controlled drug release for cancer therapy. Paclitaxel-loaded PLGA nanoparticles (PTX-PLGA NPs) were formulated by a single-emulsion/solvent evaporation method and were further surface-functionalized with a chemical cross-linker bis(sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. The prepared nanoparticles were characterized by atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Cytotoxicity studies were carried out using normal human mammary epithelial cells (HMEC cells) and human glial cancer cells (GI-1 cells) by methylthiazolyldiphenyl-tetrazolium bromide assay and Alamar blue assay, which confirmed that PTX-PLGA NPs with aptamer conjugation (Apt-PTX-PLGA NPs) were comparatively non-toxic to HMEC cells while toxic to GI-1 cancer cells. Cellular uptake of PTX-PLGA NPs with and without aptamer conjugation was studied using GI-1 cells and monitored by confocal microscopy and phase contrast microscopy. Our studies demonstrated significant internalization and retention of nanoparticles inside the cells, inducing apoptosis. The preferential accumulation of PTX-PLGA NPs within the cancer cells were also confirmed by flow cytometry-based uptake studies. The results indicated that Apt-PTX-PLGA NPs could be a promising targeted therapeutic delivery vehicle for cancer treatment.
Collapse
Affiliation(s)
- Athulya Aravind
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| | - Saino Hanna Varghese
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| | - Srivani Veeranarayanan
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| | - Anila Mathew
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| | - Yutaka Nagaoka
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| | - Seiki Iwai
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| | - Takahiro Fukuda
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| | - Takashi Hasumura
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| | - Yasuhiko Yoshida
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| | - D Sakthi Kumar
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama Japan
| |
Collapse
|
40
|
Maya S, Sabitha M, Nair SV, Jayakumar R. Phytomedicine-Loaded Polymeric Nanomedicines: Potential Cancer Therapeutics. MULTIFACETED DEVELOPMENT AND APPLICATION OF BIOPOLYMERS FOR BIOLOGY, BIOMEDICINE AND NANOTECHNOLOGY 2012. [DOI: 10.1007/12_2012_195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today 2011; 17:71-80. [PMID: 21959306 DOI: 10.1016/j.drudis.2011.09.009] [Citation(s) in RCA: 458] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 12/31/2022]
Abstract
Curcumin, a natural diphenolic compound derived from turmeric Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion and apoptosis, revealing its anticancer potential. In this review, we focus on the design and development of nanoparticles, self-assemblies, nanogels, liposomes and complex fabrication for sustained and efficient curcumin delivery. We also discuss the anticancer applications and clinical benefits of nanocurcumin formulations. Only a few novel multifunctional and composite nanosystem strategies offer simultaneous therapy as well as imaging characteristics. We also summarize the challenges to developing curcumin delivery platforms and up-to-date solutions for improving curcumin bioavailability and anticancer potential for therapy.
Collapse
|
42
|
Ranjan AP, Zeglam K, Mukerjee A, Thamake S, Vishwanatha JK. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging. NANOTECHNOLOGY 2011; 22:295104. [PMID: 21693801 DOI: 10.1088/0957-4484/22/29/295104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The objective of this study was to develop optical imaging agent loaded biodegradable nanoparticles with indocynanine green (ICG) using chitosan modified poly(L-lactide-co-epsilon-caprolactone) (PLCL):poloxamer (Pluronic F68) blended polymer. Nanoparticles were formulated with an emulsification solvent diffusion technique using PLCL and poloxamer as blend-polymers. Polyvinyl alcohol (PVA) and chitosan were used as stabilizers. The particle size, shape and zeta potential of the formulated nanoparticles and the release kinetics of ICG from these nanoparticles were determined. Further, biodistribution of these nanoparticles was studied in mice at various time points until 24 h following intravenous administration, using a non-invasive imaging system. The average particle size of the nanoparticles was found to be 146 ± 3.7 to 260 ± 4.5 nm. The zeta potential progressively increased from - 41.6 to + 25.3 mV with increasing amounts of chitosan. Particle size and shape of the nanoparticles were studied using transmission electron microscopy (TEM) which revealed the particles to be smooth and spherical in shape. These nanoparticles were efficiently delivered to the cytoplasm of the cells, as observed in prostate and breast cancer cells using confocal laser scanning microscopy. In vitro release studies indicated sustained release of ICG from the nanoparticles over a period of seven days. Nanoparticle distribution results in mice showing improved uptake and accumulation with chitosan modified nanoparticles in various organs and slower clearance at different time points over a 24 h period as compared to unmodified nanoparticles. The successful formulation of such cationically modified nanoparticles for encapsulating optical agents may lead to a potential deep tissue imaging technique for tumor detection, diagnosis and therapy.
Collapse
Affiliation(s)
- Amalendu P Ranjan
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|