1
|
Chen CC, Chai JD. Electronic Properties of Hexagonal Graphene Quantum Rings from TAO-DFT. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223943. [PMID: 36432229 PMCID: PMC9694783 DOI: 10.3390/nano12223943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/01/2023]
Abstract
The reliable prediction of electronic properties associated with graphene nanosystems can be challenging for conventional electronic structure methods, such as Kohn-Sham (KS) density functional theory (DFT), due to the presence of strong static correlation effects in these systems. To address this challenge, TAO (thermally assisted occupation) DFT has been recently proposed. In the present study, we employ TAO-DFT to predict the electronic properties of n-HGQRs (i.e., the hexagonal graphene quantum rings consisting of n aromatic rings fused together at each side). From TAO-DFT, the ground states of n-HGQRs are singlets for all the cases investigated (n = 3-15). As the system size increases, there should be a transition from the nonradical to polyradical nature of ground-state n-HGQR. The latter should be intimately related to the localization of active TAO-orbitals at the inner and outer edges of n-HGQR, which increases with increasing system size.
Collapse
Affiliation(s)
- Chi-Chun Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jeng-Da Chai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Center for Theoretical Physics and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Song S, Su J, Telychko M, Li J, Li G, Li Y, Su C, Wu J, Lu J. On-surface synthesis of graphene nanostructures with π-magnetism. Chem Soc Rev 2021; 50:3238-3262. [PMID: 33481981 DOI: 10.1039/d0cs01060j] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Graphene nanostructures (GNs) including graphene nanoribbons and nanoflakes have attracted tremendous interest in the field of chemistry and materials science due to their fascinating electronic, optical and magnetic properties. Among them, zigzag-edged GNs (ZGNs) with precisely-tunable π-magnetism hold great potential for applications in spintronics and quantum devices. To improve the stability and processability of ZGNs, substitutional groups are often introduced to protect the reactive edges in organic synthesis, which renders the study of their intrinsic properties difficult. In contrast to the conventional wet-chemistry method, on-surface bottom-up synthesis presents a promising approach for the fabrication of both unsubstituted ZGNs and functionalized ZGNs with atomic precision via surface-catalyzed transformation of rationally-designed precursors. The structural and spin-polarized electronic properties of these ZGNs can then be characterized with sub-molecular resolution by means of scanning probe microscopy techniques. This review aims to highlight recent advances in the on-surface synthesis and characterization of a diversity of ZGNs with π-magnetism. We also discuss the important role of precursor design and reaction stimuli in the on-surface synthesis of ZGNs and their π-magnetism origin. Finally, we will highlight the existing challenges and future perspective surrounding the synthesis of novel open-shell ZGNs towards next-generation quantum technology.
Collapse
Affiliation(s)
- Shaotang Song
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen, 518060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Valli A, Amaricci A, Brosco V, Capone M. Quantum Interference Assisted Spin Filtering in Graphene Nanoflakes. NANO LETTERS 2018; 18:2158-2164. [PMID: 29473754 DOI: 10.1021/acs.nanolett.8b00453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate that hexagonal graphene nanoflakes with zigzag edges display quantum interference (QI) patterns analogous to benzene molecular junctions. In contrast with graphene sheets, these nanoflakes also host magnetism. The cooperative effect of QI and magnetism enables spin-dependent quantum interference effects that result in a nearly complete spin polarization of the current and holds a huge potential for spintronic applications. We understand the origin of QI in terms of symmetry arguments, which show the robustness and generality of the effect. This also allows us to devise a concrete protocol for the electrostatic control of the spin polarization of the current by breaking the sublattice symmetry of graphene, by deposition on hexagonal boron nitride, paving the way to switchable spin filters. Such a system benefits from all of the extraordinary conduction properties of graphene, and at the same time, it does not require any external magnetic field to select the spin polarization, as magnetism emerges spontaneously at the edges of the nanoflake.
Collapse
Affiliation(s)
- Angelo Valli
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and Democritos National Simulation Center, Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (CNR-IOM) , Via Bonomea 265 , 34136 Trieste , Italy
| | - Adriano Amaricci
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and Democritos National Simulation Center, Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (CNR-IOM) , Via Bonomea 265 , 34136 Trieste , Italy
| | - Valentina Brosco
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and Democritos National Simulation Center, Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (CNR-IOM) , Via Bonomea 265 , 34136 Trieste , Italy
| | - Massimo Capone
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and Democritos National Simulation Center, Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (CNR-IOM) , Via Bonomea 265 , 34136 Trieste , Italy
| |
Collapse
|
4
|
Faria D, Carrillo-Bastos R, Sandler N, Latgé A. Fano resonances in hexagonal zigzag graphene rings under external magnetic flux. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:175301. [PMID: 25836340 DOI: 10.1088/0953-8984/27/17/175301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We study transport properties of hexagonal zigzag graphene quantum rings connected to semi-infinite nanoribbons. Open two-fold symmetric structures support localized states that can be traced back to those existing in the isolated six-fold symmetric rings. Using a tight-binding Hamiltonian within the Green's function formalism, we show that an external magnetic field promotes these localized states to Fano resonances with robust signatures in transport. Local density of states and current distributions of the resonant states are calculated as a function of the magnetic flux intensity. For structures on corrugated substrates we analyze the effect of strain by including an out-of-plane centro-symmetric deformation in the model. We show that small strains shift the resonance positions without further modifications, while high strains introduce new ones.
Collapse
Affiliation(s)
- D Faria
- Universidade Federal Fluminense, Av. Litorânea sn, 24210-340 Niterói, RJ, Brasil
| | | | | | | |
Collapse
|
5
|
Alam M, Voss PL. Graphene quantum interference photodetector. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:726-35. [PMID: 25821713 PMCID: PMC4362323 DOI: 10.3762/bjnano.6.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach-Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.
Collapse
Affiliation(s)
- Mahbub Alam
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia 30324-0250, USA
- UMI 2958 Georgia Tech-CNRS, Georgia Tech Lorraine, 2–3 Rue Marconi, 57070 Metz, France
| | - Paul L Voss
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia 30324-0250, USA
- UMI 2958 Georgia Tech-CNRS, Georgia Tech Lorraine, 2–3 Rue Marconi, 57070 Metz, France
| |
Collapse
|
6
|
Nguyen VH, Niquet YM, Dollfus P. The interplay between the Aharonov-Bohm interference and parity selective tunneling in graphene nanoribbon rings. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:205301. [PMID: 24785639 DOI: 10.1088/0953-8984/26/20/205301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on a numerical study of the Aharonov-Bohm (AB) effect and parity selective tunneling in pn junctions based on rectangular graphene rings where the contacts and ring arms are all made of zigzag nanoribbons. We find that when applying a magnetic field to the ring, the AB interference can reverse the parity symmetry of incoming waves and hence can strongly modulate the parity selective transmission through the system. Therefore, the transmission between two states of different parity exhibits the AB oscillations with a π-phase shift, compared to the case of states of the same parity. On this basis, it is shown that interesting effects, such as giant (both positive and negative) magnetoresistance and strong negative differential conductance, can be achieved in this structure. Our study thus presents a new property of the AB interference in graphene nanorings, which could be helpful for further understanding the transport properties of graphene mesoscopic systems.
Collapse
Affiliation(s)
- V Hung Nguyen
- L-Sim, SP2M, UMR-E CEA/UJF-Grenoble 1, INAC, 38054 Grenoble, France. Center for Computational Physics, Institute of Physics, Vietnam Academy of Science and Technology, PO Box 429 Bo Ho, 10000 Hanoi, Vietnam
| | | | | |
Collapse
|
7
|
Hu T, Ma D, Ma F, Xu K, Chu PK. Direct and diffuse reflection of electron waves at armchair edges of epitaxial graphene. RSC Adv 2013. [DOI: 10.1039/c3ra43215g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Munárriz J, Domínguez-Adame F, Orellana PA, Malyshev AV. Graphene nanoring as a tunable source of polarized electrons. NANOTECHNOLOGY 2012; 23:205202. [PMID: 22543955 DOI: 10.1088/0957-4484/23/20/205202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We propose a novel spin filter based on a graphene nanoring fabricated above a ferromagnetic strip. The exchange interaction between the magnetic moments of the ions in the ferromagnet and the electron spin splits the electronic states, and gives rise to spin polarization of the conductance and the total electric current. We demonstrate that both the current and its polarization can be controlled by a side-gate voltage. This opens the possibility to use the proposed device as a tunable source of polarized electrons.
Collapse
Affiliation(s)
- J Munárriz
- GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid, Spain.
| | | | | | | |
Collapse
|