1
|
Romero-Expósito M, Sánchez-Nieto B, Riveira-Martin M, Azizi M, Gkavonatsiou A, Muñoz I, López-Martínez IN, Espinoza I, Zelada G, Córdova-Bernhardt A, Norrlid O, Goldkuhl C, Molin D, Sánchez FMP, López-Medina A, Toma-Dasu I, Dasu A. Individualized evaluation of the total dose received by radiotherapy patients: Integrating in-field, out-of-field, and imaging doses. Phys Med 2025; 129:104879. [PMID: 39718311 DOI: 10.1016/j.ejmp.2024.104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE To propose a methodology for integrating the out-of-field and imaging doses to the in-field dose received by radiotherapy (RT) patients. In addition, the impact of considering the total dose in planning and radiation-induced second malignancies (RISM) risk assessment will be evaluated in several scenarios comprising photon and proton treatments. METHODS The total dose is the voxel-wise sum of the doses from the different radiation sources (accounting for the radiobiological effectiveness) produced during the whole RT chain. The dose from the plan and imaging procedures were obtained by measurements for a photon prostate treatment and by calculation (combining treatment planning system, analytical models, and Monte Carlo simulations) for two lymphoma treatments, one using photons and the other, protons. Dose distributions, dose volume histograms (DVHs) metrics, mean organ doses, and RISM risks were evaluated for each radiation exposure in each treatment. RESULTS In general, the contribution of the imaging doses is low compared to the dose administered during RT treatment, being higher in proton therapy. However, for some organs, for instance testes in the prostate case, the imaging dose becomes higher than the scattered dose from the treatment fields. Plan evaluations revealed shifts in cumulative DVHs with the inclusion of out-of-field and imaging doses, though minimal clinical impact is expected. Risk assessment showed increased estimates with total dose. CONCLUSIONS The methodology enables accounting for the total dose for optimization of plans and imaging protocols, prospective risk predictions and retrospective epidemiological analyses.
Collapse
Affiliation(s)
- Maite Romero-Expósito
- The Skandion Clinic, Uppsala, Sweden; Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden.
| | | | | | - Mona Azizi
- Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden; Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | | | - Isidora Muñoz
- Pontificia Universidad Católica de Chile, Instituto de Física, Santiago, Chile
| | | | - Ignacio Espinoza
- Pontificia Universidad Católica de Chile, Instituto de Física, Santiago, Chile
| | - Gabriel Zelada
- Servicio de Radioterapia, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | | | - Ola Norrlid
- Uppsala University Hospital, Uppsala, Sweden
| | | | - Daniel Molin
- Department of Immunology, Genetics and Pathology, Cancer Immunotherapy, Uppsala University, Uppsala, Sweden
| | | | - Antonio López-Medina
- Medical Physics and RP Department (GALARIA), University Hospital of Vigo, Meixoeiro Hospital, Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain
| | - Iuliana Toma-Dasu
- Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden; Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden; Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Fuglsig JMCES, Sampaio-Oliveira M, Spin-Neto R. Dental-dedicated magnetic resonance imaging in the follow-up of lower third molar removal. Oral Radiol 2024:10.1007/s11282-024-00787-x. [PMID: 39586974 DOI: 10.1007/s11282-024-00787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024]
Abstract
The objective is to present a dental-dedicated magnetic resonance imaging (ddMRI)-based follow-up of inferior third molar removal over 12 months. A 30-year-old female presented with recurrent pain and bleeding from her lower right third molar. With adding diagnostic information from a panoramic image, the tooth was referred for removal. The patient underwent ddMRI using a dental coil with a proton density (PD) weighed turbo spin echo (TSE) sequence and a PD-TSE-STIR with fat suppression to highlight possible inflammatory processes. The scans were performed pre-operatively, immediately post-operatively, and in a rigorous follow-up (weekly basis for the first 6 weeks, bi-weekly from 7 to 12 weeks, and once at 6 and 12 months post-operatively). Using ImageJ software, circular ROIs were selected in the extraction alveolus coronary, middle, and apical regions. Mean grey values (MGVs) and standard deviation (SD) were obtained. A trend of decreasing MGVs in the PD (TSE) pulse sequence was observed over time, irrespective of the root third. Considering the PD-STIR (TSE), no trend was observed. ddMRI is feasible in the follow-up assessment of inferior third molar removal. Further clinical trials with larger samples are needed to define the usability of follow-up with ddMRI, considering a potential added diagnostic value.
Collapse
Affiliation(s)
- João M C E S Fuglsig
- Section for Oral Radiology and Endodontics, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Århus, Denmark.
| | - Matheus Sampaio-Oliveira
- Section for Oral Radiology and Endodontics, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Århus, Denmark
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, 13414-903, Brazil
| | - Rubens Spin-Neto
- Section for Oral Radiology and Endodontics, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Århus, Denmark
| |
Collapse
|
3
|
Jacobs R, Fontenele RC, Lahoud P, Shujaat S, Bornstein MM. Radiographic diagnosis of periodontal diseases - Current evidence versus innovations. Periodontol 2000 2024; 95:51-69. [PMID: 38831570 DOI: 10.1111/prd.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Accurate diagnosis of periodontal and peri-implant diseases relies significantly on radiographic examination, especially for assessing alveolar bone levels, bone defect morphology, and bone quality. This narrative review aimed to comprehensively outline the current state-of-the-art in radiographic diagnosis of alveolar bone diseases, covering both two-dimensional (2D) and three-dimensional (3D) modalities. Additionally, this review explores recent technological advances in periodontal imaging diagnosis, focusing on their potential integration into clinical practice. Clinical probing and intraoral radiography, while crucial, encounter limitations in effectively assessing complex periodontal bone defects. Recognizing these challenges, 3D imaging modalities, such as cone beam computed tomography (CBCT), have been explored for a more comprehensive understanding of periodontal structures. The significance of the radiographic assessment approach is evidenced by its ability to offer an objective and standardized means of evaluating hard tissues, reducing variability associated with manual clinical measurements and contributing to a more precise diagnosis of periodontal health. However, clinicians should be aware of challenges related to CBCT imaging assessment, including beam-hardening artifacts generated by the high-density materials present in the field of view, which might affect image quality. Integration of digital technologies, such as artificial intelligence-based tools in intraoral radiography software, the enhances the diagnostic process. The overarching recommendation is a judicious combination of CBCT and digital intraoral radiography for enhanced periodontal bone assessment. Therefore, it is crucial for clinicians to weigh the benefits against the risks associated with higher radiation exposure on a case-by-case basis, prioritizing patient safety and treatment outcomes.
Collapse
Affiliation(s)
- Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Rocharles Cavalcante Fontenele
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Lahoud
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- Periodontology and Oral Microbiology, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Sohaib Shujaat
- King Abdullah International Medical Research Center, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Michael M Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Johannsen KM, de Carvalho E Silva Fuglsig JM, Hansen B, Wenzel A, Spin-Neto R. Magnetic resonance imaging artefacts caused by orthodontic appliances and/or implant-supported prosthesis: a systematic review. Oral Radiol 2023; 39:394-407. [PMID: 36178613 DOI: 10.1007/s11282-022-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Dental materials, including orthodontic appliances and implants, are commonly mentioned as a possible source of artefacts in magnetic resonance imaging (MRI). The aim of the present study was to undertake a systematic review of the relevant literature on MR image artefacts due to dental materials, limited to orthodontic appliances and implant-supported dental prosthesis, on both technical and diagnostic levels. METHODS The MEDLINE (PubMed) bibliographic database was searched up to September 2020. The search was limited to studies published in English, using the search string: (MRI or magnetic resonance) and (artefact or artifact) and (dental or ortho or implant or restoration or restorative). The studies were assessed independently by three reviewers, focusing on the following parameters: MRI sequences, tested materials, assessed parameters, efficacy level and outcome. RESULTS The search strategy yielded 31 studies, which were included in this systematic review. These studies showed that metallic dental materials, commonly present in orthodontic appliances and implant-supported dental prosthesis led to diverse types/severities of artefacts in MR images. Fifteen studies were in vivo, based on human subjects. The studies differed substantially in terms of tested materials, assessed parameters, and outcome measurements. CONCLUSIONS Metallic dental materials cause artefacts of diverse types and severities in MR images of the head and neck region. However, the diagnostic relevance of the investigated artefacts for the diverse MRI applications is yet to be studied.
Collapse
Affiliation(s)
- Katrine Mølgaard Johannsen
- Department of Dentistry and Oral Health, Oral Radiology, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus, Denmark.
| | | | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Ann Wenzel
- Department of Dentistry and Oral Health, Oral Radiology, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus, Denmark
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Oral Radiology, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus, Denmark
| |
Collapse
|
5
|
Fuglsig JMDCES, Hansen B, Schropp L, Nixdorf DR, Wenzel A, Spin-Neto R. Alveolar bone measurements in magnetic resonance imaging compared with cone beam computed tomography: a pilot, ex-vivo study. Acta Odontol Scand 2023; 81:241-248. [PMID: 36112428 DOI: 10.1080/00016357.2022.2121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVES To compare alveolar bone height and width measurements from zero-echo-time MRI (ZTE-MRI) and cone beam CT (CBCT), in human specimens. MATERIAL AND METHODS Twenty posterior edentulous sites in human cadaver specimens were imaged with CBCT and ZTE-MRI. Bone height and width at 1, 3, 5, 7 and 9 mm from the top of the alveolar ridge was measured by two trained observers in cross-sections of a site where an implant was to be planned. Twenty percent of the sample was measured in duplicate to assess method error and intra-observer reproducibility (ICC). The differences between CBCT and ZTE-MRI measurements were compared (t-test). RESULTS Inter- and intra-observer reproducibility was >0.90. The method error (average between observers) for bone height was 0.45 mm and 0.39 mm, and for bone width (average) was 0.52 mm and 0.80 mm (CBCT and ZTE-MRI, respectively). The majority of the bone measurement differences were statistically insignificant, except bone width measurements at 5 mm (p ≤ .05 for both observers). Mean measurement differences were not larger than the method error. CONCLUSION ZTE-MRI is not significantly different from CBCT when comparing measurements of alveolar bone height and width.
Collapse
Affiliation(s)
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Lars Schropp
- Department of Dentistry and Oral Health, Section for Oral Radiology, Aarhus University, Aarhus, Denmark
| | - Donald R Nixdorf
- Division of TMD & Orofacial Pain, School of Dentistry, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
- Department of Radiology, Medical School, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Ann Wenzel
- Department of Dentistry and Oral Health, Section for Oral Radiology, Aarhus University, Aarhus, Denmark
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Section for Oral Radiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Cumur C, Fujibuchi T, Arakawa H, Hamada K. Dose estimation for cone-beam computed tomography in image-guided radiation therapy for pelvic cancer using adult mesh-type reference computational phantoms. Radiol Phys Technol 2023; 16:203-211. [PMID: 36877400 DOI: 10.1007/s12194-023-00708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
The use of cone-beam computed tomography (CBCT) is expanding owing to its installation in linear accelerators for radiation therapy, and the imaging dose induced by this system has become the center of attention. Here, the dose to patients caused by the CBCT imager was investigated. Organ doses and effective doses for male and female mesh-type reference computational phantoms (MRCPs) and pelvis CBCT mode, routinely used for pelvic irradiation, were estimated using the Particle and Heavy Ion Transport Code System. The simulation results were confirmed based on the point-dose measurements. The estimated organ doses for male MRCPs with/without raised arms and for female MRCPs with/without raised arms were 0.00286-35.6 mGy, 0.00286-35.1 mGy, 0.00933-39.5 mGy, and 0.00931-39.0 mGy, respectively. The anticipated effective doses for male MRCPs with/without raised arms and female MRCPs with/without raised arms irradiated by pelvis CBCT mode were 4.25 mSv, 4.16 mSv, 7.66 mSv, and 7.48 mSv, respectively. The results of this study will be useful for patients who undergo image-guided radiotherapy with CBCT. However, because this study only covered one type of cancer with one type of imager, and image quality was not considered, more studies should be conducted to estimate the radiation dose from imaging devices in radiation therapy.
Collapse
Affiliation(s)
- Ceyda Cumur
- Graduate School of Medical Sciences, Division of Medical Quantum Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Toshioh Fujibuchi
- Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroyuki Arakawa
- Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keisuke Hamada
- Department of Radiological Technology, National Hospital Organization Kyushu Cancer Center, 3-1-1, Notame Minami-Ku, Fukuoka, 811-1395, Japan
| |
Collapse
|
7
|
Sarrut D, Arbor N, Baudier T, Borys D, Etxebeste A, Fuchs H, Gajewski J, Grevillot L, Jan S, Kagadis GC, Kang HG, Kirov A, Kochebina O, Krzemien W, Lomax A, Papadimitroulas P, Pommranz C, Roncali E, Rucinski A, Winterhalter C, Maigne L. The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8c83. [PMID: 36001985 PMCID: PMC11149651 DOI: 10.1088/1361-6560/ac8c83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
This paper reviews the ecosystem of GATE, an open-source Monte Carlo toolkit for medical physics. Based on the shoulders of Geant4, the principal modules (geometry, physics, scorers) are described with brief descriptions of some key concepts (Volume, Actors, Digitizer). The main source code repositories are detailed together with the automated compilation and tests processes (Continuous Integration). We then described how the OpenGATE collaboration managed the collaborative development of about one hundred developers during almost 20 years. The impact of GATE on medical physics and cancer research is then summarized, and examples of a few key applications are given. Finally, future development perspectives are indicated.
Collapse
Affiliation(s)
- David Sarrut
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Nicolas Arbor
- Université de Strasbourg, IPHC, CNRS, UMR7178, F-67037 Strasbourg, France
| | - Thomas Baudier
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ane Etxebeste
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Hermann Fuchs
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Vienna, Währinger Gürtel 18-20, A-1090 Wien, Austria
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Sébastien Jan
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - George C Kagadis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece
| | - Han Gyu Kang
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Assen Kirov
- Memorial Sloan Kettering Cancer, New York, NY 10021, United States of America
| | - Olga Kochebina
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - Wojciech Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Lojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40 St, 31 501 Krakow, Poland
| | - Antony Lomax
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | | | - Christian Pommranz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - Emilie Roncali
- University of California Davis, Departments of Biomedical Engineering and Radiology, Davis, CA 95616, United States of America
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Carla Winterhalter
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | - Lydia Maigne
- Université Clermont Auvergne, Laboratoire de Physique de Clermont, CNRS, UMR 6533, F-63178 Aubière, France
| |
Collapse
|
8
|
Martin CJ, Abuhaimed A. Variations in size-specific effective dose with patient stature and beam width for kV cone beam CT imaging in radiotherapy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:031512. [PMID: 35917802 DOI: 10.1088/1361-6498/ac85fa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The facilities now available on linear accelerators for external beam radiotherapy enable radiation fields to be conformed to the shapes of tumours with a high level of precision. However, in order for the treatment delivered to take advantage of this, the patient must be positioned on the couch with the same degree of accuracy. Kilovoltage cone beam computed tomography systems are now incorporated into radiotherapy linear accelerators to allow imaging to be performed at the time of treatment, and image-guided radiation therapy is now standard in most radiotherapy departments throughout the world. However, because doses from imaging are much lower than therapy doses, less effort has been put into optimising radiological protection of imaging protocols. Standard imaging protocols supplied by the equipment vendor are often used with little adaptation to the stature of individual patients, and exposure factors and field sizes are frequently larger than necessary. In this study, the impact of using standard protocols for imaging anatomical phantoms of varying size from a library of 193 adult phantoms has been evaluated. Monte Carlo simulations were used to calculate doses for organs and tissues for each phantom, and results combined in terms of size-specific effective dose (SED). Values of SED from pelvic scans ranged from 11 mSv to 22 mSv for male phantoms and 8 mSv to 18 mSv for female phantoms, and for chest scans from 3.8 mSv to 7.6 mSv for male phantoms and 4.6 mSv to 9.5 mSv for female phantoms. Analysis of the results showed that if the same exposure parameters and field sizes are used, a person who is 5 cm shorter will receive a size SED that is 3%-10% greater, while a person who is 10 kg lighter will receive a dose that is 10%-14% greater compared with the average size.
Collapse
Affiliation(s)
- C J Martin
- Department of Clinical Physics and Bioengineering, University of Glasgow, Gartnavel Royal Hospital, Glasgow G12 0XH, United Kingdom
| | - A Abuhaimed
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Heidarloo N, Mahmoud Reza Aghamiri S, Saghamanesh S, Azma Z, Alaei P. A novel analytical method for computing dose from kilovoltage beams used in Image-Guided radiation therapy. Phys Med 2022; 96:54-61. [PMID: 35219962 DOI: 10.1016/j.ejmp.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE A modified convolution/superposition algorithm is proposed to compute dose from the kilovoltage beams used in IGRT. The algorithm uses material-specific energy deposition kernels instead of water-energy deposition kernels. METHODS Monte Carlo simulation was used to model the Elekta XVI unit and determine dose deposition characteristics of its kilovoltage beams. The dosimetric results were compared with ion chamber measurements. The dose from the kilovoltage beams was then computed using convolution/superposition along with material-specific energy deposition kernels and compared with Monte Carlo and measurements. The material-specific energy deposition kernels were previously generated using Monte Carlo. RESULTS The obtained gamma indices (using 2%/2mm criteria for 95% of points) were lower than 1 in almost all instances which indicates good agreement between simulated and measured depth doses and profiles. The comparisons of the algorithm with measurements in a homogeneous solid water slab phantom, and that with Monte Carlo in a head and neck CT dataset produced acceptable results. The calculated point doses were within 4.2% of measurements in the homogeneous phantom. Gamma analysis of the calculated vs. Monte Carlo simulations in the head and neck phantom resulted in 94% of points passing with a 2%/2mm criteria. CONCLUSIONS The proposed method offers sufficient accuracy in kilovoltage beams dose calculations and has the potential to supplement the conventional megavoltage convolution/superposition algorithms for dose calculations in low energy range.
Collapse
Affiliation(s)
- Nematollah Heidarloo
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Somayeh Saghamanesh
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Zohreh Azma
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran; Erfan Radiation Oncology Center, Erfan-Niyayesh hospital, Iran University of Medical Science, Tehran, Iran
| | - Parham Alaei
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Gilling L, Ali O. Organ dose from Varian XI and Varian OBI systems are clinically comparable for pelvic CBCT imaging. Phys Eng Sci Med 2022; 45:279-285. [PMID: 35143026 DOI: 10.1007/s13246-021-01090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Pelvic cone-beam computed tomography (CBCT) occurs daily in many radiotherapy clinics as a part of image-guided verification before treatment. These images are acquired by the use of ionizing radiation. The dose received by CBCT imaging is often not quantified in a patient's radiation therapy prescription. The purpose of this work was to quantify the dose from a TrueBeam XI pelvic CBCT imaging system. The dose to organs from this imaging protocol was then compared with published dose data for OBI v1.4 pelvic CBCT imaging. A model of the Varian XI imager was constructed using GATE Monte Carlo scripting language. The model was calibrated by correlation with experimental measurements. An IBA 3D water tank was used to perform relative dose measurements in water. An adult anthropomorphic Alderson phantom with embedded thermolumeniscent dosimeters was used to evaluate dose from prostate CBCT imaging. Following the calibration, the GATE model was used to simulate the dose from the XI pelvic CBCT protocol to the ICRP computational anthropomorphic phantom. The Monte Carlo model constructed in GATE was validated for use in dose estimates for the XI pelvic imaging protocol. The D50 and D10 values tabulated the pelvic CBCT protocol show that doses to organs in the pelvic region are comparable for both systems. For a clinician who intends to evaluate the dose to organs as a result of CBCT imaging of the pelvis from the TrueBeam XI system, for the purposes of treatment planning, the doses reported for OBI v1.4 given in AAPM TG-180 provide a valid estimate.
Collapse
Affiliation(s)
- Luke Gilling
- Medical Physics Department, Waikato District Health Board, Hamilton, New Zealand.
| | - Omer Ali
- Medical Physics Department, Waikato District Health Board, Hamilton, New Zealand
| |
Collapse
|
11
|
Paolani G, Strolin S, Santoro M, Della Gala G, Tolento G, Guido A, Siepe G, Morganti AG, Strigari L. A novel tool for assessing the correlation of internal/external markers during SGRT guided stereotactic ablative radiotherapy treatments. Phys Med 2021; 92:40-51. [PMID: 34856464 DOI: 10.1016/j.ejmp.2021.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION An in-house developed tool was implemented and validated to investigate the skin surface, hepatic dome, and target displacement for stereotactic ablative radiotherapy (SABR) of thoracic/abdominal lesions using a Surface Guided Radiation Therapy (SGRT) system combined with 4D- images. MATERIALS AND METHODS Fourteen consecutive patients with tumors near the hepatic dome undergoing SABR treatments were analyzed. For each patient, a planning 4D-CT and five 4D-CBCT images were acquired. The C-RAD technology was also used to register/monitor the position of the skin reference point (SRP) as an external marker representative of patient breathing. The 4D images were imported in the developed tool, and the absolute maximum height (Pmax,dome) of the hepatic dome on the ten respiratory phases was semi-automatically detected. Similarly, the contour of the skin surface was extracted in correspondence with the SRP position. The tool has been validated using an ad hoc modified moving phantom with pre-selected amplitudes and numbers of cycles. The Pearson correlation coefficients and Bland-Altman plots were calculated. RESULTS There was a strong correlation between the skin motion amplitude based on 4D-CBCT and the C-RAD in all the patients (0.90 ± 0.08). Similarly, the mean ± SD of Pearson correlation coefficients of skin and Pmax,dome movements registered by 4D-CT and 4D-CBCT were 0.90 ± 0.05 and 0.94 ± 0.05, respectively. The mean ± SD of Pearson correlation coefficients comparing the skin and Pmax,dome displacements within each imaging modality were 0.88 ± 0.05 and 0.90 ± 0.05 for 4D-CT and 4D-CBCT, respectively. The SRP displacement during the set-up imaging and the treatment delivery were similar in all the investigated patients. Similar results were obtained for the ad hoc modified phantom in the preliminary validation phase. CONCLUSION The strong correlation between the tumor/ hepatic dome and skin displacements confirms that the SGRT approach can be considered appropriate for intra- and inter-fraction motion management in SABR therapy.
Collapse
Affiliation(s)
- Giulia Paolani
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Strolin
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Miriam Santoro
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giuseppe Della Gala
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giorgio Tolento
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandra Guido
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giambattista Siepe
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessio G Morganti
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, Bologna University, 40138 Bologna, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| |
Collapse
|
12
|
García-Hernández T, Romero-Expósito M, Sánchez-Nieto B. Low dose radiation therapy for COVID-19: Effective dose and estimation of cancer risk. Radiother Oncol 2020; 153:289-295. [PMID: 33065184 PMCID: PMC7553901 DOI: 10.1016/j.radonc.2020.09.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/16/2020] [Accepted: 09/27/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE The objective of this work is to evaluate the risk of carcinogenesis of low dose ionizing radiation therapy (LDRT), for treatment of immune-related pneumonia following COVID-19 infection, through the estimation of effective dose and the lifetime attributable risk of cancer (LAR). MATERIAL AND METHODS LDRT treatment was planned in male and female computational phantoms. Equivalent doses in organs were estimated using both treatment planning system calculations and a peripheral dose model (based on ionization chamber measurements). Skin dose was estimated using radiochromic films. Later, effective dose and LAR were calculated following radiation protection procedures. RESULTS Equivalent doses to organs per unit of prescription dose range from 10 mSv/cGy to 0.0051 mSv/cGy. Effective doses range from 204 mSv to 426 mSv, for prescription doses ranging from 50 cGy to 100 cGy. Total LAR for a prescription dose of 50 cGy ranges from 1.7 to 0.29% for male and from 4.9 to 0.54% for female, for ages ranging from 20 to 80 years old. CONCLUSIONS The organs that mainly contribute to risk are lung and breast. Risk for out-of-field organs is low, less than 0.06 cases per 10000. Female LAR is on average 2.2 times that of a male of the same age. Effective doses are of the same order of magnitude as the higher-dose interventional radiology techniques. For a 60 year-old male, LAR is 8 times that from a cardiac CT, when prescription dose is 50 cGy.
Collapse
Affiliation(s)
| | - Maite Romero-Expósito
- Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo (INTEC), P.O. Box 342-9/249-2, Santo Domingo, Dominican Republic
| | | |
Collapse
|
13
|
Piliero MA, Casiraghi M, Bosetti DG, Cima S, Deantonio L, Leva S, Martucci F, Tettamanti M, Pupillo F, Bellesi L, Richetti A, Presilla S. Patient-based low dose cone beam CT acquisition settings for prostate image-guided radiotherapy treatments on a Varian TrueBeam linear accelerator. Br J Radiol 2020; 93:20200412. [PMID: 32822249 PMCID: PMC8519649 DOI: 10.1259/bjr.20200412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To evaluate the performance of low dose cone beam CT (CBCT) acquisition protocols for image-guided radiotherapy of prostate cancer. METHODS CBCT images of patients undergoing prostate cancer radiotherapy were acquired with the settings currently used in our department and two low dose settings at 50% and 63% lower exposure. Four experienced radiation oncologists and two radiation therapy technologists graded the images on five image quality characteristics. The scores were analysed through Visual Grading Regression, using the acquisition settings and the patient size as covariates. RESULTS The low dose acquisition settings have no impact on the image quality for patients with body profile length at hip level below 100 cm. CONCLUSIONS A reduction of about 60% of the dose is feasible for patients with size below 100 cm. The visibility of low contrast features can be compromised if using the low dose acquisition settings for patients with hip size above 100 cm. ADVANCES IN KNOWLEDGE Low dose CBCT acquisition protocols for the pelvis, based on subjective evaluation of patient images.
Collapse
Affiliation(s)
- Maria Antonietta Piliero
- Medical Physics Division, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Margherita Casiraghi
- Medical Physics Division, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Davide Giovanni Bosetti
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Simona Cima
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Letizia Deantonio
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Stefano Leva
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Francesco Martucci
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Marino Tettamanti
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Francesco Pupillo
- Medical Physics Division, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Luca Bellesi
- Medical Physics Division, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Antonella Richetti
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Stefano Presilla
- Medical Physics Division, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
14
|
Kairn T, Livingstone AG, Crowe SB. Monte Carlo calculations of radiotherapy dose in "homogeneous" anatomy. Phys Med 2020; 78:156-165. [PMID: 33035927 DOI: 10.1016/j.ejmp.2020.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 01/27/2023] Open
Abstract
Given the substantial literature on the use of Monte Carlo (MC) simulations to verify treatment planning system (TPS) calculations of radiotherapy dose in heterogeneous regions, such as head and neck and lung, this study investigated the potential value of running MC simulations of radiotherapy treatments of nominally homogeneous pelvic anatomy. A pre-existing in-house MC job submission and analysis system, built around BEAMnrc and DOSXYZnrc, was used to evaluate the dosimetric accuracy of a sample of 12 pelvic volumetric arc therapy (VMAT) treatments, planned using the Varian Eclipse TPS, where dose was calculated with both the Analytical Anisotropic Algorithm (AAA) and the Acuros (AXB) algorithm. In-house TADA (Treatment And Dose Assessor) software was used to evaluate treatment plan complexity, in terms of the small aperture score (SAS), modulation index (MI) and a novel exposed leaf score (ELS/ELA). Results showed that the TPS generally achieved closer agreement with the MC dose distribution when treatments were planned for smaller (single-organ) targets rather than larger targets that included nodes or metastases. Analysis of these MC results with reference to the complexity metrics indicated that while AXB was useful for reducing dosimetric uncertainties associated with density heterogeneity, the residual TPS dose calculation uncertainties resulted from treatment plan complexity and TPS model simplicity. The results of this study demonstrate the value of using MC methods to recalculate and check the dose calculations provided by commercial radiotherapy TPSs, even when the treated anatomy is assumed to be comparatively homogeneous, such as in the pelvic region.
Collapse
Affiliation(s)
- Tanya Kairn
- Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD 4029, Australia; Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.
| | | | - Scott B Crowe
- Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD 4029, Australia; Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
15
|
Yuasa Y, Shiinoki T, Onizuka R, Fujimoto K. Estimation of effective imaging dose and excess absolute risk of secondary cancer incidence for four-dimensional cone-beam computed tomography acquisition. J Appl Clin Med Phys 2019; 20:57-68. [PMID: 31593377 PMCID: PMC6839364 DOI: 10.1002/acm2.12741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 12/25/2022] Open
Abstract
This study was conducted to estimate the organ equivalent dose and effective imaging dose for four-dimensional cone-beam computed tomography (4D-CBCT) using a Monte Carlo simulation, and to evaluate the excess absolute risk (EAR) of secondary cancer incidence. The EGSnrc/BEAMnrc were used to simulate the on-board imager (OBI) from the TrueBeam linear accelerator. Specifically, the OBI was modeled based on the percent depth dose and the off-center ratio was measured using a three-dimensional (3D) water phantom. For clinical cases, 15 lung and liver cancer patients were simulated using the EGSnrc/DOSXYZnrc. The mean absorbed doses to the lung, stomach, bone marrow, esophagus, liver, thyroid, bone surface, skin, adrenal glands, gallbladder, heart, intestine, kidney, pancreas and spleen, were quantified using a treatment planning system, and the equivalent doses to each organ were calculated. Subsequently, the effective dose was calculated as the weighted sum of the equivalent dose, and the EAR of the secondary cancer incidence was determined for each organ with the use of the biologic effects of ionizing radiation (BEIR) VII model. The effective doses were 3.9 ± 0.5, 15.7 ± 2.0, and 7.3 ± 0.9 mSv, for the lung, and 4.2 ± 0.6, 16.7 ± 2.4, and 7.8 ± 1.1 mSv, for the liver in the respective cases of the 3D-CBCT (thorax, pelvis) and 4D-CBCT modes. The lung EARs for males and females were 7.3 and 10.7 cases per million person-years, whereas the liver EARs were 9.9 and 4.5 cases per million person-years. The EAR increased with increasing time since radiation exposure. In clinical studies, we should use 4D-CBCT based on consideration of the effective dose and EAR of secondary cancer incidence.
Collapse
Affiliation(s)
- Yuki Yuasa
- Department of Radiation OncologyGraduate School of MedicineYamaguchi UniversityUbeYamaguchiJapan
| | - Takehiro Shiinoki
- Department of Radiation OncologyGraduate School of MedicineYamaguchi UniversityUbeYamaguchiJapan
| | - Ryota Onizuka
- Department of Radiological TechnologyYamaguchi University HospitalUbeYamaguchiJapan
| | - Koya Fujimoto
- Department of Radiation OncologyGraduate School of MedicineYamaguchi UniversityUbeYamaguchiJapan
| |
Collapse
|
16
|
Kamezawa H, Arimura H, Arakawa H, Kameda N. INVESTIGATION OF A PRACTICAL PATIENT DOSE INDEX FOR ASSESSMENT OF PATIENT ORGAN DOSE FROM CONE-BEAM COMPUTED TOMOGRAPHY IN RADIATION THERAPY USING A MONTE CARLO SIMULATION. RADIATION PROTECTION DOSIMETRY 2018; 181:333-342. [PMID: 29506291 DOI: 10.1093/rpd/ncy032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to investigate a practical patient dose index for assessing the patient organ dose from a cone-beam computed tomography (CBCT) scan by comparing eight dose indices, i.e. CTDI100, CTDIIEC, CTDI∞, midpoint doses f(0)PMMA for a cylindrical polymethyl methacrylate (PMMA) phantom, f(0)Ap for an anthropomorphic phantom and f(0)Pat for a prostate cancer patient, as well as the conventional size specific dose estimations (SSDEconv) and modified SSDE (SSDEmod), with organ dose for the prostate (ODprost) obtained via Monte Carlo (MC) simulation. The ODprost was the reference dose used to find the practical dose index at the center of the pelvic region of a prostate cancer patient. The smallest error rate with respect to the ODprost of 19.3 mGy (reference) among eight dose indices was 5% for f(0)Pat. The practical patient dose index was the f(0)Pat, which showed the smallest error with respect to the reference dose.
Collapse
Affiliation(s)
- H Kamezawa
- Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 6-22 Misaki-machi, Omuta, Fukuoka, Japan
| | - H Arimura
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| | - H Arakawa
- Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 6-22 Misaki-machi, Omuta, Fukuoka, Japan
| | - N Kameda
- Department of Radiology, Fujimoto General Hospital, 17-1, Hayasuzu-cho, Miyakonojo, Miyazaki, Japan
| |
Collapse
|
17
|
Abuhaimed A, Martin CJ. A Monte Carlo study of impact of scan position for cone beam CT on doses to organs and effective dose. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Rabin C, Gonçalves M, Duarte SB, González-Sprinberg GA. Upper bound dose values for meson radiation in heavy-ion therapy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:621-631. [PMID: 29440626 DOI: 10.1088/1361-6498/aaaf23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Radiation treatment of cancer has evolved to include massive particle beams, instead of traditional irradiation procedures. Thus, patient doses and worker radiological protection have become issues of constant concern in the use of these new technologies, especially for proton- and heavy-ion-therapy. In the beam energies of interest of heavy-ion-therapy, secondary particle radiation comes from proton, neutron, and neutral and charged pions produced in the nuclear collisions of the beam with human tissue atoms. This work, for the first time, offers the upper bound of meson radiation dose in organic tissues due to secondary meson radiation in heavy-ion therapy. A model based on intranuclear collision has been used to follow in time the nuclear reaction and to determine the secondary radiation due to the meson yield produced in the beam interaction with nuclei in the tissue-equivalent media and water. The multiplicity, energy spectrum, and angular distribution of these pions, as well as their decay products, have been calculated in different scenarios for the nuclear reaction mechanism. The results of the produced secondary meson particles has been used to estimate the energy deposited in tissue using a cylindrical phantom by a transport Monte Carlo simulation and we have concluded that these mesons contribute at most 0.1% of the total prescribed dose.
Collapse
Affiliation(s)
- C Rabin
- Instituto de Física, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | | | | | | |
Collapse
|
19
|
Marcu M, Hedesiu M, Salmon B, Pauwels R, Stratis A, Oenning ACC, Cohen ME, Jacobs R, Baciut M, Roman R, Dinu C, Rotaru H, Barbur I. Estimation of the radiation dose for pediatric CBCT indications: a prospective study on ProMax3D. Int J Paediatr Dent 2018; 28:300-309. [PMID: 29356184 DOI: 10.1111/ipd.12355] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND An increasing number of CBCT units and a wide variability of radiation doses have been reported in dentistry lately. AIM To estimate the effective, cumulative, and organ absorbed doses in children exposed to CBCT over 2 years. DESIGN A prospective study was conducted in children who underwent CBCT diagnostic imaging with the ProMax3D machine. Organ and effective doses were calculated by Monte Carlo simulation using 5- and 8-year-old pediatric voxel phantoms. Extrapolation procedures were applied to estimate doses for other ages and CBCT protocols used in clinical conditions. RESULTS The median effective dose was 137.9 μSv, and the median cumulative dose was 231.4 μSv. Statistically significant differences in the effective doses and cumulative doses were found for various indications of CBCT in children (P < 0.001). The median absorbed organ dose for brain and thyroid was significantly higher for the clinical condition that required large FOVs (2.5 mGy and 1.05 mGy, respectively) compared to medium (0.19 and 0.51 mGy) and small FOVs (0.07 and 0.24 mGy; P < 0.05). The radiation dose of salivary glands did not vary significantly with FOV. CONCLUSION The results revealed the variation of CBCT doses and the influence of FOV size in pediatric exposure.
Collapse
Affiliation(s)
- Maria Marcu
- Department of Oral Radiology, Faculty of Dentistry, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- Department of Oral Radiology, Faculty of Dentistry, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Benjamin Salmon
- EA 2496-Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine Department, Bretonneau Hospital, HUPNVS, AP-HP, Paris Descartes University - Sorbonne Paris Cité, Paris, France
| | - Ruben Pauwels
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, Catholic University of Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Radiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Andreas Stratis
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, Catholic University of Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Anne Caroline Costa Oenning
- EA 2496-Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine Department, Bretonneau Hospital, HUPNVS, AP-HP, Paris Descartes University - Sorbonne Paris Cité, Paris, France.,Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (Unicamp), Piracicaba, Sao Paulo, Brazil
| | - Mike E Cohen
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, Catholic University of Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, Catholic University of Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mihaela Baciut
- Department of Maxillofacial Surgery, Faculty of Dentistry, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raluca Roman
- Department of Oral Radiology, Faculty of Dentistry, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Maxillofacial Surgery, Faculty of Dentistry, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horatiu Rotaru
- Department of Maxillofacial Surgery, Faculty of Dentistry, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Barbur
- Department of Maxillofacial Surgery, Faculty of Dentistry, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | |
Collapse
|
20
|
Abuhaimed A, Martin CJ. Evaluation of coefficients to derive organ and effective doses from cone-beam CT (CBCT) scans: a Monte Carlo study. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:189-206. [PMID: 29154259 DOI: 10.1088/1361-6498/aa9b9f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Regular imaging is used throughout image guided radiation therapy to improve treatment delivery. In order for treatment procedures to be optimized, the doses delivered by imaging exposures should be taken into account. CT dosimetry methods based on the CT dose index (CTDI), measured with a 100 mm long pencil ionization chamber (CTDI100) in standard phantoms, are not designed for cone-beam CT (CBCT) imaging systems used in radiotherapy, therefore a modified version has been proposed for CBCT by the International Electrotechnical Commission (CTDIIEC). Monte Carlo simulations based on a Varian On-Board Imaging system were used to derive conversion coefficients that enable organ doses for ICRP reference phantoms to be determined from the CTDIIEC for different scan protocols and different beam widths (80-320) mm. A dose-width product calculated by multiplying the CTDIIEC by the width of the CBCT beam is proposed as a quantity that can be used for estimating effective dose. The variation in coefficients with CBCT beam width was studied. Coefficients to allow estimation of effective doses were derived, namely 0.0034 mSv (mGy cm)-1 for the head, 0.0252 mSv (mGy cm)-1 for the thorax, 0.0216 mSv (mGy cm)-1 for the abdomen and 0.0150 mSv (mGy cm)-1 for the pelvis, and these may be applicable more generally to other CBCT systems in radiotherapy. If data on effective doses are available, these can be used in making judgements on the contributions to patient dose from imaging, and thereby assist in optimization of the treatment regimes. The coefficients can also be employed in converting dosimetry data recorded in patient records into quantities relating directly to patient doses.
Collapse
Affiliation(s)
- Abdullah Abuhaimed
- The National Centre for Applied Physics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | |
Collapse
|
21
|
Abuhaimed A, Martin CJ, Sankaralingam M. A Monte Carlo study of organ and effective doses of cone beam computed tomography (CBCT) scans in radiotherapy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:61-80. [PMID: 28952463 DOI: 10.1088/1361-6498/aa8f61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cone-beam CT (CBCT) scans utilised for image guided radiation therapy (IGRT) procedures have become an essential part of radiotherapy. The aim of this study was to assess organ and effective doses resulting from new CBCT scan protocols (head, thorax, and pelvis) released with a software upgrade of the kV on-board-imager (OBI) system. Organ and effective doses for protocols of the new software (V2.5) and a previous version (V1.6) were assessed using Monte Carlo (MC) simulations for the International Commission on Radiological Protection (ICRP) adult male and female reference computational phantoms. The number of projections and the mAs values were increased and the size of the scan field was extended in the new protocols. Influence of these changes on organ and effective doses of the scans was investigated. The OBI system was modelled in EGSnrc/BEAMnrc, and organ doses were estimated using EGSnrc/DOSXYZnrc. The MC model was benchmarked against experimental measurements. Organ doses resulting from the V2.5 protocols were higher than those of V1.6 for organs that were partially or fully inside the scans fields, and increased by (3-13)%, (10-77)%, and (13-21)% for the head, thorax, and pelvis protocols for both phantoms, respectively. As a result, effective doses rose by 14%, 17%, and 16% for the male phantom, and 13%, 18%, and 17% for the female phantom for the three scan protocols, respectively. The scan field extension for the V2.5 protocols contributed significantly in the dose increases, especially for organs that were partially irradiated such as the thyroid in head and thorax scans and colon in the pelvic scan. The contribution of the mAs values and projection numbers was minimal in the dose increases, up to 2.5%. The field size extension plays a major role in improving the treatment output by including more markers in the field of view to match between CBCT and CT images and hence setting up the patient precisely. Therefore, a trade-off between the risk and benefits of CBCT scans should be considered, and the dose increases should be monitored. Several recommendations have been made for optimisation of the patient dose involved for IGRT procedures.
Collapse
Affiliation(s)
- Abdullah Abuhaimed
- The National Centre for Applied Physics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | |
Collapse
|