1
|
Pelella A, Kumar A, Intonti K, Durante O, De Stefano S, Han X, Li Z, Guo Y, Giubileo F, Camilli L, Passacantando M, Zak A, Di Bartolomeo A. WS 2 Nanotube Transistor for Photodetection and Optoelectronic Memory Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403965. [PMID: 38994696 DOI: 10.1002/smll.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Nanotube and nanowire transistors hold great promises for future electronic and optoelectronic devices owing to their downscaling possibilities. In this work, a single multi-walled tungsten disulfide (WS2) nanotube is utilized as the channel of a back-gated field-effect transistor. The device exhibits a p-type behavior in ambient conditions, with a hole mobility µp ≈ 1.4 cm2V-1s-1 and a subthreshold swing SS ≈ 10 V dec-1. Current-voltage characterization at different temperatures reveals that the device presents two slightly different asymmetric Schottky barriers at drain and source contacts. Self-powered photoconduction driven by the photovoltaic effect is demonstrated, and a photoresponsivity R ≈ 10 mAW-1 at 2 V drain bias and room temperature. Moreover, the transistor is tested for data storage applications. A two-state memory is reported, where positive and negative gate pulses drive the switching between two different current states, separated by a window of 130%. Finally, gate and light pulses are combined to demonstrate an optoelectronic memory with four well-separated states. The results herein presented are promising for data storage, Boolean logic, and neural network applications.
Collapse
Affiliation(s)
- Aniello Pelella
- Dipartimento di Fisica, Università di Roma "Tor Vergata", Via Della Ricerca Scientifica, Rome, 00133, Italy
| | - Arun Kumar
- Department of Physics "E. R. Caianiello", University of Salerno, via Giovanni Paolo II, Fisciano, Salerno, 84084, Italy
| | - Kimberly Intonti
- Department of Physics "E. R. Caianiello", University of Salerno, via Giovanni Paolo II, Fisciano, Salerno, 84084, Italy
- CNR-SPIN Salerno, via Giovanni Paolo II, Fisciano, Salerno, 84084, Italy
| | - Ofelia Durante
- Department of Physics "E. R. Caianiello", University of Salerno, via Giovanni Paolo II, Fisciano, Salerno, 84084, Italy
| | - Sebastiano De Stefano
- Department of Physics "E. R. Caianiello", University of Salerno, via Giovanni Paolo II, Fisciano, Salerno, 84084, Italy
| | - Xinyi Han
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Zhonggui Li
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Yao Guo
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Filippo Giubileo
- CNR-SPIN Salerno, via Giovanni Paolo II, Fisciano, Salerno, 84084, Italy
| | - Luca Camilli
- Dipartimento di Fisica, Università di Roma "Tor Vergata", Via Della Ricerca Scientifica, Rome, 00133, Italy
| | - Maurizio Passacantando
- Department of Physical and Chemical Sciences, University of L'Aquila, Coppito, L'Aquila, 67100, Italy
| | - Alla Zak
- Faculty of Sciences, Holon Institute of Technology, Holon, 58102, Israel
| | - Antonio Di Bartolomeo
- Department of Physics "E. R. Caianiello", University of Salerno, via Giovanni Paolo II, Fisciano, Salerno, 84084, Italy
| |
Collapse
|
2
|
Giubileo F, Faella E, Capista D, Passacantando M, Durante O, Kumar A, Pelella A, Intonti K, Viscardi L, De Stefano S, Martucciello N, Craciun MF, Russo S, Di Bartolomeo A. Field enhancement induced by surface defects in two-dimensional ReSe 2 field emitters. NANOSCALE 2024; 16:16718-16728. [PMID: 39172122 DOI: 10.1039/d4nr02109f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The field emission properties of rhenium diselenide (ReSe2) nanosheets on Si/SiO2 substrates, obtained through mechanical exfoliation, have been investigated. The n-type conduction was confirmed by using nano-manipulated tungsten probes inside a scanning electrode microscope to directly contact the ReSe2 flake in back-gated field effect transistor configuration, avoiding any lithographic process. By performing a finite element electrostatic simulation of the electric field, it is demonstrated that the use of a tungsten probe as anode, at a controlled distance from the ReSe2 emitter surface, allows the collection of emitted electrons from a reduced area that furtherly decreases by reducing the tip-sample distance, i.e. allowing a local characterization of the field emission properties. Experimentally, it is shown that the turn-on voltage can be linearly reduced by reducing the cathode-anode separation distance. By comparing the measured current-voltage characteristics with the numerical simulations, it is also shown that the effective field enhancement on the emitter surface is larger than expected because of surface defects. Finally, it is confirmed that ReSe2 nanosheets are suitable field emitters with high time stability and low current fluctuations.
Collapse
Affiliation(s)
- Filippo Giubileo
- CNR-SPIN Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
| | - Enver Faella
- Department of Physical and Chemical Science, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Daniele Capista
- IHP-Leibnitz Institut fuer innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany
| | - Maurizio Passacantando
- Department of Physical and Chemical Science, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Ofelia Durante
- CNR-SPIN Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
- Department of Physics "E.R. Caianiello", University of Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
| | - Arun Kumar
- Department of Physics "E.R. Caianiello", University of Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
| | - Aniello Pelella
- Dipartimento di Fisica, Università degli studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Kimberly Intonti
- CNR-SPIN Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
- Department of Physics "E.R. Caianiello", University of Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
| | - Loredana Viscardi
- CNR-SPIN Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
- Department of Physics "E.R. Caianiello", University of Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
| | - Sebastiano De Stefano
- Department of Physics "E.R. Caianiello", University of Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
| | | | | | - Saverio Russo
- University of Exeter, Stocker Road 6, Exeter EX4 4QL, Devon, UK
| | - Antonio Di Bartolomeo
- CNR-SPIN Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
- Department of Physics "E.R. Caianiello", University of Salerno, via Giovanni Paolo II n.132, 84084 Fisciano, Italy.
| |
Collapse
|
3
|
Tang M, Ma C, Liu L, Tan X, Li Y, Lee YJ, Wang G, Jeon DW, Park JH, Zhang Y, Yi X, Wang J, Li J. β-Ga 2O 3 Air-Channel Field-Emission Nanodiode with Ultrahigh Current Density and Low Turn-On Voltage. NANO LETTERS 2024; 24:1769-1775. [PMID: 38251648 DOI: 10.1021/acs.nanolett.3c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Field-emission nanodiodes with air-gap channels based on single β-Ga2O3 nanowires have been investigated in this work. With a gap of ∼50 nm and an asymmetric device structure, the proposed nanodiode achieves good diode characteristics through field emission in air at room temperature. Measurement results show that the nanodiode exhibits an ultrahigh emission current density, a high enhancement factor of >2300, and a low turn-on voltage of 0.46 V. More impressively, the emission current almost keeps constant over a wide range (8 orders of magnitude) of air pressures below 1 atm. Meanwhile, the fluctuation in field-emission current is below 8.7% during long-time monitoring, which is better than the best reported field-emission device based on β-Ga2O3 nanostructures. All of these results indicate that β-Ga2O3 air-gapped nanodiodes are promising candidates for vacuum electronics that can also operate in air.
Collapse
Affiliation(s)
- Minglei Tang
- Research and Development Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan Province China
| | - Chicheng Ma
- Research and Development Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lining Liu
- The State Key Laboratory on Integrated Optoelectronics, Institution of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Tan
- Research and Development Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan Province China
| | - Yan Li
- Research and Development Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Young Jin Lee
- Korea Institute of Ceramic Engineering and Technology, 15-5, Chungmugong-dong, Jinju-si, Gyeongsongnam-do 52851, Korea
| | - Guodong Wang
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan Province China
| | - Dae-Woo Jeon
- Korea Institute of Ceramic Engineering and Technology, 15-5, Chungmugong-dong, Jinju-si, Gyeongsongnam-do 52851, Korea
| | - Ji-Hyeon Park
- Korea Institute of Ceramic Engineering and Technology, 15-5, Chungmugong-dong, Jinju-si, Gyeongsongnam-do 52851, Korea
| | - Yiyun Zhang
- Research and Development Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Yi
- Research and Development Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxi Wang
- Research and Development Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinmin Li
- Research and Development Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Jeong H, Nomenyo K, Oh HM, Gwiazda A, Yun SJ, Chevalier César C, Salas-Montiel R, Wourè-Nadiri Bayor S, Jeong MS, Lee YH, Lérondel G. Ultrahigh Photosensitivity Based on Single-Step Lay-on Integration of Freestanding Two-Dimensional Transition-Metal Dichalcogenide. ACS NANO 2024; 18:4432-4442. [PMID: 38284564 DOI: 10.1021/acsnano.3c10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Two-dimensional transition-metal dichalcogenides have attracted significant attention because of their unique intrinsic properties, such as high transparency, good flexibility, atomically thin structure, and predictable electron transport. However, the current state of device performance in monolayer transition-metal dichalcogenide-based optoelectronics is far from commercialization, because of its substantial strain on the heterogeneous planar substrate and its robust metal deposition, which causes crystalline damage. In this study, we show that strain-relaxed and undamaged monolayer WSe2 can improve a device performance significantly. We propose here an original point-cell-type photodetector. The device consists in a monolayer of an absorbing TMD (i.e., WSe2) simply deposited on a structured electrode, i.e., core-shell silicon-gold nanopillars. The maximum photoresponsivity of the device is found to be 23.16 A/W, which is a significantly high value for monolayer WSe2-based photodetectors. Such point-cell photodetectors can resolve the critical issues of 2D materials, leading to tremendous improvements in device performance.
Collapse
Affiliation(s)
- Hyun Jeong
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Komla Nomenyo
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Département de Génie Electrique, Ecole Nationale Supérieure d'Ingénieurs (ENSI), Université de Lomé, BP 1515 Lomé, Togo
| | - Hye Min Oh
- Department of Physics, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Agnieszka Gwiazda
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
| | - Seok Joon Yun
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Clotaire Chevalier César
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
| | - Rafael Salas-Montiel
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
| | - Sibiri Wourè-Nadiri Bayor
- Département de Génie Electrique, Ecole Nationale Supérieure d'Ingénieurs (ENSI), Université de Lomé, BP 1515 Lomé, Togo
| | - Mun Seok Jeong
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Young Hee Lee
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gilles Lérondel
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
5
|
Han P, Li X, Cai J, Feng J. Vertical Nanoscale Vacuum Channel Triodes Based on the Material System of Vacuum Electronics. MICROMACHINES 2023; 14:346. [PMID: 36838046 PMCID: PMC9963160 DOI: 10.3390/mi14020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Nanoscale vacuum channel triodes realize the vacuum-like transmission of electrons in the atmosphere because the transmission distance is less than the mean free path of electrons in air. This new hybrid device is the deep integration of vacuum electronics technology, micro-nano electronics technology, and optoelectronic technology. It has the advantages of both vacuum and solid-state devices and is considered to be the next generation of vacuum electronic devices. In this work, vertical nanoscale vacuum channel diodes and triodes with edge emission were fabricated using advanced micro-nano processing technology. The device materials were all based on the vacuum electronics material system. The field emission characteristics of the devices were investigated. The diode continued emitting at a bias voltage from 0 to 50 V without failure, and the current variation under different vacuum degrees was better than 2.1%. The field emission characteristics of the devices were evaluated over a wide pressure range of between 10-7 Pa and 105 Pa, and the results could explain the vacuum-like behavior of the devices when operating in air. The current variation of the triode is better than 6.1% at Vg = 8 V and Va = 10 V.
Collapse
|
6
|
Melnichenko I, Moiseev E, Kryzhanovskaya N, Makhov I, Nadtochiy A, Kalyuznyy N, Kondratev V, Zhukov A. Submicron-Size Emitters of the 1.2-1.55 μm Spectral Range Based on InP/InAsP/InP Nanostructures Integrated into Si Substrate. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4213. [PMID: 36500837 PMCID: PMC9739187 DOI: 10.3390/nano12234213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
We study photoluminescence of InP/InAsP/InP nanostructures monolithically integrated to a Si(100) substrate. The InP/InAsP/InP nanostructures were grown in pre-formed pits in the silicon substrate using an original approach based on selective area growth and driven by a molten alloy in metal-organic vapor epitaxy method. This approach provides the selective-area synthesis of the ordered emitters arrays on Si substrates. The obtained InP/InAsP/InP nanostructures have a submicron size. The individual InP/InAsP/InP nanostructures were investigated by photoluminescence spectroscopy at room temperature. The tuning of the emission line in the spectral range from 1200 nm to 1550 nm was obtained depending on the growth parameters. These results provide a path for the growth on Si(100) substrate of position-controlled heterojunctions based on InAs1-xPx for nanoscale optical devices operating at the telecom band.
Collapse
Affiliation(s)
- Ivan Melnichenko
- International Laboratory of Quantum Optoelectronics, HSE University, 16 Soyuza Pechatnikov, St. Petersburg 190008, Russia
| | - Eduard Moiseev
- International Laboratory of Quantum Optoelectronics, HSE University, 16 Soyuza Pechatnikov, St. Petersburg 190008, Russia
| | - Natalia Kryzhanovskaya
- International Laboratory of Quantum Optoelectronics, HSE University, 16 Soyuza Pechatnikov, St. Petersburg 190008, Russia
| | - Ivan Makhov
- International Laboratory of Quantum Optoelectronics, HSE University, 16 Soyuza Pechatnikov, St. Petersburg 190008, Russia
| | - Alexey Nadtochiy
- Ioffe Institute, Politehnicheskaya 26, St. Petersburg 194021, Russia
| | - Nikolay Kalyuznyy
- Ioffe Institute, Politehnicheskaya 26, St. Petersburg 194021, Russia
| | - Valeriy Kondratev
- Center for Nanotechnologies, Alferov University, Khlopina 8/3, St. Petersburg 194021, Russia
| | - Alexey Zhukov
- International Laboratory of Quantum Optoelectronics, HSE University, 16 Soyuza Pechatnikov, St. Petersburg 190008, Russia
| |
Collapse
|
7
|
Gao Y, Okada S. Field induced electron emission from graphene nanostructures. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac8822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Electric fields play a crucial role in modulating the electronic properties of nanoscale materials. Electron emission, induced by an electric field, is a representative phenomenon. Experimental and theoretical aspects of such electron emission from graphene are briefly reviewed. The emission occurs at the edge of graphene flakes, not at the surface, because the edge highly concentrates the electric field. Emission currents are sensitive to the edge shapes and edge functionalization. This review provides guiding principles for designing high-efficiency field-emission devices by using graphene nanostructures.
Collapse
|
8
|
Gerasimenko AY, Kuksin AV, Shaman YP, Kitsyuk EP, Fedorova YO, Murashko DT, Shamanaev AA, Eganova EM, Sysa AV, Savelyev MS, Telyshev DV, Pavlov AA, Glukhova OE. Hybrid Carbon Nanotubes-Graphene Nanostructures: Modeling, Formation, Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2812. [PMID: 36014677 PMCID: PMC9412346 DOI: 10.3390/nano12162812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/06/2023]
Abstract
A technology for the formation and bonding with a substrate of hybrid carbon nanostructures from single-walled carbon nanotubes (SWCNT) and reduced graphene oxide (rGO) by laser radiation is proposed. Molecular dynamics modeling by the real-time time-dependent density functional tight-binding (TD-DFTB) method made it possible to reveal the mechanism of field emission centers formation in carbon nanostructures layers. Laser radiation stimulates the formation of graphene-nanotube covalent contacts and also induces a dipole moment of hybrid nanostructures, which ensures their orientation along the force lines of the radiation field. The main mechanical and emission characteristics of the formed hybrid nanostructures were determined. By Raman spectroscopy, the effect of laser radiation energy on the defectiveness of all types of layers formed from nanostructures was determined. Laser exposure increased the hardness of all samples more than twice. Maximum hardness was obtained for hybrid nanostructure with a buffer layer (bl) of rGO and the main layer of SWCNT-rGO(bl)-SWCNT and was 54.4 GPa. In addition, the adhesion of rGO to the substrate and electron transport between the substrate and rGO(bl)-SWCNT increased. The rGO(bl)-SWCNT cathode with an area of ~1 mm2 showed a field emission current density of 562 mA/cm2 and stability for 9 h at a current of 1 mA. The developed technology for the formation of hybrid nanostructures can be used both to create high-performance and stable field emission cathodes and in other applications where nanomaterials coating with good adhesion, strength, and electrical conductivity is required.
Collapse
Affiliation(s)
- Alexander Yu. Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Artem V. Kuksin
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
| | - Yury P. Shaman
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninsky Prospekt 32A, 119991 Moscow, Russia
| | - Evgeny P. Kitsyuk
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Yulia O. Fedorova
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Denis T. Murashko
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
| | - Artemiy A. Shamanaev
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Elena M. Eganova
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninsky Prospekt 32A, 119991 Moscow, Russia
| | - Artem V. Sysa
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Mikhail S. Savelyev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Dmitry V. Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Alexander A. Pavlov
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninsky Prospekt 32A, 119991 Moscow, Russia
| | - Olga E. Glukhova
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
- Department of Physics, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
| |
Collapse
|
9
|
Viazmitinov DV, Berdnikov Y, Kadkhodazadeh S, Dragunova A, Sibirev N, Kryzhanovskaya N, Radko I, Huck A, Yvind K, Semenova E. Monolithic integration of InP on Si by molten alloy driven selective area epitaxial growth. NANOSCALE 2020; 12:23780-23788. [PMID: 33232429 DOI: 10.1039/d0nr05779g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a new approach for monolithic integration of III-V materials into silicon, based on selective area growth and driven by a molten alloy in metal-organic vapor epitaxy. Our method includes elements of both selective area and droplet-mediated growths and combines the advantages of the two techniques. Using this approach, we obtain organized arrays of high crystalline quality InP insertions into (100) oriented Si substrates. Our detailed structural, morphological and optical studies reveal the conditions leading to defect formation. These conditions are then eliminated to optimize the process for obtaining dislocation-free InP nanostructures grown directly on Si and buried below the top surface. The PL signal from these structures exhibits a narrow peak at the InP bandgap energy. The fundamental aspects of the growth are studied by modeling the InP nucleation process. The model is fitted by our X-ray diffraction measurements and correlates well with the results of our transmission electron microscopy and optical investigations. Our method constitutes a new approach for the monolithic integration of active III-V materials into Si platforms and opens up new opportunities in active Si photonics.
Collapse
|
10
|
Giubileo F, Bartolomeo AD, Zhong Y, Zhao S, Passacantando M. Field emission from AlGaN nanowires with low turn-on field. NANOTECHNOLOGY 2020; 31:475702. [PMID: 32885788 DOI: 10.1088/1361-6528/abaf22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We fabricate AlGaN nanowires by molecular beam epitaxy and we investigate their field emission properties by means of an experimental setup using nano-manipulated tungsten tips as electrodes, inside a scanning electron microscope. The tip-shaped anode gives access to local properties, and allows collecting electrons emitted from areas as small as 1 µm2. The field emission characteristics are analysed in the framework of Fowler-Nordheim theory and we find a field enhancement factor as high as β = 556 and a minimum turn-on field [Formula: see text] = 17 V µm-1 for a cathode-anode separation distance [Formula: see text] = 500 nm. We show that for increasing separation distance, [Formula: see text] increases up to about 35 V µm-1 and β decreases to ∼100 at [Formula: see text] = 1600 nm. We also demonstrate the time stability of the field emission current from AlGaN nanowires for several minutes. Finally, we explain the observation of modified slope of the Fowler-Nordheim plots at low fields in terms of non-homogeneous field enhancement factors due to the presence of protruding emitters.
Collapse
Affiliation(s)
- Filippo Giubileo
- CNR-SPIN Salerno, via Giovanni Paolo II n. 132, Fisciano 84084, Italy
| | | | | | | | | |
Collapse
|
11
|
Grillo A, Passacantando M, Zak A, Pelella A, Di Bartolomeo A. WS 2 Nanotubes: Electrical Conduction and Field Emission Under Electron Irradiation and Mechanical Stress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002880. [PMID: 32761781 DOI: 10.1002/smll.202002880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/08/2020] [Indexed: 06/11/2023]
Abstract
This study reports the electrical transport and the field emission properties of individual multi-walled tungsten disulphide (WS2 ) nanotubes (NTs) under electron beam irradiation and mechanical stress. Electron beam irradiation is used to reduce the nanotube-electrode contact resistance by one-order of magnitude. The field emission capability of single WS2 NTs is investigated, and a field emission current density as high as 600 kA cm-2 is attained with a turn-on field of ≈100 V μm-1 and field-enhancement factor ≈50. Moreover, the electrical behavior of individual WS2 NTs is studied under the application of longitudinal tensile stress. An exponential increase of the nanotube resistivity with tensile strain is demonstrated up to a recorded elongation of 12%, thereby making WS2 NTs suitable for piezoresistive strain sensor applications.
Collapse
Affiliation(s)
- Alessandro Grillo
- Physics Department "E. R. Caianiello" and Interdepartmental centre NanoMates, University of Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Italy
- CNR-SPIN Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Italy
| | - Maurizio Passacantando
- Department of Physical and Chemical Sciences, University of L'Aquila, and CNR-SPIN L'Aquila, via Vetoio, Coppito, 67100, Italy
| | - Alla Zak
- Faculty of Sciences, HIT-Holon Institute of Technology, Holon, 5810201, Israel
| | - Aniello Pelella
- Physics Department "E. R. Caianiello" and Interdepartmental centre NanoMates, University of Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Italy
- CNR-SPIN Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Italy
| | - Antonio Di Bartolomeo
- Physics Department "E. R. Caianiello" and Interdepartmental centre NanoMates, University of Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Italy
- CNR-SPIN Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Italy
- INFN-Gruppo collegato di Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Italy
| |
Collapse
|
12
|
Urban F, Lupina G, Grillo A, Martucciello N, Di Bartolomeo A. Contact resistance and mobility in back-gate graphene transistors. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab7055] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The metal-graphene contact resistance is one of the major limiting factors toward the technological exploitation of graphene in electronic devices and sensors. High contact resistance can be detrimental to device performance and spoil the intrinsic great properties of graphene. In this paper, we fabricate back-gate graphene field-effect transistors with different geometries to study the contact and channel resistance as well as the carrier mobility as a function of gate voltage and temperature. We apply the transfer length method and the y-function method showing that the two approaches can complement each other to evaluate the contact resistance and prevent artifacts in the estimation of carrier mobility dependence on the gate-voltage. We find that the gate voltage modulates both the contact and the channel resistance in a similar way but does not change the carrier mobility. We also show that raising the temperature lowers the carrier mobility, has a negligible effect on the contact resistance, and can induce a transition from a semiconducting to a metallic behavior of the graphene sheet resistance, depending on the applied gate voltage. Finally, we show that eliminating the detrimental effects of the contact resistance on the transistor channel current almost doubles the carrier field-effect mobility and that a competitive contact resistance as low as 700 Ω·μm can be achieved by the zig-zag shaping of the Ni contact.
Collapse
|
13
|
Controlling the Electronic Properties of a Nanoporous Carbon Surface by Modifying the Pores with Alkali Metal Atoms. MATERIALS 2020; 13:ma13030610. [PMID: 32019098 PMCID: PMC7040898 DOI: 10.3390/ma13030610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022]
Abstract
We investigate a process of controlling the electronic properties of a surface of nanoporous carbon glass-like thin films when the surface pores are filled with potassium atoms. The presence of impurities on the surface in the form of chemically adsorbed hydrogen and oxygen atoms, and also in the form of hydroxyl (OH) groups, is taken into account. It is found that even in the presence of impurities, the work function of a carbon nanoporous glass-like film can be reduced by several tenths of an electron volt when the nanopores are filled with potassium atoms. At the same time, almost all potassium atoms are ionized, losing one electron, which passes to the carbon framework of the film. This is due to the nanosizes of the pores in which the electron clouds of the potassium atom interact maximally with the electrons of the carbon framework. As a result, this leads to an improvement in the electrical conductivity and an increase in the electron density at the Fermi level. Thus, we conclude that an increase in the number of nanosized pores on the film surface makes it possible to effectively modify it, providing an effective control of the electronic structure and emission properties.
Collapse
|
14
|
Nanotip Contacts for Electric Transport and Field Emission Characterization of Ultrathin MoS 2 Flakes. NANOMATERIALS 2020; 10:nano10010106. [PMID: 31947985 PMCID: PMC7023401 DOI: 10.3390/nano10010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 11/21/2022]
Abstract
We report a facile approach based on piezoelectric-driven nanotips inside a scanning electron microscope to contact and electrically characterize ultrathin MoS2 (molybdenum disulfide) flakes on a SiO2/Si (silicon dioxide/silicon) substrate. We apply such a method to analyze the electric transport and field emission properties of chemical vapor deposition-synthesized monolayer MoS2, used as the channel of back-gate field effect transistors. We study the effects of the gate-voltage range and sweeping time on the channel current and on its hysteretic behavior. We observe that the conduction of the MoS2 channel is affected by trap states. Moreover, we report a gate-controlled field emission current from the edge part of the MoS2 flake, evidencing a field enhancement factor of approximately 200 and a turn-on field of approximately 40 V/μm at a cathode–anode separation distance of 900 nm.
Collapse
|
15
|
Zhou S, Chen K, Cole MT, Li Z, Chen J, Li C, Dai Q. Ultrafast Field-Emission Electron Sources Based on Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805845. [PMID: 30724407 DOI: 10.1002/adma.201805845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The search for electron sources with simultaneous optimal spatial and temporal resolution has become an area of intense activity for a wide variety of applications in the emerging fields of lightwave electronics and attosecond science. Most recently, increasing efforts are focused on the investigation of ultrafast field-emission phenomena of nanomaterials, which not only are fascinating from a fundamental scientific point of view, but also are of interest for a range of potential applications. Here, the current state-of-the-art in ultrafast field-emission, particularly sub-optical-cycle field emission, based on various nanostructures (e.g., metallic nanotips, carbon nanotubes) is reviewed. A number of promising nanomaterials and possible future research directions are also established.
Collapse
Affiliation(s)
- Shenghan Zhou
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese, Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Chen
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese, Academy of Sciences, Beijing, 100049, P. R. China
| | - Matthew Thomas Cole
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese, Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhenjun Li
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese, Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Chen
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese, Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chi Li
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese, Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese, Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Riyajuddin S, Kumar S, Soni K, Gaur SP, Badhwar D, Ghosh K. Study of field emission properties of pure graphene-CNT heterostructures connected via seamless interface. NANOTECHNOLOGY 2019; 30:385702. [PMID: 30965293 DOI: 10.1088/1361-6528/ab1774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Vertically aligned carbon nanotubes (CNTs) have proven to be one of the best materials for use as an efficient field emitter. To further improve their efficiency as well as long-term use in practical devices, it is necessary to reduce the quantum resistance originating from the interface between electrode and emitters and the entanglement of the CNTs in a bundle texture. Thus, the incorporation of graphene at the bottom of CNT bundles via a seamless carbonaceous interface can easily solve this bottleneck. In this work we have demonstrated for the first time, growth and field emission properties of pure seamless graphene-CNT heterostructures and pure seamless graphene-vertically patterned oriented CNTs heterostructures (SGVCNTs) on Si/SiO2 substrates in contrast to the bare CNT mats and few-layer graphene structures without using any tedious post transfer processes. It was observed that seamless SGVCNTs show better field emission performance in terms of higher current density (236 mA cm-2), lowered turn-on field (0.45 V μm-1) and threshold field (1.931 V μm-1 @100 mA cm-2), and improved field enhancement factor (β ∼ 41 315) which is improved ∼4 fold when compared to a bare CNT mat. The significant improvement of the field emission performance of SGVCNTs is mainly attributed to the low resistive seamless C-C covalent carbonaceous interface, the higher number of emitter sites and patterned vertical orientation that leads to long-term stability of the field emitter with minimal loss up to 32 h. This finding could provide an important solution for carbonaceous material based field emitters for real phase device applications.
Collapse
Affiliation(s)
- Sk Riyajuddin
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | | | | | | | | | | |
Collapse
|
17
|
Field Emission Characterization of MoS 2 Nanoflowers. NANOMATERIALS 2019; 9:nano9050717. [PMID: 31075873 PMCID: PMC6566819 DOI: 10.3390/nano9050717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022]
Abstract
Nanostructured materials have wide potential applicability as field emitters due to their high aspect ratio. We hydrothermally synthesized MoS2 nanoflowers on copper foil and characterized their field emission properties, by applying a tip-anode configuration in which a tungsten tip with curvature radius down to 30-100 nm has been used as the anode to measure local properties from small areas down to 1-100 µm2. We demonstrate that MoS2 nanoflowers can be competitive with other well-established field emitters. Indeed, we show that a stable field emission current can be measured with a turn-on field as low as 12 V/μm and a field enhancement factor up to 880 at 0.6 μm cathode-anode separation distance.
Collapse
|
18
|
Di Bartolomeo A, Urban F, Passacantando M, McEvoy N, Peters L, Iemmo L, Luongo G, Romeo F, Giubileo F. A WSe 2 vertical field emission transistor. NANOSCALE 2019; 11:1538-1548. [PMID: 30629066 DOI: 10.1039/c8nr09068h] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report the first observation of a gate-controlled field emission current from a tungsten diselenide (WSe2) monolayer, synthesized by chemical-vapour deposition on a SiO2/Si substrate. Ni contacted WSe2 monolayer back-gated transistors, under high vacuum, exhibit n-type conduction and drain-bias dependent transfer characteristics, which are attributed to oxygen/water desorption and drain induced Schottky barrier lowering, respectively. The gate-tuned n-type conduction enables field emission, i.e. the extraction of electrons by quantum tunnelling, even from the flat part of the WSe2 monolayers. Electron emission occurs under an electric field ∼100 V μm-1 and exhibits good time stability. Remarkably, the field emission current can be modulated by the back-gate voltage. The first field-emission vertical transistor based on the WSe2 monolayer is thus demonstrated and can pave the way to further optimize new WSe2 based devices for use in vacuum electronics.
Collapse
Affiliation(s)
- Antonio Di Bartolomeo
- Physics Department "E. R. Caianiello", University of Salerno, via Giovanni Paolo II n. 132, Fisciano 84084, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Urban F, Passacantando M, Giubileo F, Iemmo L, Di Bartolomeo A. Transport and Field Emission Properties of MoS₂ Bilayers. NANOMATERIALS 2018. [PMID: 29518057 PMCID: PMC5869642 DOI: 10.3390/nano8030151] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report the electrical characterization and field emission properties of MoS2 bilayers deposited on a SiO2/Si substrate. Current–voltage characteristics are measured in the back-gate transistor configuration, with Ti contacts patterned by electron beam lithography. We confirm the n-type character of as-grown MoS2 and we report normally-on field-effect transistors. Local characterization of field emission is performed inside a scanning electron microscope chamber with piezo-controlled tungsten tips working as the anode and the cathode. We demonstrate that an electric field of ~200 V/μm is able to extract current from the flat part of MoS2 bilayers, which can therefore be conveniently exploited for field emission applications even in low field enhancement configurations. We show that a Fowler–Nordheim model, modified to account for electron confinement in two-dimensional (2D) materials, fully describes the emission process.
Collapse
Affiliation(s)
- Francesca Urban
- Department of Physics "E.R. Caianiello", University of Salerno, 84084 Fisciano, Italy.
- CNR-SPIN Salerno, 84084 Fisciano, Italy.
| | - Maurizio Passacantando
- Department of Physical and Chemical Sciences, University of L'Aquila, and CNR-SPIN L'Aquila, 67100 L'Aquila, Italy.
| | | | - Laura Iemmo
- Department of Physics "E.R. Caianiello", University of Salerno, 84084 Fisciano, Italy.
- CNR-SPIN Salerno, 84084 Fisciano, Italy.
| | - Antonio Di Bartolomeo
- Department of Physics "E.R. Caianiello", University of Salerno, 84084 Fisciano, Italy.
- CNR-SPIN Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
21
|
Field Emission and Emission-Stimulated Desorption of ZnO Nanomaterials. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8030382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|