1
|
Schildt A, Sänger P, Lütgens M, Polei S, Lappe C, Joksch M, Krause BJ, Vollmar B, Weber MA, Lindner T. Radiation protection and personal dosimetry in a core facility for multimodal small animal imaging. ROFO-FORTSCHR RONTG 2024. [PMID: 39631739 DOI: 10.1055/a-2462-2419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Clinical imaging techniques such as positron emission tomography (PET) in combination with computed tomography (CT) are increasingly being used in biomedical research involving small animal models. The handling of open radioactive substances (radiopharmaceuticals) necessary for PET imaging requires prior official authorization for handling, the application of radiation protection principles, and regular training. The overriding aim of radiation protection is to protect the personnel directly involved, other persons, and the environment from the harmful effects of ionizing radiation.This paper aims to provide an overview of the regulatory requirements of the Radiation Protection Act (StrlSchG), the Radiation Protection Ordinance (StrlSchV), and the associated standards and guidelines. Furthermore, their implementation in practical work in small animal imaging using PET/CT is shown. We will focus on the individual steps of the imaging process, from delivery of the radiopharmaceuticals to waste disposal. This should provide interested researchers with an initial overview of the safe and successful use of the method. In addition, exposure values from the last six years in the literature were analyzed. While personal dosimetric monitoring in clinical PET/CT imaging has been extensively published, there is no published data known to us for personnel for PET/CT research with small animals. The evaluation of the personal dosimetric monitoring of our small animal imaging facility with 7 employees over 4 years revealed an increased personal and finger dose normalized to the injected activity and compared to human PET/CT imaging. Nevertheless, the annual personal dose or annual finger dose in small animal imaging (Hp(10): 1.7 mSv, Hp(0.07): 64 mSv) is lower than for personnel performing human PET/CT imaging at the local University Department of Nuclear Medicine (Hp(10): 3.8 mSv, Hp(0.07): 156 mSv) or published values, and is well below the legally permissible maximum dose of 20 or 500 mSv per year.The increasing use of PET/CT in small animal research can be safely utilized if the radiation protection principles are implemented and continuously trained. · PET/CT imaging in small animals is increasingly used in biomedical research.. · Radiation protection laws and guidelines have to be known and are relevant in animal experiments.. · Compared to published values from human medicine, activity-specific employee doses are increased in the presented imaging facility.. · The legal personal dose in the studied imaging facility is below legal limits.. · Schildt A, Sänger P, Lütgens M et al. Radiation protection and personal dosimetry in a core facility for multimodal small animal imaging. Fortschr Röntgenstr 2024; DOI 10.1055/a-2462-2419.
Collapse
Affiliation(s)
- Anna Schildt
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | - Peter Sänger
- Radiation Protection Office, Rostock University Medical Center, Rostock, Germany
| | - Matthias Lütgens
- Radiation Protection Office, Rostock University Medical Center, Rostock, Germany
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Stefan Polei
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Chris Lappe
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Markus Joksch
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | - Bernd Joachim Krause
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Vollmar
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Marc-André Weber
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
2
|
Struelens L, Aalbersberg E, Beels L, Cherbuin N, D'Asseler Y, De Monte F, Lopez Medina A, Del Carmen Riveira Martin M, Schoonjans W, Terwinghe C, Van den Block S, Vanhavere F, Zaidi H, Schelfhout V. How much do 68Ga-, 177Lu- and 131I-based radiopharmaceuticals contribute to the global radiation exposure of nuclear medicine staff? EJNMMI Phys 2024; 11:95. [PMID: 39540964 PMCID: PMC11564452 DOI: 10.1186/s40658-024-00695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The radiation exposure of nuclear medicine personnel, especially concerning extremity doses, has been a significant focus over the past two decades. This study addresses the evolving practice of NM, particularly with the rise of radionuclide therapy and theranostic procedures, which involve a variety of radionuclides such as 68Ga, 177Lu, and 131I. Traditional studies have concentrated on common radioisotopes like 99mTc, 18F, and 90Y, but there is limited data on these radionuclides, which are more and more frequently used. This study, part of the European SINFONIA project, aims to fill this gap by providing new dosimetry data through a multicenter approach. The research monitors extremity doses to hands, eye lens doses, and whole-body doses in nuclear medicine staff handling 68Ga, 177Lu, and 131I. It examines the type of activities performed and the protective measures used. The study extrapolates measured doses to annual doses, comparing them with annual dose limits, and assesses the contribution of these specific procedures to the overall occupational dose of nuclear medicine personnel. RESULTS Measurements were conducted from November 2020 to August 2023 across nine hospitals. The highest whole-body, eye lens and extremity doses were observed for 68Ga. Average maximum extremity doses, normalized per manipulated activity, were found of 6200 µSv/GBq, 30 µSv/GBq and 260 µSV/GBq for 68Ga, 177Lu and 131I, respectively. Average whole-body doses stayed below 60 µSv/GBq for all 3 isotopes and below 200 µSv/GBq for the eye lens dose. The variation in doses also depends on the task performed. For 68Ga there is a risk of reaching the annual dose limit for skin dose during synthesis and dispensing. CONCLUSIONS This study's measurement campaigns across various European countries have provided new and extensive occupational dosimetry data for nuclear medicine staff handling 68Ga, 177Lu and 131I radiopharmaceuticals. The results indicate that 68Ga contributes significantly to the global occupational dose, despite its relatively low usage compared to other isotopes. Staff working in radiopharmacy hot labs, labeling and dispensing 177Lu contribute less to the finger dose compared to other isotopes.
Collapse
Affiliation(s)
- L Struelens
- Belgian Nuclear Research Center (SCK CEN), Nuclear Medical Applications, Mol, Belgium.
| | - E Aalbersberg
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L Beels
- Nuclear Medicine Department, AZ Groeninge, Kortrijk, Belgium
| | - N Cherbuin
- Institute of Radiation Physics (IRA), Lausanne University Hospital, Lausanne, Switzerland
| | - Y D'Asseler
- Department of Diagnostic Sciences, University Hospital Ghent and Ghent University, Ghent, Belgium
| | - F De Monte
- Medical Physics Department, IRCCS, Veneto Institute of Oncology (IOV), Padua, Italy
| | - A Lopez Medina
- Medical Physics Department (SERGAS), Hospital do Meixoeiro, Vigo, Spain
- Instituto de Investigación Biomédica Galicia Sur, Vigo, Spain
| | | | - W Schoonjans
- Belgian Nuclear Research Center (SCK CEN), Nuclear Medical Applications, Mol, Belgium
| | - C Terwinghe
- Department of Nuclear Medicine, University Hospital Gasthuisberg, Leuven, Belgium
| | - S Van den Block
- Nuclear Medicine Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - F Vanhavere
- Belgian Nuclear Research Center (SCK CEN), Nuclear Medical Applications, Mol, Belgium
| | - H Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- University Research and Innovation Center, Óbudabuda University, Budapest, Hungary
| | - V Schelfhout
- Department of Diagnostic Sciences, University Hospital Ghent and Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Kraihammer M, Petřík M, Rangger C, Gabriel M, Haas H, Nilica B, Virgolini I, Decristoforo C. Automated Production of [ 68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms. Pharmaceutics 2024; 16:1231. [PMID: 39339267 PMCID: PMC11435116 DOI: 10.3390/pharmaceutics16091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: PET imaging of bacterial infection could potentially provide added benefits for patient care through non-invasive means. [68Ga]Ga-desferrioxamine B-a radiolabelled siderophore-shows specific uptake by human-pathogenic bacteria like Staphylococcus aureus or Pseudomonas aeruginosa and sufficient serum stability for clinical application. In this report, we present data for automated production of [68Ga]Ga-desferrioxamine B on two different cassette-based synthesis modules (Modular-Lab PharmTracer and GRP 3V) utilising commercially obtainable cassettes together with a licensed 68Ge/68Ga radionuclide generator. Methods: Quality control, including the determination of radiochemical purity, as well as a system suitability test, was set up via RP-HPLC on a C18 column. The two described production processes use an acetic acid/acetate buffer system with ascorbic acid as a radical scavenger for radiolabelling, yielding ready-to-use formulations with sufficient activity yield. Results: Batch data analysis demonstrated radiochemical purity of >95% by RP-HPLC combined with ITLC and excellent stability up to 2 h after synthesis. Specifications for routine production were set up and validated with four masterbatches for each synthesis module. Conclusions: Based on this study, an academic clinical trial for imaging of bacterial infection was initiated. Both described synthesis methods enable automated production of [68Ga]Ga-desferrioxamine B in-house with high reproducibility for clinical application.
Collapse
Affiliation(s)
- Martin Kraihammer
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, A-4021 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Miloš Petřík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-77900 Olomouc, Czech Republic
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Michael Gabriel
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, A-4021 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bernhard Nilica
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Aalbersberg EA, Cao TT, Mylvaganan-Young C, Verwoerd D, Peen K, Sonneborn-Bols M, Hendrikx JJMA. A Multiradionuclide Automatic Dispensing System for Syringes of Radiopharmaceuticals: The Effect on Operator Hand Dose. J Nucl Med Technol 2024; 52:267-271. [PMID: 38901965 DOI: 10.2967/jnmt.124.267449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
The radiation exposure of the hands of nuclear medicine laboratory technicians is largely due to the dispensing of radiopharmaceuticals into syringes. To reduce this exposure, a multiradionuclide automatic dispensing system (ADS) for syringes of radiopharmaceuticals was introduced. The aim of this study was to determine the effect of this ADS on hand dose compared with manual dispensing. Methods: The total hand dose per month for all personnel (12 technicians) was measured with ring dosimeters at the base of the index finger for 13 mo: 7 mo with manual syringe dispensing (radiopharmaceuticals containing 99mTc,18F, 177Lu, 68Ga, 90Y, and 223Ra) and 6 mo with ADS (automatic: radiopharmaceuticals containing 18F and 177Lu; manual: radiopharmaceuticals containing 99mTc, 68Ga, 90Y, and 223Ra). Results: The mean total hand dose per month was reduced from 52.8 ± 10.2 mSv with manual dispensing to 21.9 ± 2.7 mSv with ADS (P < 0.001), which is an absolute decrease of 59%. Meanwhile, the total handled activity increased from 369 to 505 GBq (P < 0.001). 18F-containing radiopharmaceuticals were the most commonly dispensed, at 182 GBq per month. The increase in total handled activity was largely due to an increase in 177Lu (from 25 to 123 GBq), partially because of the introduction of [177Lu]Lu-PSMA-I&T. When correcting for this increase in handled activity, the hand dose was reduced by 69%. Conclusion: The introduction of a multiradionuclide syringe ADS decreased the hand dose to personnel by 69% when corrected for the increase in handled activity. Expanding the number of radiopharmaceuticals being dispensed by the system could potentially further decrease personnel hand dose.
Collapse
Affiliation(s)
- Else A Aalbersberg
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands;
| | - Tammie T Cao
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Chelvi Mylvaganan-Young
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Radiation Safety Department, Netherlands Cancer Institute, Amsterdam, The Netherlands; and
| | - Desiree Verwoerd
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Radiation Safety Department, Netherlands Cancer Institute, Amsterdam, The Netherlands; and
| | - Kirsten Peen
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mariska Sonneborn-Bols
- Radiation Safety Department, Netherlands Cancer Institute, Amsterdam, The Netherlands; and
| | - Jeroen J M A Hendrikx
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Rondón DS, Lombardo P, Abdelrahman M, Struelens L, Vanhavere F, Bergans N. Object and person tracking systems to enable extremity dosimetry in nuclear medicine using computational methods. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:021524. [PMID: 38834035 DOI: 10.1088/1361-6498/ad53d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Nuclear medicine (NM) professionals are potentially exposed to high doses of ionising radiation, particularly in the skin of the hands. Ring dosimeters are used by the workers to ensure extremity doses are kept below the legal limits. However, ring dosimeters are often susceptible to large uncertainties, so it is difficult to ensure a correct measurement using the traditional occupational monitoring methods. An alternative solution is to calculate the absorbed dose by using Monte Carlo simulations. This method could reduce the uncertainty in dose calculation if the exact positions of the worker and the radiation source are represented in these simulations. In this study we present a set of computer vision and artificial intelligence algorithms that allow us to track the exact position of unshielded syringes and the hands of NM workers. We showcase a possible hardware configuration to acquire the necessary input data for the algorithms. And finally, we assess the tracking confidence of our software. The tracking accuracy achieved for the syringe detection was 57% and for the hand detection 98%.
Collapse
|
6
|
Vogt J, Oeh U, Maringer FJ. Development of the occupational exposure during the production and application of radiopharmaceuticals in Germany. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:011508. [PMID: 38232404 DOI: 10.1088/1361-6498/ad1fdd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
An increasing number of radiopharmaceuticals and proteins are available for diagnosing and treating various diseases. The demand for existing and newly developed pharmaceutical radionuclides and proteins is steadily increasing. The radiation exposure levels of workers in the radiopharmaceutical industry and nuclear medicine field are closely monitored, specifically their effective dose and equivalent dose, leading to the question, of whether the dawn of radiopharmaceuticals affects the occupational exposure level. This development is analyzed and evaluated with data from the German National Dose Register. Data shows that the effective dose in the work categories production and distribution of radioisotopes as well as nuclear medicine slightly decreased from 1997 to 2021. Over the same period, the hand equivalent dose in nuclear medicine increases steadily, with no discernible trend in production and distribution of radioisotopes. Over the past few decades, intentional efforts and measures have been taken to ensure radiation protection. Instruments for monitoring and dose reduction must be continuously applied. Given the low effective dose, the focus in future shall be on dose reduction following theaslowasreasonablyachievable principle. The development of the hand equivalent dose should be carefully observed in the upcoming years.
Collapse
Affiliation(s)
- Julius Vogt
- Emergency Preparedness & Response, Federal Office for Radiation Protection, Köpenicker Allee 120 - 130, Berlin 10318, Germany
- University of Vienna, Universitätsstraße 7, Wien 1010, Austria
| | - Uwe Oeh
- Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, Oberschleißheim 85764, Germany
| | - Franz Josef Maringer
- Atominstitut, TU Wien,, Stadionallee 2, Wien 1020, Austria
- University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Straße 82, Wien 1190, Austria
| |
Collapse
|
7
|
Riveira-Martin M, Struelens L, Muñoz Iglesias J, Schoonjans W, Tabuenca O, Nogueiras JM, Salvador Gómez FJ, López Medina A. Radiation exposure assessment of nuclear medicine staff administering [ 177Lu]Lu-DOTA-TATE with active and passive dosimetry. EJNMMI Phys 2023; 10:70. [PMID: 37962683 PMCID: PMC10645926 DOI: 10.1186/s40658-023-00592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The use of lutetium-177 (177Lu)-based radiopharmaceuticals in peptide receptor nuclear therapy is increasing, but so is the number of nuclear medicine workers exposed to higher levels of radiation. In recent years, [177Lu]Lu-DOTA-TATE has begun to be widely used for the treatment of neuroendocrine tumours. However, there are few studies evaluating the occupational radiation exposure during its administration, and there are still some challenges that can result in higher doses to the staff, such as a lack of trained personnel or fully standardised procedures. In response, this study aims to provide a comprehensive analysis of occupational doses to the staff involved in the administration of [177Lu]Lu-DOTA-TATE. RESULTS A total of 32 administrations of [177Lu]Lu-DOTA-TATE (7.4 GBq/session) carried out by a physician and a nurse, were studied. In total, two physicians and four nurses were independently monitored with cumulative (passive) and/or real-time (active) dosemeters. Extremity, eye lens and whole-body doses were evaluated in terms of the dosimetric quantities Hp(0.07), Hp(3) and Hp(10), respectively. It was obtained that lead aprons reduced dose rates and whole-body doses by 71% and 69% for the physicians, respectively, and by 56% and 68% for the nurses. On average, normalised Hp(10) values of 0.65 ± 0.18 µSv/GBq were obtained with active dosimetry, which is generally consistent with passive dosemeters. For physicians, the median of the maximum normalised Hp(0.07) values was 41.5 µSv/GBq on the non-dominant hand and 45.2 µSv/GBq on the dominant hand. For nurses 15.4 µSv/GBq on the non-dominant and 13.9 µSv/GBq on the dominant hand. The ratio or correction factor between the maximum dose measured on the hand and the dose measured on the base of the middle/ring finger of the non-dominant hand resulted in a factor of 5/6 for the physicians and 3/4 for the nurses. Finally, maximum normalised Hp(3) doses resulted in 2.02 µSv/GBq for physicians and 1.76 µSv/GBq for nurses. CONCLUSIONS If appropriate safety measures are taken, the administration of [177Lu]Lu-DOTA-TATE is a safe procedure for workers. However, regular monitoring is recommended to ensure that the annual dose limits are not exceeded.
Collapse
Affiliation(s)
- Mercedes Riveira-Martin
- Genetic Oncology, Radiobiology and Radiointeraction Research Group, Galicia Sur Health Research Institute (IISGS), Vigo, Spain.
- Department of Radiology, Rehabilitation and Physiotherapy, Medicine School, Complutense University of Madrid, Madrid, Spain.
| | | | - José Muñoz Iglesias
- Nuclear Medicine Department (SERGAS), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
| | | | - Olga Tabuenca
- Nuclear Medicine Department (SERGAS), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
| | - José Manuel Nogueiras
- Nuclear Medicine Department (GALARIA), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
| | | | - Antonio López Medina
- Medical Physics and RP Department (GALARIA), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| |
Collapse
|
8
|
Cunha L, Baete K, Leijen C, Jamar F. Main challenges in radiation protection with emerging radionuclide therapies. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:14-28. [PMID: 36598760 DOI: 10.23736/s1824-4785.22.03502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The recent development of radionuclide therapy and radioligand therapy has raised a call for achieving the highest quality standards, for either radiopharmacy or radiation protection. Novel radionuclides are now being used, either under the form of in-house production radiopharmaceuticals or available from companies. Over the last 20 years, they include radiolabeled microspheres for selective internal radiotherapy (SIRT), the introduction of the first commercially available alpha emitter radiopharmaceutical, 223Ra, and the radiosynoviorthesis which is highly variable across Europe. More important is the development of radioligand therapy, often called theranostics. In this concept, a diagnostic radiopharmaceutical can determine the chance of success of a therapeutic one. Typically, diagnostic radiopharmaceuticals for positron emission tomography, are labeled with 18F or 68Ga, such as the PSMA ligands or somatostatin analogs, and the therapeutic radiopharmaceutical is labeled with 177Lu. This has revolutionized the world of Nuclear Medicine, but also all concepts that shall be applied to properly apply quality assurance and radiation protection in the field. This article will follow the example of 131I as the main used radionuclide for therapy during the last 80 years. Proposals can be general, and in parallel expert's articles will give specific guidance on issues with particular radionuclides, i.e., alpha emitters and 177Lu. This article will also give insight in the radiation protection issues related to the use of microspheres radiolabeled with either 90Y or 166Ho.
Collapse
Affiliation(s)
- Lidia Cunha
- Department of Nuclear Medicine and Molecular Imaging, IsoPor-Azores, Azores, Portugal
| | - Kristof Baete
- Department of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Carolien Leijen
- Department of Radiation Protection, University Medical Center Utrecht, Utrecht, the Netherlands
| | - François Jamar
- Department of Nuclear Medicine, Saint-Luc University Clinic and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium -
| |
Collapse
|
9
|
Cunha L, Dabin J, Leide-Svegborn S, Zorz A, Kollaard R, Covens P. Extremity exposure of nuclear medicine workers: results from an EANM and EURADOS survey. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:29-36. [PMID: 36630081 DOI: 10.23736/s1824-4785.22.03504-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Extremity exposure during the handling of unsealed radioactive sources is a matter of concern for nuclear medicine workers. Next to 99mTc and 18F, other radiopharmaceuticals have seen an increase in their use over the last decade. However, limited information on their impact on extremity dose is available. This study aimed to gain insight into the status of extremity exposure and dose monitoring in Europe. METHODS A survey was conducted at the end of 2020 among the European Association of Nuclear Medicine community. It contained 24 questions considering department characteristics, worker tasks, dosimeter use, typical worker extremity dose, department workload for selected radionuclides (99mTc, 18F, 68Ga, 177Lu, 90Y) and protective measures. RESULTS A total of 106 replies were received, 92% of which were from Europe. About half of the respondents were from academic hospitals. Ninety-nine departments implement extremity dose monitoring for a total of 1335 workers. Most workers (95%) wear a ring dosimeter, generally on the non-dominant hand, and 44% on the index finger. Monthly doses were generally low (median values at different ring position: 0.4-1.8 mSv), although higher doses were reported (20.8-38.8 mSv). About 1/3 of workers performed the full task range (preparation, dispensing, and administration). Administration is associated with significantly lower extremity doses. Interestingly, no correlation between department workload and collective dose was found. The adoption of vial and syringe shielding, as well as distance tools, was common. The workers dispensing 99mTc without syringe shielding or PET nuclides without automated system received a significantly higher dose. Handling 68Ga, 177Lu and 90Y did not appear to have an impact on the reported doses. CONCLUSIONS Protective measures play a significant role in lowering extremity doses, while department workload and more recently introduced radionuclides seem not to be major dose determinants.
Collapse
Affiliation(s)
- Lídia Cunha
- Department of Nuclear Medicine and Molecular Imaging, IsoPor-Azores, Azores, Portugal -
| | - Jérémie Dabin
- Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Sigrid Leide-Svegborn
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Alessandra Zorz
- Department of Medical Physics, Veneto Institute of Oncology - IOV, Padua, Italy
| | - Robert Kollaard
- Department of Radiation Protection, Nuclear Research and Consultancy Group (NRG), Arnhem, the Netherlands
| | - Peter Covens
- Unit of In vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
10
|
Wrzesień M, Albiniak Ł. Personal dose equivalent H p(0.07) during 68Ga-DOTA-TATE production procedures. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:117-129. [PMID: 36625834 PMCID: PMC9950246 DOI: 10.1007/s00411-022-01015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
This work presents the exposure of hands of the personnel of a nuclear medicine department who prepare and administer 68Ga-DOTA-TATE. Dosimetry measurements were performed during three 1-week sessions, for nine production procedures. A total of 360 measurements were made by using high-sensitivity MCP-N thermoluminescent detectors. Annealed detectors were and vacuum-packed in foil and then placed on each fingertip of both hands of five radiochemists and four nurses (one detector for one fingertip). The greatest exposure to ionizing radiation was found on the non-dominant left hand of radiochemists and nurses. A maximum Hp(0.07)/A value of 49.36 ± 4.95 mSv/GBq was registered for radiochemists during the 68 Ga-DOTA-DATE activity dispensing procedure. For nurses performing the radiopharmaceutical injection procedure, a corresponding maximum value of 1.28 ± 0.13 mSv/GBq was measured, while the mean value for all the nurses was 0.38 mSv/GBq. The dispensing procedure accounted for approximately 60% of the total exposure of radiochemists' fingertips. Based on the results obtained it is recommended that a ring dosimeter should be routinely placed on the middle finger of the non-dominant hand of radiochemists and nurses. Furthermore, it is proposed to systematically train workers in handling open sources of ionizing radiation, with the aim of reducing the required handling time.
Collapse
Affiliation(s)
- M Wrzesień
- Department of Nuclear Physics and Radiation Safety, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236, Lodz, Poland
| | - Ł Albiniak
- Department of Nuclear Physics and Radiation Safety, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236, Lodz, Poland.
| |
Collapse
|
11
|
McCann A, Cherbuin N, Covens P, Dabin J, Haruz-Waschitz S, Gallo L, Datz H, Wierts R, Wrzesien M, Zorz A, Cooke J, Dowling A, Kollaard R. Finger doses due to 68Ga-labelled pharmaceuticals in PET departments-results of a multi-centre pilot study. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2023; 43:011509. [PMID: 36633569 DOI: 10.1088/1361-6498/acb263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Although the use of68Ga has increased substantially in nuclear medicine over the last decade, there is limited information available on occupational exposure due to68Ga. The purpose of this study is to determine the occupational extremity exposure during the preparation, dispensing and administration of68Ga-labelled radiopharmaceuticals. METHOD Workers in eight centres wore a ring dosimeter for all tasks involving68Ga-labelled radiopharmaceuticals for a minimum of one month. Additionally, the fingertip dose was monitored in two centres and the hand with the highest ring dose during68Ga procedures was also identified in one centre. RESULTS The median normalised ring dose for68Ga procedures was found to be 0.25 mSv GBq-1(range 0.01-3.34). The normalised68Ga ring doses recorded in this study are similar to that found in the literature for18F. This study is consistent with previous findings that the highest extremity dose is found on the non-dominant hand. A limited sub study in two of the centres showed a median fingertip to base of the finger dose ratio of 4.3. Based on this median ratio, the extrapolated annual68Ga fingertip dose for 94% of the workers monitored in this study would be below Category B dose limit (150 mSv) and no worker would exceed Category A dose limit (500 mSv). CONCLUSION When appropriate shielding and radiation protection practices are employed, the extremity dose due to68Ga is comparable to that of18F and is expected to be well below the regulatory limits for the majority of workers.
Collapse
Affiliation(s)
- Ann McCann
- Centre for Physics in Health & Medicine, School of Physics, University College, Dublin, Ireland
- Department of Medical Physics & Clinical Engineering, St. Vincent's University Hospital, Dublin, Ireland
| | - Nicolas Cherbuin
- Institute of Radiation Physics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Peter Covens
- In vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jérémie Dabin
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | | | - Lara Gallo
- Department of Medical Physics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Hanan Datz
- Radiation Safety, Soreq Nuclear Research Center, Yavne, Israel
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Malgorzata Wrzesien
- Department of Nuclear Physics and Radiation Safety, University of Lodz, Lodz, Poland
| | - Alessandra Zorz
- Department of Medical Physics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Jennie Cooke
- Department of Medical Physics, St James's Hospital, Dublin, Ireland
| | - Anita Dowling
- Department of Medical Physics & Clinical Engineering, St. Vincent's University Hospital, Dublin, Ireland
| | - Robert Kollaard
- Department of Radiation Protection, Nuclear Research and Consultancy Group (NRG), Arnhem, The Netherlands
| |
Collapse
|
12
|
Evaluation of different types of lithium fluoride thermoluminescent detectors for ring dosimetry in nuclear medicine. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Riveira-Martin M, Struelens L, Schoonjans W, Sánchez-Díaz I, Muñoz Iglesias J, Ferreira Dávila Ó, Salvador Gómez FJ, Salgado Fernández M, López Medina A. Occupational radiation exposure assessment during the management of [68Ga]Ga-DOTA-TOC. EJNMMI Phys 2022; 9:75. [PMID: 36309605 PMCID: PMC9617990 DOI: 10.1186/s40658-022-00505-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Since it was first approved in Europe in 2016, the gallium-68 (68Ga) radiopharmaceutical [68Ga]Ga-DOTA-TOC has been widely used for imaging of somatostatin receptor (SSTR) positive tumours using positron emission tomography–computed tomography (PET/CT). Significant patient benefits have been reported, so its use is rapidly increasing. However, few studies have been published regarding occupational doses to nuclear medicine personnel handling this radiopharmaceutical, despite its manual usage at low distances from the skin and the beta-emission decay scheme, which may result in an increased absorbed dose to their hands. In this context, this study aims to analyse the occupational exposure during the administration of [68Ga]Ga-DOTA-TOC for PET/CT imaging. For this purpose, extremity, eye lens and whole-body dosimetry in terms of Hp(0.07), Hp(3) and Hp(10), respectively, was conducted on six workers with both thermoluminescent dosimeters, and personal electronic dosimeters.
Results The non-dominant hand is more exposed to radiation than the dominant hand, with the thumb and the index fingertip being the most exposed sites on this hand. Qualitative analysis showed that when no shielding is used during injection, doses increase significantly more in the dominant than in the non-dominant hand, so the use of shielding is strongly recommended. While wrist dosimeters may significantly underestimate doses to the hands, placing a ring dosimeter at the base of the ring or middle finger of the non-dominant hand may give a valuable estimation of maximum doses to the hands if at least a correction factor of 5 is applied. Personal equivalent doses for the eyes did not result in measurable values (i.e., above the lowest detection limit) for almost all workers. The extrapolated annual dose estimations showed that there is compliance with the annual dose limits during management of [68Ga]Ga-DOTA-TOC for diagnostics with PET in the hospital included in this study. Conclusions Imaging with [68Ga]Ga-DOTA-TOC is a safe process for the workers performing the administration of the radiopharmaceutical, including intravenous injection to the patient and the pre- and post-activity control, as it is highly unlikely that annual dose limits will be exceeded if good working practices and shielding are used.
Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00505-8.
Collapse
|
14
|
Andriulevičiūtė I, Skovorodko K, Adlienė D, Bielinis A, Laurikaitienė J, Gricienė B. Assessment of extremity exposure to technologists working manually with 99mTc-labelled radiopharmaceuticals and with an automatic injection system for 18F-FDG. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:031510. [PMID: 35973412 DOI: 10.1088/1361-6498/ac89f9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The hands of nuclear medicine (NM) personnel involved in radiopharmaceutical preparation and administration can receive significant radiation doses. The dose distribution across the hand is nonuniform and the Hp(0.07) doses obtained by an individual passive ring dosimeter do not always present a real situation. The aim of this study was to assess the extremity exposure of NM workers working with99mTc-labelled radiopharmaceuticals and with an automatic IRIDE (COMECER, Italy)18F-FDG injection system. Hp(0.07) doses were measured using calibrated thermoluminescent dosimeters-100 (TLD-100) and were read by a RIALTO TLD (NE Technology) reader. It was found that the most exposed parts of the hand during work with18F and99mTc radionuclides are the fingertips of the thumb, index finger and middle finger. The maximum fingertip doses were 1.3-2.4 times higher compared with the doses from the typical monitoring position (base of the middle finger of the dominant hand). When working with99mTc, the average hand doses were relatively high, i.e. 0.17 ± 0.04 and 0.37 ± 0.13 mSv Gbq-1for the left and the right hand, respectively, during preparation, and 58 ± 20 and 53 ± 13µSv GBq-1for the left and the right hand, respectively, during administration of99mTc labelled radiopharmaceuticals. Meanwhile, the lowest doses were found for hands during administration of18F-FDG (average hand dose 28 ± 13µSv GBq-1for the left hand and 28 ± 7µSv GBq-1for the right hand), which shows the advantages of automated injection/infusion systems, thus implementation of automatic infusion/injection in hospitals could be an expedient way to optimize Hp(0.07) doses to NM workers.
Collapse
Affiliation(s)
| | - Kirill Skovorodko
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Center for Physical Sciences and Technology (FTMC), Vilnius, Lithuania
| | | | | | | | - Birutė Gricienė
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Vilnius University, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius, Lithuania
| |
Collapse
|