1
|
Smith AD, Donley GJ, Del Gado E, Zavala VM. Topological Data Analysis for Particulate Gels. ACS NANO 2024; 18:28622-28635. [PMID: 39321316 DOI: 10.1021/acsnano.4c04969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Soft gels, formed via the self-assembly of particulate materials, exhibit intricate multiscale structures that provide them with flexibility and resilience when subjected to external stresses. This work combines particle simulations and topological data analysis (TDA) to characterize the complex multiscale structure of soft gels. Our TDA analysis focuses on the use of the Euler characteristic, which is an interpretable and computationally scalable topological descriptor that is combined with filtration operations to obtain information on the geometric (local) and topological (global) structure of soft gels. We reduce the topological information obtained with TDA using principal component analysis (PCA) and show that this provides an informative low-dimensional representation of the gel structure. We use the proposed computational framework to investigate the influence of gel preparation (e.g., quench rate, volume fraction) on soft gel structure and to explore dynamic deformations that emerge under oscillatory shear in various response regimes (linear, nonlinear, and flow). Our analysis provides evidence of the existence of hierarchical structures in soft gels, which are not easily identifiable otherwise. Moreover, our analysis reveals direct correlations between topological changes of the gel structure under deformation and mechanical phenomena distinctive of gel materials, such as stiffening and yielding. In summary, we show that TDA facilitates the mathematical representation, quantification, and analysis of soft gel structures, extending traditional network analysis methods to capture both local and global organization.
Collapse
Affiliation(s)
- Alexander D Smith
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gavin J Donley
- Department of Physics, Georgetown University, Washington, DC 20057, United States
| | - Emanuela Del Gado
- Department of Physics, Georgetown University, Washington, DC 20057, United States
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC 20057, United States
| | - Victor M Zavala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Skipper K, Moore FJ, Royall CP. Identification and classification of clusters of dipolar colloids in an external field. J Chem Phys 2024; 161:144308. [PMID: 39382133 DOI: 10.1063/5.0225759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Colloids can acquire a dipolar interaction in the presence of an external AC electric field. At high field strength, the particles form strings in the field direction. However, at weaker field strength, competition with isotropic interactions is expected. One means to investigate this interplay between dipolar and isotropic interactions is to consider clusters of such particles. Therefore, we have identified, using the GMIN basin-hopping tool, a rich library of lowest energy clusters of a dipolar colloidal system, where the dipole orientation is fixed to lie along the z axis and the dipole strength is varied for m-membered clusters of 7 ≤ m ≤ 13. In the regime where the isotropic and dipolar interactions are comparable, we find elongated polytetrahedral, octahedral, and spiral clusters as well as a set of non-rigid clusters, which emerge close to the transition to strings. We further implement a search algorithm that identifies these minimum energy clusters in bulk systems using the topological cluster classification [J. Chem. Phys. 139 234506 (2013)]. We demonstrate this methodology with computer simulations, which show instances of these clusters as a function of dipole strength.
Collapse
Affiliation(s)
- Katherine Skipper
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| | - Fergus J Moore
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| | - C Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
3
|
Wang Y, Harrowell P. Structural diversity in condensed matter: A general characterization of crystals, amorphous solids, and the structures between. J Chem Phys 2024; 161:074502. [PMID: 39145563 DOI: 10.1063/5.0223675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
A definition of structural diversity, adapted from the biodiversity literature, is introduced to provide a general characterization of structures of condensed matter. Using the favored local structure lattice model as a testbed, the diversity measure is found to effectively filter extrinsic noise and provide a useful differentiation between crystal and amorphous structures. We identify an interesting class of structures intermediate between crystals and glasses that are characterized by a complex combination of short-range ordering and long-range disorder. We demonstrate how the diversity can be used as an order parameter to organize various scenarios by structure change in response to increasing diversity.
Collapse
Affiliation(s)
- Yueran Wang
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter Harrowell
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
4
|
Abstract
Owing to environmental, ethical, health, and safety concerns, there has been considerable interest in replacing traditional animal-sourced foods like meat, seafood, egg, and dairy products with next-generation plant-based analogs that accurately mimic their properties. Numerous plant-based foods have already been successfully introduced to the market, but there are still several challenges that must be overcome before they are adopted by more consumers. In this article, we review the current status of the science behind the development of next-generation plant-based foods and highlight areas where further research is needed to improve their quality, increase their variety, and reduce their cost, including improving ingredient performance, developing innovative processing methods, establishing structure-function relationships, and improving nutritional profiles.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
5
|
Martínez-Rivera J, Villada-Balbuena A, Sandoval-Puentes MA, Egelhaaf SU, Méndez-Alcaraz JM, Castañeda-Priego R, Escobedo-Sánchez MA. Modeling the structure and thermodynamics of multicomponent and polydisperse hard-sphere dispersions with continuous potentials. J Chem Phys 2023; 159:194110. [PMID: 37982478 DOI: 10.1063/5.0168098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023] Open
Abstract
A model system of identical particles interacting via a hard-sphere potential is essential in condensed matter physics; it helps to understand in and out of equilibrium phenomena in complex fluids, such as colloidal dispersions. Yet, most of the fixed time-step algorithms to study the transport properties of those systems have drawbacks due to the mathematical nature of the interparticle potential. Because of this, mapping a hard-sphere potential onto a soft potential has been recently proposed [Báez et al., J. Chem. Phys. 149, 164907 (2018)]. More specifically, using the second virial coefficient criterion, one can set a route to estimate the parameters of the soft potential that accurately reproduces the thermodynamic properties of a monocomponent hard-sphere system. However, real colloidal dispersions are multicomponent or polydisperse, making it important to find an efficient way to extend the potential model for dealing with such kind of many-body systems. In this paper, we report on the extension and applicability of the second virial coefficient criterion to build a description that correctly captures the phenomenology of both multicomponent and polydisperse hard-sphere dispersions. To assess the accuracy of the continuous potentials, we compare the structure of soft polydisperse systems with their hard-core counterpart. We also contrast the structural and thermodynamic properties of soft binary mixtures with those obtained through mean-field approximations and the Ornstein-Zernike equation for the two-component hard-sphere dispersion.
Collapse
Affiliation(s)
- Jaime Martínez-Rivera
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas del Campestre, 37150 León, Guanjuato, Mexico
| | | | - Miguel A Sandoval-Puentes
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas del Campestre, 37150 León, Guanjuato, Mexico
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - José M Méndez-Alcaraz
- Departamento de Física, Cinvestav, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas del Campestre, 37150 León, Guanajuato, Mexico
| | | |
Collapse
|
6
|
Shireen Z, Curk T, Brandl C, B Babu S. Rigidity-Induced Controlled Aggregation of Binary Colloids. ACS OMEGA 2023; 8:37225-37232. [PMID: 37841185 PMCID: PMC10568703 DOI: 10.1021/acsomega.3c04909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Here, we report the proof-of-concept for controlled aggregation in a binary colloidal system. The binary systems are studied by varying bond flexibility of only one species, while the other species' bonds remain fully flexible. By establishing the underlying relation between gelation and bond rigidity, we demonstrate how the interplay among bond flexibility, critical concentration, and packing volume fraction influenced the aggregation kinetics. Our result shows that rigidity in bonds increases the critical concentration for gels to be formed in the binary mixture. Furthermore, the average number of bonded neighbor analyses reveal the influence of bond rigidity both above and below critical concentrations and show that variation in bond flexibility in only one species alters the kinetics of aggregation of both species. This finding improves our understanding of colloidal aggregation in soft and biological systems.
Collapse
Affiliation(s)
- Zakiya Shireen
- Department
of Mechanical Engineering, Faculty of Engineering and Information
Technology, University of Melbourne, 3010 Parkville, Victoria Australia
| | - Tine Curk
- Department
of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christian Brandl
- Department
of Mechanical Engineering, Faculty of Engineering and Information
Technology, University of Melbourne, 3010 Parkville, Victoria Australia
| | - Sujin B Babu
- Out
of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, 110016 New Delhi, India
| |
Collapse
|
7
|
Jadrich RB, Milliron DJ, Truskett TM. Colloidal gels. J Chem Phys 2023; 159:090401. [PMID: 37668254 DOI: 10.1063/5.0170798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Affiliation(s)
- Ryan B Jadrich
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
8
|
Torre KW, de Graaf J. Structuring colloidal gels via micro-bubble oscillations. SOFT MATTER 2023; 19:2771-2779. [PMID: 36988352 PMCID: PMC10091832 DOI: 10.1039/d2sm01450e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Locally (re)structuring colloidal gels - micron-sized particles forming a connected network with arrested dynamics - can enable precise tuning of the micromechanical and -rheological properties of the system. A recent experimental study [B. Saint-Michel, G. Petekidis, and V. Garbin, Soft Matter, 2022, 18, 2092] showed that local ordering can be rapidly induced by acoustically modulating an embedded microbubble. Here, we perform Brownian dynamics simulations to understand the mechanical effect of an oscillating microbubble on the next-to-bubble structure of the embedding colloidal gel. Our simulations reveal hexagonal-close-packed structures over a range that is comparable to the amplitude of the oscillations. However, we were unable to reproduce the unexpectedly long-ranged modification of the gel structure - dozens of amplitudes - observed in experiment. This suggests including long-ranged effects, such as fluid flow, should be considered in future computational work.
Collapse
Affiliation(s)
- K W Torre
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - J de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
9
|
Vinutha HA, Diaz Ruiz FD, Mao X, Chakraborty B, Del Gado E. Stress-stress correlations reveal force chains in gels. J Chem Phys 2023; 158:114104. [PMID: 36948805 DOI: 10.1063/5.0131473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
We investigate the spatial correlations of microscopic stresses in soft particulate gels using 2D and 3D numerical simulations. We use a recently developed theoretical framework predicting the analytical form of stress-stress correlations in amorphous assemblies of athermal grains that acquire rigidity under an external load. These correlations exhibit a pinch-point singularity in Fourier space. This leads to long-range correlations and strong anisotropy in real space, which are at the origin of force-chains in granular solids. Our analysis of the model particulate gels at low particle volume fractions demonstrates that stress-stress correlations in these soft materials have characteristics very similar to those in granular solids and can be used to identify force chains. We show that the stress-stress correlations can distinguish floppy from rigid gel networks and that the intensity patterns reflect changes in shear moduli and network topology, due to the emergence of rigid structures during solidification.
Collapse
Affiliation(s)
- H A Vinutha
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| | - Fabiola Doraly Diaz Ruiz
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bulbul Chakraborty
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
10
|
Moore F, Russo J, Liverpool TB, Royall CP. Active Brownian particles in random and porous environments. J Chem Phys 2023; 158:104907. [PMID: 36922118 DOI: 10.1063/5.0131340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The transport of active particles may occur in complex environments, in which it emerges from the interplay between the mobility of the active components and the quenched disorder of the environment. Here, we explore the structural and dynamical properties of active Brownian particles (ABPs) in random environments composed of fixed obstacles in three dimensions. We consider different arrangements of the obstacles. In particular, we consider two particular situations corresponding to experimentally realizable settings. First, we model pinning particles in (non-overlapping) random positions and, second, in a percolating gel structure and provide an extensive characterization of the structure and dynamics of ABPs in these complex environments. We find that the confinement increases the heterogeneity of the dynamics, with new populations of absorbed and localized particles appearing close to the obstacles. This heterogeneity has a profound impact on the motility induced phase separation exhibited by the particles at high activity, ranging from nucleation and growth in random disorder to a complex phase separation in porous environments.
Collapse
Affiliation(s)
- Fergus Moore
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1FD, United Kingdom
| | - John Russo
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | - C Patrick Royall
- H. H. Wills Physics Laboratory, Tyndall Ave., Bristol BS8 1TL, United Kingdom
| |
Collapse
|
11
|
Hansen J, Moll CJ, López Flores L, Castañeda-Priego R, Medina-Noyola M, Egelhaaf SU, Platten F. Phase separation and dynamical arrest of protein solutions dominated by short-range attractions. J Chem Phys 2023; 158:024904. [PMID: 36641409 DOI: 10.1063/5.0128643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The interplay of liquid-liquid phase separation (LLPS) and dynamical arrest can lead to the formation of gels and glasses, which is relevant for such diverse fields as condensed matter physics, materials science, food engineering, and the pharmaceutical industry. In this context, protein solutions exhibit remarkable equilibrium and non-equilibrium behaviors. In the regime where attractive and repulsive forces compete, it has been demonstrated, for example, that the location of the dynamical arrest line seems to be independent of ionic strength, so that the arrest lines at different ionic screening lengths overlap, in contrast to the LLPS coexistence curves, which strongly depend on the salt concentration. In this work, we show that the same phenomenology can also be observed when the electrostatic repulsions are largely screened, and the range and strength of the attractions are varied. In particular, using lysozyme in brine as a model system, the metastable gas-liquid binodal and the dynamical arrest line as well as the second virial coefficient have been determined for various solution conditions by cloud-point measurements, optical microscopy, centrifugation experiments, and light scattering. With the aim of understanding this new experimental phenomenology, we apply the non-equilibrium self-consistent generalized Langevin equation theory to a simple model system with only excluded volume plus short-range attractions, to study the dependence of the predicted arrest lines on the range of the attractive interaction. The theoretical predictions find a good qualitative agreement with experiments when the range of the attraction is not too small compared with the size of the protein.
Collapse
Affiliation(s)
- Jan Hansen
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| | - Carolyn J Moll
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| | - Leticia López Flores
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | | | - Magdaleno Medina-Noyola
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
12
|
Fussell SL, Royall CP, van Duijneveldt JS. Controlling Kinetic Pathways in Demixing Microgel-Micelle Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1010-1018. [PMID: 36621908 PMCID: PMC9878723 DOI: 10.1021/acs.langmuir.2c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
We investigate the temperature-dependent phase behavior of mixtures of poly(N-isopropylacrylamide) (pNIPAM) microgel colloids and a triblock copolymer (PEO-PPO-PEO) surfactant. Usually, gelation in these systems results from an increase in temperature. Here we investigate the role of the heating rate, and surprisingly, we find that this causes the mechanism of aggregation to change from one which is driven by depletion of the microgels by the micelles at low temperatures to the association of the two species at high temperatures. We thus reveal two competing mechanisms for attractions between the microgel particles which can be controlled by changing the heating rate. We use this heating-rate-dependent response of the system to access multiple structures for the same system composition. Samples were found to demix into phases rich and poor in microgel particles at temperatures below 33 °C, under conditions where the microgels particles are partially swollen. Under rapid heating full demixing is bypassed, and gel networks are formed instead. The temperature history of the sample, therefore, allows for kinetic selection between different final structures, which may be metastable.
Collapse
Affiliation(s)
- S. L. Fussell
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Bristol
Centre for Functional Nanomaterials, University
of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
| | - C. P. Royall
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Bristol
Centre for Functional Nanomaterials, University
of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
- Gulliver
UMR CNRS 7083, ESPCI Paris, Université
PSL, 75005 Paris, France
- HH
Wills Physics Laboratory, University of
Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
| | | |
Collapse
|
13
|
Rezvan G, Esmaeili M, Sadati M, Taheri-Qazvini N. Hybrid colloidal gels with tunable elasticity formed by charge-driven assembly between spherical soft nanoparticles and discotic nanosilicates. J Colloid Interface Sci 2022; 627:40-52. [PMID: 35841707 DOI: 10.1016/j.jcis.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Colloidal gels based on electrostatic interparticle attractions hold unexploited potential for tailoring their microstructure and properties. Here, we demonstrate that hetero-aggregation between oppositely charged particles with different geometries is a viable strategy for controlling their properties. Specifically, we studied hybrid colloidal gels prepared by the charge-driven assembly of oppositely charged spherical gelatin nanoparticles and two-dimensional (2D) nanosilicates. We show that the asymmetry between the building blocks and the resulting anisotropic interparticle interactions produces a variety of nanostructures and hybrid colloidal gels that exhibit high elasticity at low colloidal volume fractions. Tuning the competition between different attractive interactions in the system by varying the spatial charge heterogeneity on the 2D nanosheets, composition, and ionic strength was found to alter the mechanism of gel formation and their rheological properties. Remarkably, increasing the mass ratio of 2D nanosheets to spherical nanoparticles at a constant total mass fraction affords hybrid gels that exhibit an inverse relationship between elasticity and volume fraction. However, these hybrid gels are easily fluidized and exhibit rapid structural recovery once the stress is removed. These features allow for the engineering of versatile 3D-printable hybrid colloidal gels, whose structure and viscoelastic response are governed by parameters that have not been explored before.
Collapse
Affiliation(s)
- Gelareh Rezvan
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Mohsen Esmaeili
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States; Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
14
|
Dong J, Turci F, Jack RL, Faers M, Royall CP. Direct Imaging of Contacts and Forces in Colloidal Gels. J Chem Phys 2022; 156:214907. [DOI: 10.1063/5.0089276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colloidal dispersions are prized as model systems to understand basic properties of materials, and are central to a wide range of industries from cosmetics to foods to agrichemicals. Among the key developments in using colloids to address challenges in condensed matter is to resolve the particle coordinates in 3D, allowing a level of analysis usually only possible in computer simulation. However in amorphous materials, relating mechanical properties, and failure in particular to microscopic structure remains problematic. Here we address this challenge by studying the contacts and the forces between particles, as well as their positions. To do so, we use a colloidal model system (an emulsion) in which the interparticle forces and local stress can be linked to the microscopic structure. We demonstrate the potential of our method to reveal insights into the failure mechanisms of soft amorphous solids by determining local stress in a colloidal gel. In particular, we identify "force chains" of load--bearing droplets, and local stress anisotropy, and investigate their connection with locally rigid packings of the droplets.
Collapse
Affiliation(s)
- Jun Dong
- University of Bristol, United Kingdom
| | | | - Robert L. Jack
- DAMTP, University of Cambridge Department of Applied Mathematics and Theoretical Physics, United Kingdom
| | | | | |
Collapse
|
15
|
Tateno M, Yanagishima T, Tanaka H. Microscopic structural origin behind slowing down of colloidal phase separation approaching gelation. J Chem Phys 2022; 156:084904. [DOI: 10.1063/5.0080403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The gelation of colloidal particles interacting through a short-range attraction is widely recognized as a consequence of the dynamic arrest of phase separation into colloid-rich and solvent-rich phases. However, the microscopic origin behind the slowing down and dynamic arrest of phase separation remains elusive. In order to access microscopic structural changes through the entire process of gelation in a continuous fashion, we used core–shell fluorescent colloidal particles, laser scanning confocal microscopy, and a unique experimental protocol that allows us to initiate phase separation instantaneously and gently. Combining these enables us to track the trajectories of individual particles seamlessly during the whole phase-separation process from the early stage to the late arresting stage. We reveal that the enhancement of local packing and the resulting formation of locally stable rigid structures slow down the phase-separation process and arrest it to form a gel with an average coordination number of z = 6–7. This result supports a mechanical perspective on the dynamic arrest of sticky-sphere systems based on the microstructure, replacing conventional explanations based on the macroscopic vitrification of the colloid-rich phase. Our findings illuminate the microscopic mechanisms behind the dynamic arrest of colloidal phase separation, the emergence of mechanical rigidity, and the stability of colloidal gels.
Collapse
Affiliation(s)
- Michio Tateno
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Taiki Yanagishima
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
16
|
Pastore R, Mensitieri G, Vlassopoulos D, Greco F. Glasses and gels: a crossroad of molecular liquids, polymers and colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:090401. [PMID: 34889780 DOI: 10.1088/1361-648x/ac3cf3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples 'Federico II', P.le Tecchio 80, Naples 80125, Italy
| | - Giuseppe Mensitieri
- Department of Chemical, Materials and Production Engineering, University of Naples 'Federico II', P.le Tecchio 80, Naples 80125, Italy
| | - Dimitris Vlassopoulos
- Department of Materials Science and Technology, University of Crete, and Institute of Electronic Structure and Laser, FORTH, Heraklion 70013, Greece
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples 'Federico II', P.le Tecchio 80, Naples 80125, Italy
| |
Collapse
|