1
|
Szabo S, Totka Z, Nagy-Bozsoky J, Pinter I, Bagany M, Bodo M. Rheoencephalography: A non-invasive method for neuromonitoring. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2024; 15:10-25. [PMID: 38482467 PMCID: PMC10936697 DOI: 10.2478/joeb-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 04/07/2024]
Abstract
In neurocritical care, the gold standard method is intracranial pressure (ICP) monitoring for the patient's lifesaving. Since it is an invasive method, it is desirable to use an alternative, noninvasive technique. The computerized real-time invasive cerebral blood flow (CBF) autoregulation (AR) monitoring calculates the status of CBF AR, called the pressure reactivity index (PRx). Studies documented that the electrical impedance of the head (Rheoencephalography - REG) can detect the status of CBF AR (REGx) and ICP noninvasively. We aimed to test REG to reflect ICP and CBF AR. For nineteen healthy subjects we recorded bipolar bifrontal and bitemporal REG derivations and arm bioimpedance pulses with a 200 Hz sampling rate. The challenges were a 30-second breath-holding and head-down-tilt (HDT - Trendelenburg) position. Data were stored and processed offline. REG pulse wave morphology and REGx were calculated. The most relevant finding was the significant morphological change of the REG pulse waveform (2nd peak increase) during the HDT position. Breath-holding caused REG amplitude increase, but it was not significant. REGx in male and female group averages have similar trends during HDT by indicating the active status of CBF AR. The morphological change of REG pulse wave during HDT position was identical to ICP waveform change during increased ICP, reflecting decreased intracranial compliance. A correlation study between ICP and REG was initiated in neurocritical care patients. The noninvasive REG monitoring would also be useful in space research as well as in military medicine during the transport of wounded service members as well as for fighter pilots to indicate the loss of CBF and consciousness.
Collapse
Affiliation(s)
- Sandor Szabo
- University of Szeged, Faculty of General Medicine, Department of Aviation and Space Medicine. Kecskemet, Hungary; Hungarian Defence Forces Medical Center, Aeromedical, Military Medical Screening and Healthcare Instituter;Kecskemet, Hungary
| | - Zsolt Totka
- University of Szeged, Faculty of General Medicine, Department of Aviation and Space Medicine. Kecskemet, Hungary; Hungarian Defence Forces Medical Center, Aeromedical, Military Medical Screening and Healthcare Instituter;Kecskemet, Hungary
| | - Jozsef Nagy-Bozsoky
- University of Szeged, Faculty of General Medicine, Department of Aviation and Space Medicine. Kecskemet, Hungary; Hungarian Defence Forces Medical Center, Aeromedical, Military Medical Screening and Healthcare Instituter;Kecskemet, Hungary
| | | | | | - Michael Bodo
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
2
|
Müller SJ, Henkes E, Gounis MJ, Felber S, Ganslandt O, Henkes H. Non-Invasive Intracranial Pressure Monitoring. J Clin Med 2023; 12:jcm12062209. [PMID: 36983213 PMCID: PMC10051320 DOI: 10.3390/jcm12062209] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
(1) Background: Intracranial pressure (ICP) monitoring plays a key role in the treatment of patients in intensive care units, as well as during long-term surgeries and interventions. The gold standard is invasive measurement and monitoring via ventricular drainage or a parenchymal probe. In recent decades, numerous methods for non-invasive measurement have been evaluated but none have become established in routine clinical practice. The aim of this study was to reflect on the current state of research and shed light on relevant techniques for future clinical application. (2) Methods: We performed a PubMed search for “non-invasive AND ICP AND (measurement OR monitoring)” and identified 306 results. On the basis of these search results, we conducted an in-depth source analysis to identify additional methods. Studies were analyzed for design, patient type (e.g., infants, adults, and shunt patients), statistical evaluation (correlation, accuracy, and reliability), number of included measurements, and statistical assessment of accuracy and reliability. (3) Results: MRI-ICP and two-depth Doppler showed the most potential (and were the most complex methods). Tympanic membrane temperature, diffuse correlation spectroscopy, natural resonance frequency, and retinal vein approaches were also promising. (4) Conclusions: To date, no convincing evidence supports the use of a particular method for non-invasive intracranial pressure measurement. However, many new approaches are under development.
Collapse
Affiliation(s)
- Sebastian Johannes Müller
- Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
- Correspondence: ; Tel.: +49-(0)711-278-34501
| | - Elina Henkes
- Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
| | - Matthew J. Gounis
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts, Worcester, MA 01655, USA
| | - Stephan Felber
- Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Stiftungsklinikum Mittelrhein, D-56068 Koblenz, Germany
| | - Oliver Ganslandt
- Neurochirurgische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
| | - Hans Henkes
- Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
- Medizinische Fakultät, Universität Duisburg-Essen, D-47057 Duisburg, Germany
| |
Collapse
|
3
|
González C, Jensen E, Gambús P, Vallverdú M. Entropy Measures as Descriptors to Identify Apneas in Rheoencephalographic Signals. ENTROPY 2019; 21:e21060605. [PMID: 33267319 PMCID: PMC7515089 DOI: 10.3390/e21060605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/09/2019] [Accepted: 06/15/2019] [Indexed: 11/30/2022]
Abstract
Rheoencephalography (REG) is a simple and inexpensive technique that intends to monitor cerebral blood flow (CBF), but its ability to reflect CBF changes has not been extensively proved. Based on the hypothesis that alterations in CBF during apnea should be reflected in REG signals under the form of increased complexity, several entropy metrics were assessed for REG analysis during apnea and resting periods in 16 healthy subjects: approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy (FuzzyEn), corrected conditional entropy (CCE) and Shannon entropy (SE). To compute these entropy metrics, a set of parameters must be defined a priori, such as, for example, the embedding dimension m, and the tolerance threshold r. A thorough analysis of the effects of parameter selection in the entropy metrics was performed, looking for the values optimizing differences between apnea and baseline signals. All entropy metrics, except SE, provided higher values for apnea periods (p-values < 0.025). FuzzyEn outperformed all other metrics, providing the lowest p-value (p = 0.0001), allowing to conclude that REG signals during apnea have higher complexity than in resting periods. Those findings suggest that REG signals reflect CBF changes provoked by apneas, even though further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Carmen González
- Biomedical Engineering Research Centre, Universitat Politècnica de Catalunya, CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08028 Barcelona, Spain
- Quantium Medical, Research and Development Department, 08302 Mataró, Spain
- Correspondence: ; Tel.: +34-93-702-1950
| | - Erik Jensen
- Quantium Medical, Research and Development Department, 08302 Mataró, Spain
| | - Pedro Gambús
- Systems Pharmacology Effect Control & Modeling (SPEC-M) Research Group, Department of Anesthesia, Hospital CLINIC de Barcelona, 08036 Barcelona, Spain
- Department of Anesthesia and Perioperative Care, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Montserrat Vallverdú
- Biomedical Engineering Research Centre, Universitat Politècnica de Catalunya, CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08028 Barcelona, Spain
| |
Collapse
|
4
|
Sheppard RL, Swift JM, Hall A, Mahon RT. The Influence of CO 2 and Exercise on Hypobaric Hypoxia Induced Pulmonary Edema in Rats. Front Physiol 2018. [PMID: 29541032 PMCID: PMC5835685 DOI: 10.3389/fphys.2018.00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: Individuals with a known susceptibility to high altitude pulmonary edema (HAPE) demonstrate a reduced ventilation response and increased pulmonary vasoconstriction when exposed to hypoxia. It is unknown whether reduced sensitivity to hypercapnia is correlated with increased incidence and/or severity of HAPE, and while acute exercise at altitude is known to exacerbate symptoms the effect of exercise training on HAPE susceptibility is unclear. Purpose: To determine if chronic intermittent hypercapnia and exercise increases the incidence of HAPE in rats. Methods: Male Wistar rats were randomized to sedentary (sed-air), CO2 (sed-CO2,) exercise (ex-air), or exercise + CO2 (ex-CO2) groups. CO2 (3.5%) and treadmill exercise (15 m/min, 10% grade) were conducted on a metabolic treadmill, 1 h/day for 4 weeks. Vascular reactivity to CO2 was assessed after the training period by rheoencephalography (REG). Following the training period, animals were exposed to hypobaric hypoxia (HH) equivalent to 25,000 ft for 24 h. Pulmonary injury was assessed by wet/dry weight ratio, lung vascular permeability, bronchoalveolar lavage (BAL), and histology. Results: HH increased lung wet/dry ratio (HH 5.51 ± 0.29 vs. sham 4.80 ± 0.11, P < 0.05), lung permeability (556 ± 84 u/L vs. 192 ± 29 u/L, P < 0.001), and BAL protein (221 ± 33 μg/ml vs. 114 ± 13 μg/ml, P < 0.001), white blood cell (1.16 ± 0.26 vs. 0.66 ± 0.06, P < 0.05), and platelet (16.4 ± 2.3, vs. 6.0 ± 0.5, P < 0.001) counts in comparison to normobaric normoxia. Vascular reactivity was suppressed by exercise (−53% vs. sham, P < 0.05) and exercise+CO2 (−71% vs. sham, P < 0.05). However, neither exercise nor intermittent hypercapnia altered HH-induced changes in lung wet/dry weight, BAL protein and cellular infiltration, or pulmonary histology. Conclusion: Exercise training attenuates vascular reactivity to CO2 in rats but neither exercise training nor chronic intermittent hypercapnia affect HH- induced pulmonary edema.
Collapse
Affiliation(s)
- Ryan L Sheppard
- Department of Submarine Medicine and Survival Systems Groton, Naval Submarine Medical Research Laboratory, Groton, CT, United States.,Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Joshua M Swift
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Aaron Hall
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Richard T Mahon
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| |
Collapse
|
5
|
Bodo M, Simovic M, Pearce F, Ahmed A, Armonda R. Correlation of rheoencephalogram and intracranial pressure: results of a rat study. Physiol Meas 2015; 36:N115-26. [PMID: 26334594 DOI: 10.1088/0967-3334/36/10/n115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Measuring brain electrical impedance (rheoencephalography-REG) is a potential technique for noninvasive, continuous neuro-monitoring. Typically, intracranial pressure (ICP), an invasive monitoring modality, is used in brain monitoring. Our hypothesis was that both modalities would reflect cerebrovascular reactivity. In the present study we compared results of REG to results of ICP measurement. Rats were used under anesthesia ([Formula: see text]; 36 control and 59 vinpocetine infusions). REG was measured by two bipolar REG amplifiers; time constants (Tc) were 3 and 0.3 s. The vinpocetine injection caused a transient decrease in systemic arterial pressure (SAP) and a simultaneous increase in ICP and REG pulse amplitude. SAP decrease was 25% ± 14%; ICP was 28% ± 16%; REG pulse amplitude increase was 209% ± 17% (Tc 3) and 107% ± 68% (Tc 0.3). ICP increase correlated with REG pulse amplitude increase. Area under the receiver operating characteristic curve was 0.9481 for ICP-REG time constants 3 and 0.9335 for ICP-REG time constants 0.3; both with [Formula: see text]. The fact that both REG and ICP reflect cerebrovascular reactivity indicates the usefulness of REG as a potential technique for noninvasive, continuous neuro-monitoring. The Tc of REG amplifier requires optimization for continuous monitoring of pressure reactivity index.
Collapse
Affiliation(s)
- M Bodo
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA. Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
6
|
Perez JJ. To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components. Biomed Eng Online 2014; 13:131. [PMID: 25192886 PMCID: PMC4169836 DOI: 10.1186/1475-925x-13-131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/30/2014] [Indexed: 11/16/2022] Open
Abstract
Background Impedance plethysmography applied to the head by using a pair of electrodes attached to the scalp surface is known as bipolar Rheoencephalography or REG I and was originally proposed to measure changes in cerebral blood volume related to the heartbeat. REG I was soon discarded in favor of other REG configurations, since most of the signal was shown to be heavily contaminated by the extracranial blood flow. The main goal of this study was to identify and compare the part of the REG I signal caused by scalp blood flow with that originating from non-extracranial sources. Methods A clinical study involving thirty-six healthy volunteers was designed for this purpose. REG I was first registered in each subject under normal conditions. A pneumatic cuff was then placed around the head and was inflated to arrest the scalp blood flow and a second REG I was recorded. Finally, a third REG I was taken immediately after cuff deflation. Results The REG I signal is attenuated, but not extinguished, during cuff inflation in a wide subject-dependent range ratio from 0.12 to 0.68 (0.37 ± 0.15). The residual REG I signal has a waveform that is markedly different from that obtained before cuff inflation, which supports the hypothesis of the intracranial origin of the residual REG I signal. Additionally, an increase of 22% in REG I amplitude was observed when the head cuff was deflated. Conclusions Waveform differences between extra and non-extracranial components are significant and these differences could be used in a method to distinguish one from the other. However, a significant part of the REG I signal is caused by a non-extracranial source and, therefore, it should not be used as a footprint of the extracranial blood flow.
Collapse
Affiliation(s)
- Juan J Perez
- Bioelectronic Research Group (I3BH) (Ed, 7F), Universitat Politècnica de València, Cno de Vera s/n, Valencia, Spain.
| |
Collapse
|
7
|
Atefi SR, Seoane F, Thorlin T, Lindecrantz K. Stroke damage detection using classification trees on electrical bioimpedance cerebral spectroscopy measurements. SENSORS 2013; 13:10074-86. [PMID: 23966181 PMCID: PMC3812594 DOI: 10.3390/s130810074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 12/02/2022]
Abstract
After cancer and cardio-vascular disease, stroke is the third greatest cause of death worldwide. Given the limitations of the current imaging technologies used for stroke diagnosis, the need for portable non-invasive and less expensive diagnostic tools is crucial. Previous studies have suggested that electrical bioimpedance (EBI) measurements from the head might contain useful clinical information related to changes produced in the cerebral tissue after the onset of stroke. In this study, we recorded 720 EBI Spectroscopy (EBIS) measurements from two different head regions of 18 hemispheres of nine subjects. Three of these subjects had suffered a unilateral haemorrhagic stroke. A number of features based on structural and intrinsic frequency-dependent properties of the cerebral tissue were extracted. These features were then fed into a classification tree. The results show that a full classification of damaged and undamaged cerebral tissue was achieved after three hierarchical classification steps. Lastly, the performance of the classification tree was assessed using Leave-One-Out Cross Validation (LOO-CV). Despite the fact that the results of this study are limited to a small database, and the observations obtained must be verified further with a larger cohort of patients, these findings confirm that EBI measurements contain useful information for assessing on the health of brain tissue after stroke and supports the hypothesis that classification features based on Cole parameters, spectral information and the geometry of EBIS measurements are useful to differentiate between healthy and stroke damaged brain tissue.
Collapse
Affiliation(s)
- Seyed Reza Atefi
- School of Technology and Health, Royal Institute of Technology, Alfred Nobels Allé 10, Huddinge SE-141 52, Sweden; E-Mails: (F.S.); (K.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +46-707-239-614
| | - Fernando Seoane
- School of Technology and Health, Royal Institute of Technology, Alfred Nobels Allé 10, Huddinge SE-141 52, Sweden; E-Mails: (F.S.); (K.L.)
- School of Engineering, University of Boras, Allégatan 1, Boras SE-501 90, Sweden
| | - Thorleif Thorlin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden; E-Mail:
| | - Kaj Lindecrantz
- School of Technology and Health, Royal Institute of Technology, Alfred Nobels Allé 10, Huddinge SE-141 52, Sweden; E-Mails: (F.S.); (K.L.)
- School of Engineering, University of Boras, Allégatan 1, Boras SE-501 90, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Hälsovägen 7, Stockholm SE-141 57, Sweden
| |
Collapse
|
8
|
Bodo M, Szebeni J, Baranyi L, Savay S, Pearce FJ, Alving CR, Bünger R. Cerebrovascular involvement in liposome-induced cardiopulmonary distress in pigs. J Liposome Res 2005; 15:3-14. [PMID: 16194924 DOI: 10.1081/lpr-64523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Intravenous administration of liposomes, including Doxil, can cause severe life-threatening hemodynamic changes in pigs. The reaction is due to complement activation, and it is characterized by massive pulmonary hypertension, systemic hypotension, and severe cardiac abnormalities including falling cardiac output, tachy-or bradycardia with arrhythmia. There were no data suggesting the involvement of cerebrovascular changes in this reaction; however, clinical observations allowed this hypothesis. Here we measured the accompanying changes during liposome infusion by monitoring pulsatile electrical impedance (rheoencephalogram- REG) on the skull (n=24 pigs, 57 trials, 19 types of liposomes). A transient but significant decrease of REG pulse amplitudes followed the injection of liposomes (78.43% in the total sample, and 91.66% in the Doxil subgroup; P=0.003, n=12), indicating the involvement of cerebrovascular reaction during liposome infusion.
Collapse
Affiliation(s)
- Michael Bodo
- Department of Resuscitative Medicine, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Pérez JJ, Guijarro E, Sancho J. Spatiotemporal pattern of the extracranial component of the rheoencephalographic signal. Physiol Meas 2005; 26:925-38. [PMID: 16311442 DOI: 10.1088/0967-3334/26/6/004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of rheoencephalography (REG) in the clinical practice to evaluate cerebral blood flow is conditional on the finding of a method for removing the extracranial interference caused by the scalp blood flow. To remove this undesirable influence, digital processing based on statistics could be an effective technique if the appropriate data model were applied. This paper focuses on the analysis of the spatiotemporal features of the extracranial REG component, by comparing its morphology and phase shift at several scalp sites. For this purpose, a numerical model of the scalp was employed to assess tissue impedance changes caused by the inflow of a stepwise blood pulse wave. These results were compared with the experimental impedance waveforms recorded on six pairs of adjacent electrodes. The correlation coefficients between each pair of impedance recordings of each subject were always greater than 0.942, showing a mean value of 0.986. This result suggests that the extracranial REG component can be considered as morphologically invariant. On the other hand, negligible phase shifts were observed when mean electrode distances, measured in the blood flow direction, were relatively small, although temporal corrections in the data model would be advisable for longer distances.
Collapse
Affiliation(s)
- Juan J Pérez
- Center for Research and Innovation on Bioengineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | |
Collapse
|