1
|
Xie H, Huang Z, Zhao Y, Huang H, Li G, Gu Z, Zeng S. Strong electron-phonon coupling and multigap superconductivity in 2H/1T Janus MoSLi monolayer. J Chem Phys 2024; 160:234707. [PMID: 38904407 DOI: 10.1063/5.0210968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Two-dimensional (2D) Janus transition metal dichalcogenides MXY manifest novel physical properties owing to the breaking of out-of-plane mirror symmetry. Recently, the 2H phase of MoSH has been demonstrated to possess intrinsic superconductivity, whereas the 1T phase exhibits a charge density waves state. In this paper, we have systematically studied the stability and electron-phonon interaction characteristics of MoSLi. Our results have shown that both the 2H and 1T phases of MoSLi are stable, as indicated by the phonon spectrum and the ab initio molecular dynamics. However, the 1T phase exhibits an electron-phonon coupling constant that is twice as large as that of the 2H phase. In contrast to MoSH, the 1T phase of MoSLi exhibits intrinsic superconductivity. By employing the ab initio anisotropic Migdal-Eliashberg formalism, we have revealed the two-gap superconducting nature of 1T-MoSLi, with a transition temperature (Tc) of 14.8 K. The detailed analysis indicates that the superconductivity in 1T-MoSLi primarily originates from the interplay between the vibration of the phonon modes in the low-frequency region and the dz2 orbital. These findings provide a fresh perspective on superconductivity within Janus structures.
Collapse
Affiliation(s)
- Hongmei Xie
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Zhijing Huang
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yinchang Zhao
- Department of Physics, Yantai University, Yantai 264005, China
| | - Hao Huang
- Advanced Copper Industry College, Jiangxi University of Science and Technology, Yingtan 335000, China
| | - Geng Li
- China Rare Earth Group Research Institute, Ganzhou, Jiangxi 341000, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
| | - Zonglin Gu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Shuming Zeng
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| |
Collapse
|
2
|
Ji X, Ding D, Guan X, Wu C, Qian H, Cao J, Li J, Jin C. Interlayer Coupling Dependent Discrete H → T' Phase Transition in Lithium Intercalated Bilayer Molybdenum Disulfide. ACS NANO 2021; 15:15039-15046. [PMID: 34495636 DOI: 10.1021/acsnano.1c05332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, the interlayer coupling dependent lithium intercalation induced phase transition in bilayer MoS2 (BL-MoS2) was investigated using an atomic-resolution annual dark-field scanning transmission electron microscope (ADF-STEM). It was revealed that the lithiation induced H → T' phase transition in BL-MoS2 strongly depended on the interlayer twist angle; i.e., the H → T' phase transition occurred in well-stacked H phase BL-MoS2 (with a twist angle of θt = 0°) but not for θt ≠ 0° BL-MoS2. The lithiated BL-MoS2 appeared in homophase stacking, either T'/T' or H/H (locally, no phase transformation) stacking, without any heterophase stacking such as H/T' or T'/H observed. This finding indicated the H → T' phase transition occurred via a domain-by-domain mode rather than layer-by-layer. Up to 15 types of stacking orders were experimentally identified locally in lithiated bilayer T'-MoS2, and the formation mechanism was attributed to the discrete interlayer translation with a unit step of (m/6a, n/6b) (m, n = 0, 1, 2, 3), where a and b were the primitive lattice vectors of T'-MoS2. Our experimental results were further corroborated by ab initio density functional theory (DFT) calculations, where the occurrence of different stacking orders can be quantitatively correlated with the variation of intercalated lithium contents into the BL-MoS2. The present study aids in the understanding of the phase transition mechanisms in atomically thin 2D transition metal dichalcogenides (TMDCs) and will also shed light on the precisely controlled phase engineering of 2D materials for memory applications.
Collapse
Affiliation(s)
- Xujing Ji
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Degong Ding
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaoxiao Guan
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Chunyang Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haofu Qian
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Juexian Cao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Jixue Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| |
Collapse
|
3
|
Mehmood F, Pachter R, Back TC, Boeckl JJ, Busch RT, Stevenson PR. Two-dimensional MoS 2 2H, 1T, and 1T ' crystalline phases with incorporated adatoms: theoretical investigation of electronic and optical properties. APPLIED OPTICS 2021; 60:G232-G242. [PMID: 34613214 DOI: 10.1364/ao.433239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Although there has been progress in studying the electronic and optical properties of monolayer and near-monolayer (two-dimensional, 2D) MoS2 upon adatom adsorption and intercalation, understanding the underlying atomic-level behavior is lacking, particularly as related to the optical response. Alkali atom intercalation in 2D transition metal dichalcogenides (TMDs) is relevant to chemical exfoliation methods that are expected to enable large scale production. In this work, focusing on prototypical 2D MoS2, the adsorption and intercalation of Li, Na, K, and Ca adatoms were investigated for the 2H, 1T, and 1T' phases of the TMD by the first principles density functional theory in comparison to experimental characterization of 2H and 1T 2D MoS2 films. Our electronic structure calculations demonstrate significant charge transfer, influencing work function reductions of 1-1.5 eV. Furthermore, electrical conductivity calculations confirm the semiconducting versus metallic behavior. Calculations of the optical spectra, including excitonic effects using a many-body theoretical approach, indicate enhancement of the optical transmission upon phase change. Encouragingly, this is corroborated, in part, by the experimental measurements for the 2H and 1T phases having semiconducting and metallic behavior, respectively, thus motivating further experimental exploration. Overall, our calculations emphasize the potential impact of synthesis-relevant adatom incorporation in 2D MoS2 on the electronic and optical responses that comprise important considerations toward the development of devices such as photodetectors or the miniaturization of electroabsorption modulator components.
Collapse
|
4
|
Mao H, Fu Y, Yang H, Deng ZZ, Sun Y, Liu D, Wu Q, Ma T, Song XM. Ultrathin 1T-MoS 2 Nanoplates Induced by Quaternary Ammonium-Type Ionic Liquids on Polypyrrole/Graphene Oxide Nanosheets and Its Irreversible Crystal Phase Transition During Electrocatalytic Nitrogen Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25189-25199. [PMID: 32372649 DOI: 10.1021/acsami.0c05204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultrathin nanoplates of metastable 1T-MoS2 have been successfully stabilized and uniformly distributed on the surface of n-butyl triethyl ammonium bromide functionalized polypyrrole/graphene oxide (BTAB/PPy/GO) by a very simple hydrothermal method. BTAB as a typical kind of quaternary ammonium-type ionic liquids (ILs) played a crucial role in the formation of the obtained 1T-MoS2/BTAB/PPy/GO. It was covalently linked with PPy/GO and arranged in a highly ordered order at the solid-liquid interface of PPy/GO and H2O due to Coulombic interactions and other intermolecular interactions, which would induce and stabilize ultrathin 1T-MoS2 nanoplates by morphosynthesis. The good electrocatalytic activity toward nitrogen reduction reaction (NRR) with strong durability and good stability can be achieved by 1T-MoS2/BTAB/PPy/GO due to their excellent inorganic/organic hierarchical lamellar micro-/nanostructures. Especially, after the long-term electrocatalysis for NRR at a negative potential, metastable 1T-MoS2 as the catalytic center undergoes two types of irreversible crystal phase transition, which was converted to 1T'-MoS2 and Mo2N, caused by the competitive hydrogen evolution reaction (HER) process and the electrochemical reaction between the electroactive 1T-MoS2 and N2, respectively. The new N-Mo bonding prevents Mo atoms from binding to other N atoms in N2, resulting in the deactivation of the electrocatalysts to NRR after being used for 18 h. Even so, quaternary ammonium-type ILs would induce the crystal structures of transition-metal dichalcogenides (TMDCs), which might provide a new thought for the reasonable design of electrocatalysts based on TMDCs for electrocatalysis.
Collapse
Affiliation(s)
- Hui Mao
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yuanlin Fu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Haoran Yang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zi-Zhao Deng
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Daliang Liu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qiong Wu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Tianyi Ma
- Discipline of Chemistry, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xi-Ming Song
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
5
|
Shi Z, Cao R, Khan K, Tareen AK, Liu X, Liang W, Zhang Y, Ma C, Guo Z, Luo X, Zhang H. Two-Dimensional Tellurium: Progress, Challenges, and Prospects. NANO-MICRO LETTERS 2020; 12:99. [PMID: 34138088 PMCID: PMC7770852 DOI: 10.1007/s40820-020-00427-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/11/2020] [Indexed: 05/23/2023]
Abstract
Since the successful fabrication of two-dimensional (2D) tellurium (Te) in 2017, its fascinating properties including a thickness dependence bandgap, environmental stability, piezoelectric effect, high carrier mobility, and photoresponse among others show great potential for various applications. These include photodetectors, field-effect transistors, piezoelectric devices, modulators, and energy harvesting devices. However, as a new member of the 2D material family, much less known is about 2D Te compared to other 2D materials. Motivated by this lack of knowledge, we review the recent progress of research into 2D Te nanoflakes. Firstly, we introduce the background and motivation of this review. Then, the crystal structures and synthesis methods are presented, followed by an introduction to their physical properties and applications. Finally, the challenges and further development directions are summarized. We believe that milestone investigations of 2D Te nanoflakes will emerge soon, which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.
Collapse
Affiliation(s)
- Zhe Shi
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Rui Cao
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, Guangdong, People's Republic of China
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Xiaosong Liu
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Weiyuan Liang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Ye Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Chunyang Ma
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Zhinan Guo
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Xiaoling Luo
- Department of Ophthalmology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Imani Yengejeh S, Liu J, Kazemi SA, Wen W, Wang Y. Effect of Structural Phases on Mechanical Properties of Molybdenum Disulfide. ACS OMEGA 2020; 5:5994-6002. [PMID: 32226880 PMCID: PMC7098060 DOI: 10.1021/acsomega.9b04360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Molybdenum disulfide (MoS2) is a promising layer-structured material for use in many applications due to its tunable structural and electronic properties in terms of its structural phases. Its performance including efficiency and durability is often dependent on its mechanical properties. To understand the effects of the structural phase on its mechanical properties, a comparative study on the mechanical properties of bulk 2H, 3R, 1T, and 1T' MoS2 was conducted using the first-principles density functional theory. Since considerable applications of MoS2 are developed through strain engineering, the impact of the external pressure on its mechanical properties was also considered. Our results suggest a strong relationship between the mechanical properties of MoS2 and the structural symmetry of its crystal. Accordingly, the impacts of the external pressure on the mechanical properties of MoS2 also greatly vary with respect to the structural phases. Among all of the considered phases, the 2H and 3R MoS2 have a larger bulk modulus, Young's modulus, shear modulus, and microhardness due to their higher stability. Conversely, 1T and 1T' MoS2 are less strong. As such, 1T and 1T' MoS2 can be a better candidate for strain engineering.
Collapse
|
7
|
Zhao W, Pan J, Fang Y, Che X, Wang D, Bu K, Huang F. Metastable MoS2
: Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chemistry 2018; 24:15942-15954. [DOI: 10.1002/chem.201801018] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 P.R. China
| | - Jie Pan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 P.R. China
| | - Yuqiang Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 P.R. China
| | - Xiangli Che
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 P.R. China
| | - Dong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 P.R. China
| | - Kejun Bu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 P.R. China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 P.R. China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| |
Collapse
|