1
|
Budakian R, Finkler A, Eichler A, Poggio M, Degen CL, Tabatabaei S, Lee I, Hammel PC, Eugene SP, Taminiau TH, Walsworth RL, London P, Bleszynski Jayich A, Ajoy A, Pillai A, Wrachtrup J, Jelezko F, Bae Y, Heinrich AJ, Ast CR, Bertet P, Cappellaro P, Bonato C, Altmann Y, Gauger E. Roadmap on nanoscale magnetic resonance imaging. NANOTECHNOLOGY 2024; 35:412001. [PMID: 38744268 DOI: 10.1088/1361-6528/ad4b23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The field of nanoscale magnetic resonance imaging (NanoMRI) was started 30 years ago. It was motivated by the desire to image single molecules and molecular assemblies, such as proteins and virus particles, with near-atomic spatial resolution and on a length scale of 100 nm. Over the years, the NanoMRI field has also expanded to include the goal of useful high-resolution nuclear magnetic resonance (NMR) spectroscopy of molecules under ambient conditions, including samples up to the micron-scale. The realization of these goals requires the development of spin detection techniques that are many orders of magnitude more sensitive than conventional NMR and MRI, capable of detecting and controlling nanoscale ensembles of spins. Over the years, a number of different technical approaches to NanoMRI have emerged, each possessing a distinct set of capabilities for basic and applied areas of science. The goal of this roadmap article is to report the current state of the art in NanoMRI technologies, outline the areas where they are poised to have impact, identify the challenges that lie ahead, and propose methods to meet these challenges. This roadmap also shows how developments in NanoMRI techniques can lead to breakthroughs in emerging quantum science and technology applications.
Collapse
Affiliation(s)
- Raffi Budakian
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Amit Finkler
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Eichler
- Institute for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Martino Poggio
- Department of Physics and Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Christian L Degen
- Institute for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Sahand Tabatabaei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Inhee Lee
- Department of Physics, The Ohio State University, Columbus, OH 43210, United States of America
| | - P Chris Hammel
- Department of Physics, The Ohio State University, Columbus, OH 43210, United States of America
| | - S Polzik Eugene
- Niels Bohr Institute, University of Copenhagen, 17, Copenhagen, 2100, Denmark
| | - Tim H Taminiau
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Netherlands
| | - Ronald L Walsworth
- University of Maryland 2218 Kim Engineering Building, College Park, MD 20742, United States of America
| | - Paz London
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Ania Bleszynski Jayich
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, CA 97420, United States of America
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
- Quantum Information Science Program, CIFAR, 661 University Ave., Toronto, ON M5G 1M1, Canada
| | - Arjun Pillai
- Department of Chemistry, University of California, Berkeley, CA 97420, United States of America
| | - Jörg Wrachtrup
- 3. Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Fedor Jelezko
- Institute of Quantum Optics, Ulm University, Ulm, 89081, Germany
| | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Christian R Ast
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Patrice Bertet
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Paola Cappellaro
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States of America
| | - Cristian Bonato
- SUPA, Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, HeriotWatt University, Edinburgh EH14 4AS, United Kingdom
| | - Yoann Altmann
- Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Erik Gauger
- SUPA, Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, HeriotWatt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
2
|
Engelsen NJ, Beccari A, Kippenberg TJ. Ultrahigh-quality-factor micro- and nanomechanical resonators using dissipation dilution. NATURE NANOTECHNOLOGY 2024; 19:725-737. [PMID: 38443697 DOI: 10.1038/s41565-023-01597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/14/2023] [Indexed: 03/07/2024]
Abstract
Mechanical resonators are widely used in sensors, transducers and optomechanical systems, where mechanical dissipation sets the ultimate limit to performance. Over the past 15 years, the quality factors in strained mechanical resonators have increased by four orders of magnitude, surpassing the previous state of the art achieved in bulk crystalline resonators at room temperature and liquid helium temperatures. In this Review, we describe how these advances were made by leveraging 'dissipation dilution'-where dissipation is reduced through a combination of static tensile strain and geometric nonlinearity in dynamic strain. We then review the state of the art in strained nanomechanical resonators and discuss the potential for even higher quality factors in crystalline materials. Finally, we detail current and future applications of dissipation-diluted mechanical resonators.
Collapse
Affiliation(s)
- Nils Johan Engelsen
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Gothenburg, Sweden.
| | - Alberto Beccari
- Instutute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- Center for Quantum Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| | - Tobias Jan Kippenberg
- Instutute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- Center for Quantum Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Héritier M, Pachlatko R, Tao Y, Abendroth JM, Degen CL, Eichler A. Spatial Correlation between Fluctuating and Static Fields over Metal and Dielectric Substrates. PHYSICAL REVIEW LETTERS 2021; 127:216101. [PMID: 34860104 DOI: 10.1103/physrevlett.127.216101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
We report spatially resolved measurements of static and fluctuating electric fields over conductive (Au) and nonconductive (SiO_{2}) surfaces. Using an ultrasensitive "nanoladder" cantilever probe to scan over these surfaces at distances of a few tens of nanometers, we record changes in the probe resonance frequency and damping that we associate with static and fluctuating fields, respectively. We find static and fluctuating fields to be spatially correlated. Furthermore, the fields are of similar magnitude for the two materials. We quantitatively describe the observed effects on the basis of trapped surface charges and dielectric fluctuations in an adsorbate layer. Our results are consistent with organic adsorbates significantly contributing to surface dissipation that affects nanomechanical sensors, trapped ions, superconducting resonators, and color centers in diamond.
Collapse
Affiliation(s)
- Martin Héritier
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Raphael Pachlatko
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Ye Tao
- Rowland Institute at Harvard, 100 Edwin H. Land Blvd., Cambridge, Massachusetts 02142, USA
| | - John M Abendroth
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Christian L Degen
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Alexander Eichler
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
4
|
Rani D, Opaluch OR, Neu E. Recent Advances in Single Crystal Diamond Device Fabrication for Photonics, Sensing and Nanomechanics. MICROMACHINES 2020; 12:36. [PMID: 33396918 PMCID: PMC7823554 DOI: 10.3390/mi12010036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/25/2022]
Abstract
In the last two decades, the use of diamond as a material for applications in nanophotonics, optomechanics, quantum information, and sensors tremendously increased due to its outstanding mechanical properties, wide optical transparency, and biocompatibility. This has been possible owing to advances in methods for growth of high-quality single crystal diamond (SCD), nanofabrication methods and controlled incorporation of optically active point defects (e.g., nitrogen vacancy centers) in SCD. This paper reviews the recent advances in SCD nano-structuring methods for realization of micro- and nano-structures. Novel fabrication methods are discussed and the different nano-structures realized for a wide range of applications are summarized. Moreover, the methods for color center incorporation in SCD and surface treatment methods to enhance their properties are described. Challenges in the upscaling of SCD nano-structure fabrication, their commercial applications and future prospects are discussed.
Collapse
Affiliation(s)
| | | | - Elke Neu
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany; (D.R.); (O.R.O.)
| |
Collapse
|
5
|
Kim TK, Bae JH, Kim J, Cho MK, Kim YC, Jin S, Chun D. Curved Structure of Si by Improving Etching Direction Controllability in Magnetically Guided Metal-Assisted Chemical Etching. MICROMACHINES 2020; 11:mi11080744. [PMID: 32751667 PMCID: PMC7463845 DOI: 10.3390/mi11080744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022]
Abstract
Metal-assisted chemical etching (MACE) is widely used to fabricate micro-/nano-structured Si owing to its simplicity and cost-effectiveness. The technique of magnetically guided MACE, involving MACE with a tri-layer metal catalyst, was developed to improve etching speed as well as to adjust the etching direction using an external magnetic field. However, the controllability of the etching direction diminishes with an increase in the etching dimension, owing to the corrosion of Fe due to the etching solution; this impedes the wider application of this approach for the fabrication of complex micro Si structures. In this study, we modified a tri-layer metal catalyst (Au/Fe/Au), wherein the Fe layer was encapsulated to improve direction controllability; this improved controllability was achieved by protecting Fe against the corrosion caused by the etching solution. We demonstrated curved Si microgroove arrays via magnetically guided MACE with Fe encapsulated in the tri-layer catalyst. Furthermore, the curvature in the curved Si microarrays could be modulated via an external magnetic field, indicating that direction controllability could be maintained even for the magnetically guided MACE of bulk Si. The proposed fabrication method developed for producing curved Si microgroove arrays can be applied to electronic devices and micro-electromechanical systems.
Collapse
Affiliation(s)
- Tae Kyoung Kim
- Materials Science and Engineering, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (T.K.K.); (S.J.)
| | - Jee-Hwan Bae
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.-H.B.); (J.K.); (M.K.C.)
| | - Juyoung Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.-H.B.); (J.K.); (M.K.C.)
| | - Min Kyung Cho
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.-H.B.); (J.K.); (M.K.C.)
| | - Yu-Chan Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Sungho Jin
- Materials Science and Engineering, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (T.K.K.); (S.J.)
| | - Dongwon Chun
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.-H.B.); (J.K.); (M.K.C.)
- Correspondence:
| |
Collapse
|
6
|
Garvey S, Holmes JD, Kim YS, Long B. Vapor-Phase Passivation of Chlorine-Terminated Ge(100) Using Self-Assembled Monolayers of Hexanethiol. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29899-29907. [PMID: 32501666 DOI: 10.1021/acsami.0c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Continued scaling of electronic devices shows the need to incorporate high mobility alternatives to silicon, the cornerstone of the semiconductor industry, into modern field effect transistor (FET) devices. Germanium is well-poised to serve as the channel material in FET devices as it boasts an electron and hole mobility more than twice and four times that of Si, respectively. However, its unstable native oxide makes its passivation a crucial step toward its potential integration into future FETs. The International Roadmap for Devices and Systems (IRDS) predicts continued aggressive scaling not only of the device size but also of the pitch in nanowire arrays. The development of a vapor-phase chemical passivation technique will be required to prevent the collapse of these structures that can occur because of the surface tension and capillary forces that are experienced when tight-pitched nanowire arrays are processed via liquid-phase chemistry. Reported here is a vapor-phase process using hexanethiol for the passivation of planar Ge(100) substrates. Results benchmarking it against its well-established liquid-phase equivalent are also presented. X-ray photoelectron spectroscopy was used to monitor the effectiveness of the developed vapor-phase protocol, where the presence of oxide was monitored at 0, 24, and 168 h. Water contact angle measurements compliment these results by demonstrating an increase in hydrophobicity of the passivated substrates. Atomic force microscopy monitored the surface topology before and after processing to ensure the process does not cause roughening of the surface, which is critical to demonstrate suitability for nanostructures. It is shown that the 200 min vapor-phase passivation procedure generates stable, passivated surfaces with less roughness than the liquid-phase counterpart.
Collapse
Affiliation(s)
- Shane Garvey
- School of Chemistry & AMBER Centre, University College Cork, Cork T12 YN60, Ireland
- Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
| | - Justin D Holmes
- School of Chemistry & AMBER Centre, University College Cork, Cork T12 YN60, Ireland
| | - Y S Kim
- Lam Research Corp., Fremont, California 94538, United States
| | - Brenda Long
- School of Chemistry & AMBER Centre, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
7
|
|
8
|
Héritier M, Eichler A, Pan Y, Grob U, Shorubalko I, Krass MD, Tao Y, Degen CL. Nanoladder Cantilevers Made from Diamond and Silicon. NANO LETTERS 2018; 18:1814-1818. [PMID: 29412676 DOI: 10.1021/acs.nanolett.7b05035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a "nanoladder" geometry that minimizes the mechanical dissipation of ultrasensitive cantilevers. A nanoladder cantilever consists of a lithographically patterned scaffold of rails and rungs with feature size ∼100 nm. Compared to a rectangular beam of the same dimensions, the mass and spring constant of a nanoladder are each reduced by roughly 2 orders of magnitude. We demonstrate a low force noise of 158-42+62 zN and 190-33+42 zN in a 1 Hz bandwidth for devices made from silicon and diamond, respectively, measured at temperatures between 100-150 mK. As opposed to bottom-up mechanical resonators like nanowires or nanotubes, nanoladder cantilevers can be batch-fabricated using standard lithography, which is a critical factor for applications in scanning force microscopy.
Collapse
Affiliation(s)
- M Héritier
- Department of Physics , ETH Zurich , Otto Stern Weg 1 , 8093 Zurich , Switzerland
| | - A Eichler
- Department of Physics , ETH Zurich , Otto Stern Weg 1 , 8093 Zurich , Switzerland
| | - Y Pan
- Rowland Institute at Harvard , 100 Edwin H. Land Boulevard , Cambridge , Massachusetts 02142 , United States
| | - U Grob
- Department of Physics , ETH Zurich , Otto Stern Weg 1 , 8093 Zurich , Switzerland
| | - I Shorubalko
- Swiss Federal Laboratories for Materials Science and Technology EMPA , Uberlandstrasse 129 , 8600 Duebendorf , Switzerland
| | - M D Krass
- Department of Physics , ETH Zurich , Otto Stern Weg 1 , 8093 Zurich , Switzerland
| | - Y Tao
- Rowland Institute at Harvard , 100 Edwin H. Land Boulevard , Cambridge , Massachusetts 02142 , United States
| | - C L Degen
- Department of Physics , ETH Zurich , Otto Stern Weg 1 , 8093 Zurich , Switzerland
| |
Collapse
|
9
|
Luiz GO, Benevides RS, Santos FGS, Espinel YAV, Mayer Alegre TP, Wiederhecker GS. Efficient anchor loss suppression in coupled near-field optomechanical resonators. OPTICS EXPRESS 2017; 25:31347-31361. [PMID: 29245810 DOI: 10.1364/oe.25.031347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Elastic dissipation through radiation towards the substrate is a major loss channel in micro- and nanomechanical resonators. Engineering the coupling of these resonators with optical cavities further complicates and constrains the design of low-loss optomechanical devices. In this work we rely on the coherent cancellation of mechanical radiation to demonstrate material and surface absorption limited silicon near-field optomechanical resonators oscillating at tens of MHz. The effectiveness of our dissipation suppression scheme is investigated at room and cryogenic temperatures. While at room temperature we can reach a maximum quality factor of 7.61k (fQ-product of the order of 1011 Hz), at 22 K the quality factor increases to 37k, resulting in a fQ-product of 2 × 1012 Hz.
Collapse
|
10
|
Li M, Li X, Xiao H, James TD. Fluorescence Sensing with Cellulose-Based Materials. ChemistryOpen 2017; 6:685-696. [PMID: 29226055 PMCID: PMC5715359 DOI: 10.1002/open.201700133] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Indexed: 01/31/2023] Open
Abstract
Cellulose-based materials functionalized with fluorescence sensors are highly topical and are employed in many areas of functional materials, including the sensing of heavy-metal ions and anions as well as being widely used as chemical sensors and tools for environmental applications. In this Review, we cover recent progress in the development of cellulose-based fluorescence sensors as parts of membranes and nanoscale materials for the detection of biological analytes. We believe that this Review will be of interest to chemists, chemical engineers, and biochemists in the sensor community as well as researchers working with biological material systems.
Collapse
Affiliation(s)
- Meng Li
- Department of Environmental Science and EngineeringNorth China Electric Power University689 Huadian RoadBaoding071003P. R. China
| | - Xiaoning Li
- Department of Environmental Science and EngineeringNorth China Electric Power University689 Huadian RoadBaoding071003P. R. China
| | - Hui‐Ning Xiao
- Department of Environmental Science and EngineeringNorth China Electric Power University689 Huadian RoadBaoding071003P. R. China
- Department of Chemical EngineeringUniversity of New BrunswickFrederictionNBE3B 5A3Canada
| | - Tony D. James
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| |
Collapse
|
11
|
Wang S, Shan Z, Huang H. The Mechanical Properties of Nanowires. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600332. [PMID: 28435775 PMCID: PMC5396167 DOI: 10.1002/advs.201600332] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/17/2016] [Indexed: 05/14/2023]
Abstract
Applications of nanowires into future generation nanodevices require a complete understanding of the mechanical properties of the nanowires. A great research effort has been made in the past two decades to understand the deformation physics and mechanical behaviors of nanowires, and to interpret the discrepancies between experimental measurements and theoretical predictions. This review focused on the characterization and understanding of the mechanical properties of nanowires, including elasticity, plasticity, anelasticity and strength. As the results from the previous literature in this area appear inconsistent, a critical evaluation of the characterization techniques and methodologies were presented. In particular, the size effects of nanowires on the mechanical properties and their deformation mechanisms were discussed.
Collapse
Affiliation(s)
- Shiliang Wang
- School of Mechanical and Mining EngineeringThe University of QueenslandAustralia
| | - Zhiwei Shan
- Center for Advancing Materials Performance from the NanoscaleXi'an Jiaotong UniversityChina
| | - Han Huang
- School of Mechanical and Mining EngineeringThe University of QueenslandAustralia
| |
Collapse
|
12
|
Kouh T, Hanay MS, Ekinci KL. Nanomechanical Motion Transducers for Miniaturized Mechanical Systems. MICROMACHINES 2017. [PMCID: PMC6189927 DOI: 10.3390/mi8040108] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Taejoon Kouh
- Department of Physics, Kookmin University, Seoul 136-702, Korea
- Correspondence: ; Tel.: +82-2-910-4873
| | - M. Selim Hanay
- Department of Mechanical Engineering, and the National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey;
| | - Kamil L. Ekinci
- Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, MA 02215, USA;
| |
Collapse
|
13
|
Shamsudhin N, Tao Y, Sort J, Jang B, Degen CL, Nelson BJ, Pané S. Magnetometry of Individual Polycrystalline Ferromagnetic Nanowires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6363-6369. [PMID: 27690370 DOI: 10.1002/smll.201602338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Ferromagnetic nanowires are finding use as untethered sensors and actuators for probing micro- and nanoscale biophysical phenomena, such as for localized sensing and application of forces and torques on biological samples, for tissue heating through magnetic hyperthermia, and for microrheology. Quantifying the magnetic properties of individual isolated nanowires is crucial for such applications. Dynamic cantilever magnetometry is used to measure the magnetic properties of individual sub-500 nm diameter polycrystalline nanowires of Ni and Ni80 Co20 fabricated by template-assisted electrochemical deposition. The values are compared with bulk, ensemble measurements when the nanowires are still embedded within their growth matrix. It is found that single-particle and ensemble measurements of nanowires yield significantly different results that reflect inter-nanowire interactions and chemical modifications of the sample during the release process from the growth matrix. The results highlight the importance of performing single-particle characterization for objects that will be used as individual magnetic nanoactuators or nanosensors in biomedical applications.
Collapse
Affiliation(s)
- Naveen Shamsudhin
- Multi-Scale Robotics Laboratory, ETH Zurich, Zurich, 8092, Switzerland
| | - Ye Tao
- Department of Physics, ETH Zurich, Zurich, 8092, Switzerland
| | - Jordi Sort
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Bumjin Jang
- Multi-Scale Robotics Laboratory, ETH Zurich, Zurich, 8092, Switzerland
| | | | - Bradley J Nelson
- Multi-Scale Robotics Laboratory, ETH Zurich, Zurich, 8092, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Laboratory, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
14
|
Pan Y, Tao Y, Qin G, Fedoryshyn Y, Raja SN, Hu M, Degen CL, Poulikakos D. Surface Chemical Tuning of Phonon and Electron Transport in Free-Standing Silicon Nanowire Arrays. NANO LETTERS 2016; 16:6364-6370. [PMID: 27580070 DOI: 10.1021/acs.nanolett.6b02754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report electronic and phononic transport measurements of monocrystalline batch-fabricated silicon nanowire (SiNW) arrays functionalized with different surface chemistries. We find that hydrogen-terminated SiNWs prepared by vapor HF etching of native-oxide-covered devices show increased electrical conductivity but decreased thermal conductivity. We used the kinetic Monte Carlo method to solve the Boltzmann transport equation and also numerically examine the effect of phonon boundary scattering. Surface transfer doping of the SiNWs by cobaltocene or decamethylcobaltocene drastically improves the electrical conductivity by 2 to 4 orders of magnitude without affecting the thermal conductivity. The results showcase surface chemical control of nanomaterials as a potent pathway that can complement device miniaturization efforts in the quest for more efficient thermoelectric materials and devices.
Collapse
Affiliation(s)
- Ying Pan
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich , Sonneggstrasse 3, 8092 Zürich, Switzerland
| | - Ye Tao
- Laboratory for Solid State Physics, Department of Physics, ETH Zürich , Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - Guangzhao Qin
- Institute of Mineral Engineering, Division of Materials Science and Engineering, RWTH Aachen University , Mauerstrasse 5, 52064 Aachen, Germany
| | - Yuriy Fedoryshyn
- Institute of Electromagnetic Fields, Department of Information Technology and Electrical Engineering, ETH Zürich , Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Shyamprasad N Raja
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich , Sonneggstrasse 3, 8092 Zürich, Switzerland
| | - Ming Hu
- Institute of Mineral Engineering, Division of Materials Science and Engineering, RWTH Aachen University , Mauerstrasse 5, 52064 Aachen, Germany
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University , Mauerstrasse 5, 52062 Aachen, Germany
| | - Christian L Degen
- Laboratory for Solid State Physics, Department of Physics, ETH Zürich , Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich , Sonneggstrasse 3, 8092 Zürich, Switzerland
| |
Collapse
|
15
|
Tao Y, Eichler A, Holzherr T, Degen CL. Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head. Nat Commun 2016; 7:12714. [PMID: 27647039 PMCID: PMC5034305 DOI: 10.1038/ncomms12714] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022] Open
Abstract
Sensitive detection of weak magnetic moments is an essential capability in many areas of nanoscale science and technology, including nanomagnetism, quantum readout of spins and nanoscale magnetic resonance imaging. Here we show that the write head of a commercial hard drive may enable significant advances in nanoscale spin detection. By approaching a sharp diamond tip to within 5 nm from a write pole and measuring the induced diamagnetic moment with a nanomechanical force transducer, we demonstrate a spin sensitivity of 0.032 μB Hz(-1/2), equivalent to 21 proton magnetic moments. The high sensitivity is enabled in part by the pole's strong magnetic gradient of up to 28 × 10(6) T m(-1) and in part by the absence of non-contact friction due to the extremely flat writer surface. In addition, we demonstrate quantitative imaging of the pole field with ∼10 nm spatial resolution. We foresee diverse applications for write heads in experimental condensed matter physics, especially in spintronics, ultrafast spin manipulation and mesoscopic physics.
Collapse
Affiliation(s)
- Y. Tao
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland
| | - A. Eichler
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland
| | - T. Holzherr
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland
| | - C. L. Degen
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Tao Y, Hauert R, Degen CL. Exclusively Gas-Phase Passivation of Native Oxide-Free Silicon(100) and Silicon(111) Surfaces. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13157-13165. [PMID: 27153212 DOI: 10.1021/acsami.6b03326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reactions in the gas phase are of primary technological importance for applications in nano- and microfabrication technology and in the semiconductor industry. We present exclusively gas-phase protocols to chemically passivate oxide-free Si(111) and Si(100) surfaces with short-chain alkynes. The resulting surfaces showed equal or better oxidation resistance than most existing liquid-phase-derived surfaces and rivaled the outstanding stability of a full-coverage Si(111)-propenyl surface.1,2 The most stable surface (Si(111)-ethenyl) grew one-fifth of a monolayer of oxide (0.04 nm) after 1 month of air exposure. We monitored the regrowth of oxides on passivated Si(111) and Si(100) surfaces by X-ray photoelectron spectroscopy (XPS) and observed a significant crystal-orientation dependence of initial rates when total oxide thickness was below approximately one monolayer (0.2 nm). This difference was correlated with the desorption kinetics of residual surface Si-F bonds formed during HF treatment. We discuss applications of the technology and suggest future directions for process optimization.
Collapse
Affiliation(s)
- Ye Tao
- Department of Physics, ETH Zürich , 8093 Zürich, Switzerland
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Roland Hauert
- Empa, Swiss Federal Laboratories of Materials Science and Technology , 8600 Dübendorf, Switzerland
| | | |
Collapse
|
17
|
Tao Y, Degen CL. Single-Crystal Diamond Nanowire Tips for Ultrasensitive Force Microscopy. NANO LETTERS 2015; 15:7893-7897. [PMID: 26517172 DOI: 10.1021/acs.nanolett.5b02885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the fabrication, integration, and assessment of sharp diamond tips for ultrasensitive force microscopy experiments. Two types of tips, corresponding to the upper and lower halves of a diamond nanowire, were fabricated by top-down plasma etching from a single-crystalline substrate. The lower, surface-attached halves can be directly integrated into lithographically defined nanostructures, like cantilevers. The upper, detachable halves result in diamond nanowires with a tunable diameter (50-500 nm) and lengths of a few microns. Tip radii were around 10 nm and tip apex angles around 15°. We demonstrate the integration of diamond nanowires for use as scanning tips onto ultrasensitive pendulum-style silicon cantilevers. We find the noncontact friction and frequency jitter to be exceptionally low, with no degradation in the intrinsic mechanical quality factor (Q ≈ 130,000) down to tip-to-surface distances of about 10 nm. Our results are an encouraging step toward further improvement of the sensitivity and resolution of force-detected magnetic resonance imaging.
Collapse
Affiliation(s)
- Y Tao
- Department of Physics, ETH Zurich , 8093 Zurich, Switzerland
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - C L Degen
- Department of Physics, ETH Zurich , 8093 Zurich, Switzerland
| |
Collapse
|