1
|
He L, Tomaník L, Malerz S, Trinter F, Trippel S, Belina M, Slavíček P, Winter B, Küpper J. Specific versus Nonspecific Solvent Interactions of a Biomolecule in Water. J Phys Chem Lett 2023; 14:10499-10508. [PMID: 37970807 PMCID: PMC10683073 DOI: 10.1021/acs.jpclett.3c01763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023]
Abstract
Solvent interactions, particularly hydration, are vital in chemical and biochemical systems. Model systems reveal microscopic details of such interactions. We uncover a specific hydrogen-bonding motif of the biomolecular building block indole (C8H7N), tryptophan's chromophore, in water: a strong localized N-H···OH2 hydrogen bond, alongside unstructured solvent interactions. This insight is revealed from a combined experimental and theoretical analysis of the electronic structure of indole in aqueous solution. We recorded the complete X-ray photoemission and Auger spectrum of aqueous-phase indole, quantitatively explaining all peaks through ab initio modeling. The efficient and accurate technique for modeling valence and core photoemission spectra involves the maximum-overlap method and the nonequilibrium polarizable-continuum model. A two-hole electron-population analysis quantitatively describes the Auger spectra. Core-electron binding energies for nitrogen and carbon highlight the specific interaction with a hydrogen-bonded water molecule at the N-H group and otherwise nonspecific solvent interactions.
Collapse
Affiliation(s)
- Lanhai He
- Center
for Free-Electron Laser Science, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Institute
of Atomic and Molecular Physics, Jilin University, 130012 Changchun, China
| | - Lukáš Tomaník
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Sebastian Malerz
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Florian Trinter
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straße
1, 60438 Frankfurt
am Main, Germany
| | - Sebastian Trippel
- Center
for Free-Electron Laser Science, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Center
for Ultrafast Imaging, Universität
Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
| | - Michal Belina
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Bernd Winter
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Jochen Küpper
- Center
for Free-Electron Laser Science, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Center
for Ultrafast Imaging, Universität
Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
- Department
of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
2
|
Gopakumar G, Muchová E, Unger I, Malerz S, Trinter F, Öhrwall G, Lipparini F, Mennucci B, Céolin D, Caleman C, Wilkinson I, Winter B, Slavíček P, Hergenhahn U, Björneholm O. Probing aqueous ions with non-local Auger relaxation. Phys Chem Chem Phys 2022; 24:8661-8671. [PMID: 35356960 PMCID: PMC9007223 DOI: 10.1039/d2cp00227b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/31/2022]
Abstract
Non-local analogues of Auger decay are increasingly recognized as important relaxation processes in the condensed phase. Here, we explore non-local autoionization, specifically Intermolecular Coulombic Decay (ICD), of a series of aqueous-phase isoelectronic cations following 1s core-level ionization. In particular, we focus on Na+, Mg2+, and Al3+ ions. We unambiguously identify the ICD contribution to the K-edge Auger spectrum. The different strength of the ion-water interactions is manifested by varying intensities of the respective signals: the ICD signal intensity is greatest for the Al3+ case, weaker for Mg2+, and absent for weakly-solvent-bound Na+. With the assistance of ab initio calculations and molecular dynamics simulations, we provide a microscopic understanding of the non-local decay processes. We assign the ICD signals to decay processes ending in two-hole states, delocalized between the central ion and neighbouring water. Importantly, these processes are shown to be highly selective with respect to the promoted water solvent ionization channels. Furthermore, using a core-hole-clock analysis, the associated ICD timescales are estimated to be around 76 fs for Mg2+ and 34 fs for Al3+. Building on these results, we argue that Auger and ICD spectroscopy represents a unique tool for the exploration of intra- and inter-molecular structure in the liquid phase, simultaneously providing both structural and electronic information.
Collapse
Affiliation(s)
- Geethanjali Gopakumar
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Eva Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, 166 28, Czech Republic.
| | - Isaak Unger
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Sebastian Malerz
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Florian Trinter
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Gunnar Öhrwall
- MAX IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden
| | - Filippo Lipparini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Denis Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, Paris, France
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Iain Wilkinson
- Department of Locally-Sensitive & Time-Resolved Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Bernd Winter
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, 166 28, Czech Republic.
| | - Uwe Hergenhahn
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Olle Björneholm
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
3
|
Espinoza EM, Clark JA, Billones MK, Silva GTDM, da Silva CP, Quina FH, Vullev VI. Photophysics and Electrochemistry of Biomimetic Pyranoflavyliums: What Can Bioinspiration from Red Wines Offer? PHOTOCHEM 2022; 2:9-31. [PMID: 35075451 PMCID: PMC8783599 DOI: 10.3390/photochem2010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural dyes and pigments offer incomparable diversity of structures and functionalities, making them an excellent source of inspiration for the design and development of synthetic chromophores with a myriad of emerging properties. Formed during maturation of red wines, pyranoanthocyanins are electron-deficient cationic pyranoflavylium dyes with broad absorption in the visible spectral region and pronounced chemical and photostability. Herein, we survey the optical and electrochemical properties of synthetic pyranoflavylium dyes functionalized with different electron-donating and electron-withdrawing groups, which vary their reduction potentials over a range of about 400 mV. Despite their highly electron-deficient cores, the exploration of pyranoflavyliums as photosensitizers has been limited to the "classical" n-type dye-sensitized solar cells (DSSCs) where they act as electron donors. In light of their electrochemical and spectroscopic properties, however, these biomimetic synthetic dyes should prove to be immensely beneficial as chromophores in p-type DSSCs, where their ability to act as photooxidants, along with their pronounced photostability, can benefit key advances in solar-energy science and engineering.
Collapse
Affiliation(s)
| | - John Anthony Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | | | - Cassio Pacheco da Silva
- Instituto de Química, Universidade de São Paulo, Avenida Lineu Prestes 748, Cidade Universitaŕia, São Paulo 05508-900, Brazil
| | - Frank Herbert Quina
- Instituto de Química, Universidade de São Paulo, Avenida Lineu Prestes 748, Cidade Universitaŕia, São Paulo 05508-900, Brazil
| | - Valentine Ivanov Vullev
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Malerz S, Mudryk K, Tomaník L, Stemer D, Hergenhahn U, Buttersack T, Trinter F, Seidel R, Quevedo W, Goy C, Wilkinson I, Thürmer S, Slavíček P, Winter B. Following in Emil Fischer's Footsteps: A Site-Selective Probe of Glucose Acid-Base Chemistry. J Phys Chem A 2021; 125:6881-6892. [PMID: 34328745 PMCID: PMC8381351 DOI: 10.1021/acs.jpca.1c04695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Indexed: 12/27/2022]
Abstract
Liquid-jet photoelectron spectroscopy was applied to determine the first acid dissociation constant (pKa) of aqueous-phase glucose while simultaneously identifying the spectroscopic signature of the respective deprotonation site. Valence spectra from solutions at pH values below and above the first pKa reveal a change in glucose's lowest ionization energy upon the deprotonation of neutral glucose and the subsequent emergence of its anionic counterpart. Site-specific insights into the solution-pH-dependent molecular structure changes are also shown to be accessible via C 1s photoelectron spectroscopy. The spectra reveal a considerably lower C 1s binding energy of the carbon site associated with the deprotonated hydroxyl group. The occurrence of photoelectron spectral fingerprints of cyclic and linear glucose prior to and upon deprotonation are also discussed. The experimental data are interpreted with the aid of electronic structure calculations. Our findings highlight the potential of liquid-jet photoelectron spectroscopy to act as a site-selective probe of the molecular structures that underpin the acid-base chemistry of polyprotic systems with relevance to environmental chemistry and biochemistry.
Collapse
Affiliation(s)
- Sebastian Malerz
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Karen Mudryk
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Lukáš Tomaník
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, Prague 6 16628, Czech Republic
| | - Dominik Stemer
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Uwe Hergenhahn
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Tillmann Buttersack
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Florian Trinter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Robert Seidel
- Operando
Interfacial Photochemistry, Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Wilson Quevedo
- Operando
Interfacial Photochemistry, Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Claudia Goy
- Centre for
Molecular Water Science (CMWS), Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Iain Wilkinson
- Department
of Locally-Sensitive & Time-Resolved Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und
Energie, Hahn-Meitner-Platz
1, 14109 Berlin, Germany
| | - Stephan Thürmer
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, Prague 6 16628, Czech Republic
| | - Bernd Winter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
5
|
Thürmer S, Malerz S, Trinter F, Hergenhahn U, Lee C, Neumark DM, Meijer G, Winter B, Wilkinson I. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem Sci 2021; 12:10558-10582. [PMID: 34447550 PMCID: PMC8356740 DOI: 10.1039/d1sc01908b] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023] Open
Abstract
The absolute-scale electronic energetics of liquid water and aqueous solutions, both in the bulk and at associated interfaces, are the central determiners of water-based chemistry. However, such information is generally experimentally inaccessible. Here we demonstrate that a refined implementation of the liquid microjet photoelectron spectroscopy (PES) technique can be adopted to address this. Implementing concepts from condensed matter physics, we establish novel all-liquid-phase vacuum and equilibrated solution–metal-electrode Fermi level referencing procedures. This enables the precise and accurate determination of previously elusive water solvent and solute vertical ionization energies, VIEs. Notably, this includes quantification of solute-induced perturbations of water's electronic energetics and VIE definition on an absolute and universal chemical potential scale. Defining and applying these procedures over a broad range of ionization energies, we accurately and respectively determine the VIE and oxidative stability of liquid water as 11.33 ± 0.03 eV and 6.60 ± 0.08 eV with respect to its liquid-vacuum-interface potential and Fermi level. Combining our referencing schemes, we accurately determine the work function of liquid water as 4.73 ± 0.09 eV. Further, applying our novel approach to a pair of exemplary aqueous solutions, we extract absolute VIEs of aqueous iodide anions, reaffirm the robustness of liquid water's electronic structure to high bulk salt concentrations (2 M sodium iodide), and quantify reference-level dependent reductions of water's VIE and a 0.48 ± 0.13 eV contraction of the solution's work function upon partial hydration of a known surfactant (25 mM tetrabutylammonium iodide). Our combined experimental accomplishments mark a major advance in our ability to quantify electronic–structure interactions and chemical reactivity in liquid water, which now explicitly extends to the measurement of absolute-scale bulk and interfacial solution energetics, including those of relevance to aqueous electrochemical processes. A generalised liquid-phase photoelectron spectroscopy approach is reported, allowing accurate, absolute energy scale ionisation energies of liquid water and aqueous solutions, as well as liquid water's work function to be reported.![]()
Collapse
Affiliation(s)
- Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-Ku Kyoto 606-8502 Japan
| | - Sebastian Malerz
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Florian Trinter
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany .,Institut für Kernphysik, Goethe-Universität Max-von-Laue-Straße 1 60438 Frankfurt am Main Germany
| | - Uwe Hergenhahn
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Chin Lee
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany .,Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA.,Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA.,Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Gerard Meijer
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Bernd Winter
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Iain Wilkinson
- Department of Locally-Sensitive & Time-Resolved Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| |
Collapse
|
6
|
Med J, Sršeň Š, Slavíček P, Domaracka A, Indrajith S, Rousseau P, Fárník M, Fedor J, Kočišek J. Vibrationally Mediated Stabilization of Electrons in Nonpolar Matter. J Phys Chem Lett 2020; 11:2482-2489. [PMID: 32154726 DOI: 10.1021/acs.jpclett.0c00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We explore solvation of electrons in nonpolar matter, here represented by butadiene clusters. Isolated butadiene supports only the existence of transient anions (resonances). Two-dimensional electron energy loss spectroscopy shows that the resonances lead to an efficient vibrational excitation of butadiene, which can result into the almost complete loss of energy of the interacting electron. Cluster-beam experiments show that molecular clusters of butadiene form stable anions, however only at sizes of more than 9 molecular units. We have calculated the distribution of electron affinities of clusters using classical and path integral molecular dynamics simulations. There is almost a continuous transition from the resonant to the bound anions with an increase in cluster size. The comparison of the classical and quantum dynamics reveals that the electron binding is strongly supported by molecular vibrations, brought about by nuclear zero-point motion and thermal agitation. We also inspected the structure of the solvated electron, finding it well localized.
Collapse
Affiliation(s)
- Jakub Med
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Štěpán Sršeň
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - A Domaracka
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - S Indrajith
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - P Rousseau
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - M Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J Fedor
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J Kočišek
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
7
|
Affiliation(s)
- Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502,
Japan
| |
Collapse
|