1
|
Rieu JP, Delanoë-Ayari H, Barentin C, Nakagaki T, Kuroda S. Dynamics of centipede locomotion revealed by large-scale traction force microscopy. J R Soc Interface 2024; 21:20230439. [PMID: 38807527 DOI: 10.1098/rsif.2023.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
We present a novel approach to traction force microscopy (TFM) for studying the locomotion of 10 cm long walking centipedes on soft substrates. Leveraging the remarkable elasticity and ductility of kudzu starch gels, we use them as a deformable gel substrate, providing resilience against the centipedes' sharp leg tips. By optimizing fiducial marker size and density and fine-tuning imaging conditions, we enhance measurement accuracy. Our TFM investigation reveals traction forces along the centipede's longitudinal axis that effectively counterbalance inertial forces within the 0-10 mN range, providing the first report of non-vanishing inertia forces in TFM studies. Interestingly, we observe waves of forces propagating from the head to the tail of the centipede, corresponding to its locomotion speed. Furthermore, we discover a characteristic cycle of leg clusters engaging with the substrate: forward force (friction) upon leg tip contact, backward force (traction) as the leg pulls the substrate while stationary, and subsequent forward force as the leg tip detaches to reposition itself in the anterior direction. This work opens perspectives for TFM applications in ethology, tribology and robotics.
Collapse
Affiliation(s)
- J P Rieu
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS , Villeurbanne 69622, France
| | - H Delanoë-Ayari
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS , Villeurbanne 69622, France
| | - C Barentin
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS , Villeurbanne 69622, France
| | - T Nakagaki
- Research Institute for Electronic Science, Hokkaido University, N20W10 , Kita-ku, Hokkaido 001-0020, Japan
| | - S Kuroda
- Faculty of Software and Information Technology, Aomori University, Koubata 2-3-1 , Aomori 030-0943, Japan
| |
Collapse
|
2
|
Kscheschinski B, Kramar M, Alim K. Calcium regulates cortex contraction in Physarum polycephalum. Phys Biol 2023; 21:016001. [PMID: 37975194 DOI: 10.1088/1478-3975/ad0a9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The tubular network-forming slime moldPhysarum polycephalumis able to maintain long-scale contraction patterns driven by an actomyosin cortex. The resulting shuttle streaming in the network is crucial for the organism to respond to external stimuli and reorganize its body mass giving rise to complex behaviors. However, the chemical basis of the self-organized flow pattern is not fully understood. Here, we present ratiometric measurements of free intracellular calcium in simple morphologies ofPhysarumnetworks. The spatiotemporal patterns of the free calcium concentration reveal a nearly anti-correlated relation to the tube radius, suggesting that calcium is indeed a key regulator of the actomyosin activity. We compare the experimentally observed phase relation between the radius and the calcium concentration to the predictions of a theoretical model including calcium as an inhibitor. Numerical simulations of the model suggest that calcium indeed inhibits the contractions inPhysarum, although a quantitative difference to the experimentally measured phase relation remains. Unraveling the mechanism underlying the contraction patterns is a key step in gaining further insight into the principles ofPhysarum's complex behavior.
Collapse
Affiliation(s)
- Bjoern Kscheschinski
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Mirna Kramar
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), Technical University of Munich, Garching, 85748, Germany
| |
Collapse
|
3
|
Chen S, Alim K. Network topology enables efficient response to environment in Physarum polycephalum. Phys Biol 2023; 20. [PMID: 37190961 DOI: 10.1088/1478-3975/accef2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
The network-shaped body plan distinguishes the unicellular slime mouldPhysarum polycephalumin body architecture from other unicellular organisms. Yet, network-shaped body plans dominate branches of multi-cellular life such as in fungi. What survival advantage does a network structure provide when facing a dynamic environment with adverse conditions? Here, we probe how network topology impactsP. polycephalum's avoidance response to an adverse blue light. We stimulate either an elongated, I-shaped amoeboid or a Y-shaped networked specimen and subsequently quantify the evacuation process of the light-exposed body part. The result shows that Y-shaped specimen complete the avoidance retraction in a comparable time frame, even slightly faster than I-shaped organisms, yet, at a lower almost negligible increase in migration velocity. Contraction amplitude driving mass motion is further only locally increased in Y-shaped specimen compared to I-shaped-providing further evidence that Y-shaped's avoidance reaction is energetically more efficient than in I-shaped amoeboid organisms. The difference in the retraction behaviour suggests that the complexity of network topology provides a key advantage when encountering adverse environments. Our findings could lead to a better understanding of the transition from unicellular to multicellularity.
Collapse
Affiliation(s)
- Siyu Chen
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- TUM School of Natural Sciences, Department of Bioscience, Center of Protein Assemblies (CPA), Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
4
|
Finney TJ, Frank SL, Bull MR, Guy RD, Kuhl TL. Tracking Mechanical Stress and Cell Migration with Inexpensive Polymer Thin-Film Sensors. ADVANCED MATERIALS INTERFACES 2023; 10:2201808. [PMID: 36817827 PMCID: PMC9937716 DOI: 10.1002/admi.202201808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Polydiacetylene (PDA) Langmuir films are well known for their blue to red chromatic transitions in response to a variety of stimuli, including UV light, heat, bio-molecule bindings and mechanical stress. In this work, we detail the ability to tune PDA Langmuir films to exhibit discrete chromatic transitions in response to applied mechanical stress. Normal and shear-induced transitions were quantified using the Surface Forces Apparatus and established to be binary and tunable as a function of film formation conditions. Both monomer alkyl tail length and metal cations were used to manipulate the chromatic transition force threshold to enable discrete force sensing from ~50 to ~500 nN μm-2 for normal loading and ~2 to ~40 nN μm-2 for shear-induced transitions, which are appropriate for biological cells. The utility of PDA thin-film sensors was demonstrated with the slime mold Physarum polycephalum. The fluorescence readout of the films enabled: the area explored by Physarum to be visualized, the forces involved in locomotion to be quantified, and revealed novel puncta formation potentially associated with Physarum sampling its environment.
Collapse
Affiliation(s)
- Tanner J Finney
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| | - Skye L Frank
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| | - Michael R Bull
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| | - Robert D Guy
- Department of Mathematics, University of California, Davis, CA 95616, United States
| | - Tonya L Kuhl
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| |
Collapse
|
5
|
Santiago M, Battista NA, Miller LA, Khatri S. Passive concentration dynamics incorporated into the library IB2d, a two-dimensional implementation of the immersed boundary method. BIOINSPIRATION & BIOMIMETICS 2022; 17:036003. [PMID: 35026749 DOI: 10.1088/1748-3190/ac4afa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we present an open-source software library that can be used to numerically simulate the advection and diffusion of a chemical concentration or heat density in a viscous fluid where a moving, elastic boundary drives the fluid and acts as a source or sink. The fully-coupled fluid-structure interaction problem of an elastic boundary in a viscous fluid is solved using Peskin's immersed boundary method. The addition or removal of the concentration or heat density from the boundary is solved using an immersed boundary-like approach in which the concentration is spread from the immersed boundary to the fluid using a regularized delta function. The concentration or density over time is then described by the advection-diffusion equation and numerically solved. This functionality has been added to our software library,IB2d, which provides an easy-to-use immersed boundary method in two dimensions with full implementations in MATLAB and Python. We provide four examples that illustrate the usefulness of the method. A simple rubber band that resists stretching and absorbs and releases a chemical concentration is simulated as a first example. Complete convergence results are presented for this benchmark case. Three more biological examples are presented: (1) an oscillating row of cylinders, representative of an idealized appendage used for filter-feeding or sniffing, (2) an oscillating plate in a background flow is considered to study the case of heat dissipation in a vibrating leaf, and (3) a simplified model of a pulsing soft coral where carbon dioxide is taken up and oxygen is released as a byproduct from the moving tentacles. This method is applicable to a broad range of problems in the life sciences, including chemical sensing by antennae, heat dissipation in plants and other structures, the advection-diffusion of morphogens during development, filter-feeding by marine organisms, and the release of waste products from organisms in flows.
Collapse
Affiliation(s)
- Matea Santiago
- Department of Mathematics, University of Arizona, PO Box 210089, Tucson, AZ 85721, United States of America
| | - Nicholas A Battista
- Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Rd., Ewing, NJ 08628, United States of America
| | - Laura A Miller
- Department of Mathematics, University of Arizona, PO Box 210089, Tucson, AZ 85721, United States of America
| | - Shilpa Khatri
- Department of Applied Mathematics, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, United States of America
| |
Collapse
|
6
|
Fleig P, Kramar M, Wilczek M, Alim K. Emergence of behaviour in a self-organized living matter network. eLife 2022; 11:62863. [PMID: 35060901 PMCID: PMC8782570 DOI: 10.7554/elife.62863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
What is the origin of behaviour? Although typically associated with a nervous system, simple organisms also show complex behaviours. Among them, the slime mold Physarum polycephalum, a giant single cell, is ideally suited to study emergence of behaviour. Here, we show how locomotion and morphological adaptation behaviour emerge from self-organized patterns of rhythmic contractions of the actomyosin lining of the tubes making up the network-shaped organism. We quantify the spatio-temporal contraction dynamics by decomposing experimentally recorded contraction patterns into spatial contraction modes. Notably, we find a continuous spectrum of modes, as opposed to a few dominant modes. Our data suggests that the continuous spectrum of modes allows for dynamic transitions between a plethora of specific behaviours with transitions marked by highly irregular contraction states. By mapping specific behaviours to states of active contractions, we provide the basis to understand behaviour’s complexity as a function of biomechanical dynamics.
Collapse
Affiliation(s)
- Philipp Fleig
- Department of Physics & Astronomy, University of Pennsylvania
- Max Planck Institute for Dynamics and Self-Organization
| | - Mirna Kramar
- Max Planck Institute for Dynamics and Self-Organization
| | | | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization
- Physik-Department and Center for Protein Assemblies, Technische Universität München
| |
Collapse
|
7
|
Abstract
The concept of memory is traditionally associated with organisms possessing a nervous system. However, even very simple organisms store information about past experiences to thrive in a complex environment-successfully exploiting nutrient sources, avoiding danger, and warding off predators. How can simple organisms encode information about their environment? We here follow how the giant unicellular slime mold Physarum polycephalum responds to a nutrient source. We find that the network-like body plan of the organism itself serves to encode the location of a nutrient source. The organism entirely consists of interlaced tubes of varying diameters. Now, we observe that these tubes grow and shrink in diameter in response to a nutrient source, thereby imprinting the nutrient's location in the tube diameter hierarchy. Combining theoretical model and experimental data, we reveal how memory is encoded: a nutrient source locally releases a softening agent that gets transported by the cytoplasmic flows within the tubular network. Tubes receiving a lot of softening agent grow in diameter at the expense of other tubes shrinking. Thereby, the tubes' capacities for flow-based transport get permanently upgraded toward the nutrient location, redirecting future decisions and migration. This demonstrates that nutrient location is stored in and retrieved from the networks' tube diameter hierarchy. Our findings explain how network-forming organisms like slime molds and fungi thrive in complex environments. We here identify a flow networks' version of associative memory-very likely of relevance for the plethora of living flow networks as well as for bioinspired design.
Collapse
|
8
|
Schenz D, Nishigami Y, Sato K, Nakagaki T. Uni-cellular integration of complex spatial information in slime moulds and ciliates. Curr Opin Genet Dev 2019; 57:78-83. [PMID: 31449977 DOI: 10.1016/j.gde.2019.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023]
Abstract
Single-celled organisms show a fascinating faculty for integrating spatial information and adapting their behaviour accordingly. As such they are of potential interest for elucidating fundamental mechanisms of developmental biology. In this mini-review we highlight current research on two organisms, the true slime mould Physarum polycephalum and the ciliates Paramecium and Tetrahymena. For each of these, we present a case study how applying physical principles to explain behaviour can lead to the understanding of general principles possibly relevant to developmental biology.
Collapse
Affiliation(s)
- Daniel Schenz
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, N20W10, Sapporo, 001-0020, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Sapporo, 001-0021, Japan
| | - Yukinori Nishigami
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, N20W10, Sapporo, 001-0020, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Katsuhiko Sato
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, N20W10, Sapporo, 001-0020, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Toshiyuki Nakagaki
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, N20W10, Sapporo, 001-0020, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
9
|
Active poroelastic two-phase model for the motion of physarum microplasmodia. PLoS One 2019; 14:e0217447. [PMID: 31398215 PMCID: PMC6688797 DOI: 10.1371/journal.pone.0217447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/24/2019] [Indexed: 01/05/2023] Open
Abstract
The onset of self-organized motion is studied in a poroelastic two-phase model with free boundaries for Physarum microplasmodia (MP). In the model, an active gel phase is assumed to be interpenetrated by a passive fluid phase on small length scales. A feedback loop between calcium kinetics, mechanical deformations, and induced fluid flow gives rise to pattern formation and the establishment of an axis of polarity. Altogether, we find that the calcium kinetics that breaks the conservation of the total calcium concentration in the model and a nonlinear friction between MP and substrate are both necessary ingredients to obtain an oscillatory movement with net motion of the MP. By numerical simulations in one spatial dimension, we find two different types of oscillations with net motion as well as modes with time-periodic or irregular switching of the axis of polarity. The more frequent type of net motion is characterized by mechano-chemical waves traveling from the front towards the rear. The second type is characterized by mechano-chemical waves that appear alternating from the front and the back. While both types exhibit oscillatory forward and backward movement with net motion in each cycle, the trajectory and gel flow pattern of the second type are also similar to recent experimental measurements of peristaltic MP motion. We found moving MPs in extended regions of experimentally accessible parameters, such as length, period and substrate friction strength. Simulations of the model show that the net speed increases with the length, provided that MPs are longer than a critical length of ≈ 120 μm. Both predictions are in line with recent experimental observations.
Collapse
|
10
|
Gao C, Liu C, Schenz D, Li X, Zhang Z, Jusup M, Wang Z, Beekman M, Nakagaki T. Does being multi-headed make you better at solving problems? A survey of Physarum-based models and computations. Phys Life Rev 2019; 29:1-26. [DOI: 10.1016/j.plrev.2018.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
11
|
Oettmeier C, Döbereiner HG. A lumped parameter model of endoplasm flow in Physarum polycephalum explains migration and polarization-induced asymmetry during the onset of locomotion. PLoS One 2019; 14:e0215622. [PMID: 31013306 PMCID: PMC6478327 DOI: 10.1371/journal.pone.0215622] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/04/2019] [Indexed: 01/08/2023] Open
Abstract
The plasmodial slime mold Physarum polycephalum exhibits strong, periodic flow of cytoplasm through the veins of its network. In the special case of mesoplasmodia, a newly described starvation-induced, shape-constant morphotype, this periodic endoplasm streaming is the basis of locomotion. Furthermore, we presume that cytoplasm flow is also involved in signal transmission and signal processing. Mesoplasmodia motility resembles amoeboid locomotion. In contrast to other amoebae, however, mesoplasmodia move without extending pseudopods and retain a coherent, fan-shaped morphology throughout their steady locomotion. Attaining sizes of up to 2 mm2, mesoplasmodia are also much bigger than other amoebae. We characterize this particular type of locomotion and identify patterns of movement. By using the analogy between pulsatile fluid flow through a network of elastic tubes and electrical circuits, we build a lumped model that explains observed fluid flow patterns. Essentially, the mesoplasmodium acts as a low-pass filter, permitting only low-frequency oscillations to propagate from back to front. This frequency selection serves to optimize flow and reduces power dissipation. Furthermore, we introduce a distributed element into the lumped model to explain cell polarization during the onset of chemotaxis: Biochemical cues (internal or external) lead to a local softening of the actin cortex, which in turn causes an increased flow of cytoplasm into that area and, thus, a net forward movement. We conclude that the internal actin-enclosed vein network gives the slime mold a high measure of control over fluid transport, especially by softening or hardening, which in turn leads to polarization and net movement.
Collapse
Affiliation(s)
- Christina Oettmeier
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- * E-mail:
| | | |
Collapse
|
12
|
Zhang S, Skinner D, Joshi P, Criado-Hidalgo E, Yeh YT, Lasheras JC, Caffrey CR, del Alamo JC. Quantifying the mechanics of locomotion of the schistosome pathogen with respect to changes in its physical environment. J R Soc Interface 2019; 16:20180675. [PMID: 30958153 PMCID: PMC6364656 DOI: 10.1098/rsif.2018.0675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023] Open
Abstract
Schistosomiasis is a chronic and morbid disease of poverty affecting approximately 200 million people worldwide. Mature schistosome flatworms wander in the host's hepatic portal and mesenteric venous system where they encounter a range of blood flow conditions and geometrical confinement. However, the mechanisms that support schistosome locomotion and underlie the pathogen's adaptation to its physical environment are largely unknown. By combining microfabrication and traction force microscopy, we developed various in vitro assays to quantify the mechanics of locomotion of adult male Schistosoma mansoni in different physiologically relevant conditions. We show that in unconfined settings, the parasite undergoes two-anchor marching mediated by the coordinated action of its oral and ventral suckers. This mode of locomotion is maintained when the worm faces an external flow, to which it responds by adjusting the strength of its suckers. In geometrically confined conditions, S. mansoni switches to a different crawling modality by generating retrograde peristaltic waves along its body, a mechanism shared with terrestrial and marine worms. However, while the surface of most worms has backward-pointing bristles that rectify peristaltic waves and facilitate forward locomotion, S. mansoni has isotropically oriented tubercles. This requires tight coordination between muscle contraction and substrate friction but gives S. mansoni the ability to reverse its direction of locomotion without turning its body, which is likely advantageous to manoeuvre in narrow-bore vessels. We show that the parasite can also coordinate the action of its suckers with its peristaltic body contractions to increase crawling speed. Throughout this study, we report on a number of biomechanical parameters to quantify the motility of adult schistosomes (e.g. sucker grabbing strength, the rate of detachment under flow, peristaltic wave properties and traction stresses). The new series of in vitro assays make it possible to quantify key phenotypical aspects of S. mansoni motility that could guide the discovery of new drugs to treat schistosomiasis.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - Danielle Skinner
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Prateek Joshi
- School of Engineering, Brown University, Providence, RI, USA
| | - Ernesto Criado-Hidalgo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Institute for Engineering in Medicine, University of California San Diego, San Diego, CA, USA
| | - Juan C. Lasheras
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Institute for Engineering in Medicine, University of California San Diego, San Diego, CA, USA
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Juan C. del Alamo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
- Institute for Engineering in Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
13
|
Oscillatory fluid flow drives scaling of contraction wave with system size. Proc Natl Acad Sci U S A 2018; 115:10612-10617. [PMID: 30282737 DOI: 10.1073/pnas.1805981115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Flows over remarkably long distances are crucial to the functioning of many organisms, across all kingdoms of life. Coordinated flows are fundamental to power deformations, required for migration or development, or to spread resources and signals. A ubiquitous mechanism to generate flows, particularly prominent in animals and amoebas, is actomyosin cortex-driven mechanical deformations that pump the fluid enclosed by the cortex. However, it is unclear how cortex dynamics can self-organize to give rise to coordinated flows across the largely varying scales of biological systems. Here, we develop a mechanochemical model of actomyosin cortex mechanics coupled to a contraction-triggering, soluble chemical. The chemical itself is advected with the flows generated by the cortex-driven deformations of the tubular-shaped cell. The theoretical model predicts a dynamic instability giving rise to stable patterns of cortex contraction waves and oscillatory flows. Surprisingly, simulated patterns extend beyond the intrinsic length scale of the dynamic instability-scaling with system size instead. Patterns appear randomly but can be robustly generated in a growing system or by flow-generating boundary conditions. We identify oscillatory flows as the key for the scaling of contraction waves with system size. Our work shows the importance of active flows in biophysical models of patterning, not only as a regulating input or an emergent output, but also as a full part of a self-organized machinery. Contractions and fluid flows are observed in all kinds of organisms, so this concept is likely to be relevant for a broad class of systems.
Collapse
|
14
|
Abstract
A dynamic self-organized morphology is the hallmark of network-shaped organisms like slime moulds and fungi. Organisms continuously reorganize their flexible, undifferentiated body plans to forage for food. Among these organisms the slime mould Physarum polycephalum has emerged as a model to investigate how an organism can self-organize their extensive networks and act as a coordinated whole. Cytoplasmic fluid flows flowing through the tubular networks have been identified as the key driver of morphological dynamics. Inquiring how fluid flows can shape living matter from small to large scales opens up many new avenues for research. This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|