1
|
Shah M, Hameed A, Kashif M, Majeed N, Muhammad J, Shah N, Rehan T, Khan A, Uddin J, Khan A, Kashtoh H. Advances in agar-based composites: A comprehensive review. Carbohydr Polym 2024; 346:122619. [PMID: 39245496 DOI: 10.1016/j.carbpol.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
This review article explores the developments and applications in agar-based composites (ABCs), emphasizing various constituents such as metals, clay/ceramic, graphene, and polymers across diversified fields like wastewater treatment, drug delivery, food packaging, the energy sector, biomedical engineering, bioplastics, agriculture, and cosmetics. The focus is on agar as a sustainable and versatile biodegradable polysaccharide, highlighting research that has advanced the technology of ABCs. A bibliometric analysis is conducted using the Web of Science database, covering publications from January 2020 to March 2024, processed through VOSviewer Software Version 1.6.2. This analysis assesses evolving trends and scopes in the literature, visualizing co-words and themes that underscore the growing importance and potential of ABCs in various applications. This review paper contributes by showcasing the existing state-of-the-art knowledge and motivating further development in this promising field.
Collapse
Affiliation(s)
- Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Muhammad Kashif
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Javariya Muhammad
- Department of Zoology Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan.
| | - Touseef Rehan
- department of Biochemistry, Women University Mardan, Mardan 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, 616 Birkat Al Mauz, Nizwa, Sultanate of Oman; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
2
|
Abdul Rahim MAH, Samsurrijal SF, Abdullah AAA, Mohd Noor SNF. Development and physiochemical assessment of graphene-bioactive glass-P(3HB- co-4HB) composite scaffold as prospect biomaterial for wound healing. Biomed Mater 2024; 19:045040. [PMID: 38857599 DOI: 10.1088/1748-605x/ad5632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
The clinical management of wounds presents a considerable challenge because dressing selection must prioritise the provision of appropriate barrier and the healing properties, consider patient's compliance factors such as comfort, functionality and practicality. This study primarily aimed to develop a composite scaffold patch for potential application in wound healing. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is a biopolymer that originated from bacteria. It is well-recognised owing to its distinctive mechanical and physical characteristics suitable for biomedical applications. Graphene (G) and bioactive glass (BG) are biocompatible towards humans, and enhanced properties are achievable by adding biopolymer. In this study, composite scaffolds were developed by combining P(3HB-co-4HB) at a distinct proportion of 4HB monomer reinforced with G (3.0 wt.%) and BG (2.5 wt.%) by using solvent casting, resulting in two types of composite scaffolds: P(3HB-co-25%4HB)/G/BG and P(3HB-co-37%4HB)/G/BG. A successful composite scaffold as a unified structure was achieved based on chemical assessments of organic and inorganic elements within the composites. The pure polymer displayed a smooth surface, and the BG and G addition into the composite scaffolds increased surface roughness, forming irregular pores and protuberances. The wettability and hydrophilicity of the composites significantly improved up to 40% in terms of water uptake. An increment in crystallisation temperature diminished the flexibility of the composite's scaffolds. Evaluation of Presto Blue biocompatibility demonstrated nontoxic behaviour with a dosage of less than 25.00 mg ml-1of composite scaffold-conditioned media. The L929 fibroblast cells displayed excellent adhesion to both types of composite scaffolds, as evidenced by the increased percentage of cell viability observed throughout 14 d of exposure. These findings demonstrate the importance of optimising each component within the composite scaffolds and their interrelation, paving the way for excellent material properties and enhancing the potential for wound healing applications.
Collapse
Affiliation(s)
| | - Siti Fatimah Samsurrijal
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | | | - Siti Noor Fazliah Mohd Noor
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Yousefi M, Ghahremanzadeh R, Nejadmoghaddam MR, Samadi FY, Najafzadeh S, Fatideh FM, Mohammadi Z, Minai-Tehrani A. Nanofabrication of chitosan-based dressing to treat the infected wounds: in vitro and in vivo evaluations. Future Sci OA 2024; 10:FSO921. [PMID: 38827799 PMCID: PMC11140651 DOI: 10.2144/fsoa-2023-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/12/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: Here, an innovative kind of antibacterial nanocomposite film is developed by incorporating graphene oxide and zinc oxide into chitosan matrix. Materials & methods: Our dressing was fabricated using the solution casting method. Fourier transform infrared spectra and TGA-DTG clearly confirmed the structure of film dressing. Results & conclusion: Our results showed the tensile strength and elongation at the break of the films were 20.1 ± 0.7 MPa and 36 ± 10%, respectively. Our fabricated film could absorb at least three-times the fluid of its dry weight while being biocompatible, antibacterial, non-irritant and non-allergic. In addition, it accelerated the healing process of infected wounds by regulating epithelium thickness and the number of inflammatory cells, thus it may be useful for direct application to damaged infected wounds.
Collapse
Affiliation(s)
- Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | | | - Fatemeh Yazdi Samadi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | - Somayeh Najafzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | | | - Zohreh Mohammadi
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| |
Collapse
|
4
|
Patil R, Alimperti S. Graphene in 3D Bioprinting. J Funct Biomater 2024; 15:82. [PMID: 38667539 PMCID: PMC11051043 DOI: 10.3390/jfb15040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional (3D) bioprinting is a fast prototyping fabrication approach that allows the development of new implants for tissue restoration. Although various materials have been utilized for this process, they lack mechanical, electrical, chemical, and biological properties. To overcome those limitations, graphene-based materials demonstrate unique mechanical and electrical properties, morphology, and impermeability, making them excellent candidates for 3D bioprinting. This review summarizes the latest developments in graphene-based materials in 3D printing and their application in tissue engineering and regenerative medicine. Over the years, different 3D printing approaches have utilized graphene-based materials, such as graphene, graphene oxide (GO), reduced GO (rGO), and functional GO (fGO). This process involves controlling multiple factors, such as graphene dispersion, viscosity, and post-curing, which impact the properties of the 3D-printed graphene-based constructs. To this end, those materials combined with 3D printing approaches have demonstrated prominent regeneration potential for bone, neural, cardiac, and skin tissues. Overall, graphene in 3D bioprinting may pave the way for new regenerative strategies with translational implications in orthopedics, neurology, and cardiovascular areas.
Collapse
Affiliation(s)
- Rahul Patil
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA;
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC 20057, USA
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA;
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
5
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
6
|
Prospective features of functional 2D nanomaterial graphene oxide in the wound healing process. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Shariati A, Hosseini SM, Chegini Z, Seifalian A, Arabestani MR. Graphene-Based Materials for Inhibition of Wound Infection and Accelerating Wound Healing. Biomed Pharmacother 2023; 158:114184. [PMID: 36587554 DOI: 10.1016/j.biopha.2022.114184] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Bacterial infection of the wound could potentially cause serious complications and an enormous medical and financial cost to the rapid emergence of drug-resistant bacteria. Nanomaterials are an emerging technology, that has been researched as possible antimicrobial nanomaterials for the inhibition of wound infection and enhancement of wound healing. Graphene is 2-dimensional (2D) sheet of sp2 carbon atoms in a honeycomb structure. It has superior properties, strength, conductivity, antimicrobial, and molecular carrier abilities. Graphene and its derivatives, Graphene oxide (GO) and reduced GO (rGO), have antibacterial activity and could damage bacterial morphology and lead to the leakage of intracellular substances. Besides, for wound infection management, Graphene-platforms could be functionalized by different antibacterial agents such as metal-nanoparticles, natural compounds, and antibiotics. The Graphene structure can absorb near-infrared wavelengths, allowing it to be used as antimicrobial photodynamic therapy. Therefore, Graphene-based material could be used to inhibit pathogens that cause serious skin infections and destroy their biofilm community, which is one of the biggest challenges in treating wound infection. Due to its agglomerated structure, GO hydrogel could entrap and stack the bacteria; thus, it prevents their initial attachment and biofilm formation. The sharp edges of GO could destroy the extracellular polymeric substance surrounding the biofilm and ruin the biofilm biomass structure. As well as, Chitosan and different natural and synthetic polymers such as collagen and polyvinyl alcohol (PVA) also have attracted a great deal of attention for use with GO as wound dressing material. To this end, multi-functional polymers based on Graphene and blends of synthetic and natural polymers can be considered valid non-antibiotic compounds useful against wound infection and improvement of wound healing. Finally, the global wound care market size was valued at USD 20.8 billion in 2022 and is expected to expand at a compound annual growth rate (CAGR) of 5.4% from 2022 to 2027 (USD 27.2 billion). This will encourage academic as well as pharmaceutical and medical device industries to investigate any new materials such as graphene and its derivatives for the treatment of wound healing.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amelia Seifalian
- Department of Urogynaecology and Surgery, Imperial College London, London, United Kingdom
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
8
|
Norouzi F, Pourmadadi M, Yazdian F, Khoshmaram K, Mohammadnejad J, Sanati MH, Chogan F, Rahdar A, Baino F. PVA-Based Nanofibers Containing Chitosan Modified with Graphene Oxide and Carbon Quantum Dot-Doped TiO 2 Enhance Wound Healing in a Rat Model. J Funct Biomater 2022; 13:jfb13040300. [PMID: 36547560 PMCID: PMC9784316 DOI: 10.3390/jfb13040300] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Electrospun nanofibrous constructs based on nanoparticles and biopolymers have recently been used in tissue engineering because of their similarity to the extracellular matrix in nature. In this study, electrospun chitosan-carbon quantum dot-titanium dioxide-graphene oxide (CS-CQD-TiO2-GO) nanofibrous mats were synthesized for use as wound dressings by the electrospinning method. To increase the biodegradation rate and water resistance, the fabricated nanofibrous mats were cross-linked. SEM images showed a uniform and coherent structure of CS-CQD-TiO2-GO nanocomposites and CS-CQD-TiO2-GO electrospun nanofibers mats. FTIR analysis, XRD pattern, SEM mapping, and EDS spectrum demonstrate the accuracy of the synthesis as well as the elemental and chemical structure of the nanofibrous mat. The water contact angle indicated that the nanofibrous mat had a hydrophilic property, which is essential for controlling wound exudates. The tensile strength and elongation tests showed that the nanofibrous mat has suitable mechanical properties for wound dressing, including significant flexibility and strength. Interestingly, antimicrobial testing illustrated that the fabricated nanofibrous mat had antibacterial activity against Gram-negative and Gram-positive bacteria. Appropriate cell viability and cytocompatibility of treated mouse fibroblast NIH3T3 cells with the nanofibrous mat were determined using an MTT assay. The animal study results confirmed the proper potential of the nanofibrous mat in wound dressing applications.
Collapse
Affiliation(s)
- Fatemeh Norouzi
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan 8351765851, Iran
| | - Mehrab Pourmadadi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 1439957131, Iran
- Correspondence: (F.Y.); (A.R.); (F.B.)
| | - Keyvan Khoshmaram
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mohammad Hossein Sanati
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan 8351765851, Iran
| | - Faraz Chogan
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol 538-98615, Iran
- Correspondence: (F.Y.); (A.R.); (F.B.)
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Correspondence: (F.Y.); (A.R.); (F.B.)
| |
Collapse
|
9
|
Yao L, Chen A, Li Li, Liu Y. Preparation, properties, applications and outlook of graphene-based materials in biomedical field: A comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:1121-1156. [DOI: 10.1080/09205063.2022.2155781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luyang Yao
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
| | - Anqi Chen
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
| | - Li Li
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
- Liaoning Key Laboratory of New Drug Research & Development, Shenyang 110036, People’s Republic of China
| | - Yu Liu
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
- Liaoning University, Judicial Expertise Center, Shenyang 110036, People’s Republic of China
| |
Collapse
|
10
|
Sadat Z, Farrokhi-Hajiabad F, Lalebeigi F, Naderi N, Ghafori Gorab M, Ahangari Cohan R, Eivazzadeh-Keihan R, Maleki A. A comprehensive review on the applications of carbon-based nanostructures in wound healing: from antibacterial aspects to cell growth stimulation. Biomater Sci 2022; 10:6911-6938. [PMID: 36314845 DOI: 10.1039/d2bm01308h] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wound is defined as damage to the integrity of biological tissue, including skin, mucous membranes, and organ tissues. The treatment of these injuries is an important challenge for medical researchers. Various materials have been used for wound healing and dressing applications among which carbon nanomaterials have attracted significant attention due to their remarkable properties. In the present review, the latest studies on the application of carbon nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), carbon quantum dots (CQDs), carbon nanotubes (CNTs), carbon nanofibers (CNFs), and nanodiamonds (NDs) in wound dressing applications are evaluated. Also, a variety of carbon-based nanocomposites with advantages such as biocompatibility, hemocompatibility, reduced wound healing time, antibacterial properties, cell-adhesion, enhanced mechanical properties, and enhanced permeability to oxygen has been reported for the treatment of various wounds.
Collapse
Affiliation(s)
- Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farzaneh Farrokhi-Hajiabad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
11
|
Salimi E, Nigje AK. Investigating the antibacterial activity of carboxymethyl cellulose films treated with novel Ag@GO decorated SiO2 nanohybrids. Carbohydr Polym 2022; 298:120077. [DOI: 10.1016/j.carbpol.2022.120077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
|
12
|
Kanjwal MA, Ghaferi AA. Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8661. [PMID: 36433257 PMCID: PMC9697565 DOI: 10.3390/s22228661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The extraordinary material graphene arrived in the fields of engineering and science to instigate a material revolution in 2004. Graphene has promptly risen as the super star due to its outstanding properties. Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. Electrospinning is an easy, economical, and versatile technology depending on electrostatic repulsion between the surface charges to generate fibers from the extensive list of polymeric and ceramic materials with diameters down to a few nanometers. NFs have emerged as important and attractive platform with outstanding properties for biosensing and biomedical applications, because of their excellent functional features, that include high porosity, high surface area to volume ratio, high catalytic and charge transfer, much better electrical conductivity, controllable nanofiber mat configuration, biocompatibility, and bioresorbability. The inclusion of graphene nanomaterials (GNMs) into NFs is highly desirable. Pre-processing techniques and post-processing techniques to incorporate GNMs into electrospun polymer NFs are precisely discussed. The accomplishment and the utilization of NFs containing GNMs in the electrochemical biosensing pathway for the detection of a broad range biological analytes are discussed. Graphene oxide (GO) has great importance and potential in the biomedical field and can imitate the composition of the extracellular matrix. The oxygen-rich GO is hydrophilic in nature and easily disperses in water, and assists in cell growth, drug delivery, and antimicrobial properties of electrospun nanofiber matrices. NFs containing GO for tissue engineering, drug and gene delivery, wound healing applications, and medical equipment are discussed. NFs containing GO have importance in biomedical applications, which include engineered cardiac patches, instrument coatings, and triboelectric nanogenerators (TENGs) for motion sensing applications. This review deals with graphene-based nanomaterials (GNMs) such as GO incorporated electrospun polymeric NFs for biosensing and biomedical applications, that can bridge the gap between the laboratory facility and industry.
Collapse
|
13
|
Rahmani E, Pourmadadi M, Zandi N, Rahdar A, Baino F. pH-Responsive PVA-Based Nanofibers Containing GO Modified with Ag Nanoparticles: Physico-Chemical Characterization, Wound Dressing, and Drug Delivery. MICROMACHINES 2022; 13:mi13111847. [PMID: 36363869 PMCID: PMC9698885 DOI: 10.3390/mi13111847] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 05/03/2023]
Abstract
Site-specific drug delivery and carrying repairing agents for wound healing purposes can be achieved using the intertwined three-dimensional structure of nanofibers. This study aimed to optimize and fabricate poly (vinyl alcohol) (PVA)-graphene oxide (GO)-silver (Ag) nanofibers containing curcumin (CUR) using the electrospinning method for potential wound healing applications. Fourier Transform Infrared (FTIR) spectrophotometry, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and zeta potential were used to characterize the nanostructures. The mechanical properties of the nanostructures were subsequently examined by tensile strength and elongation test. As shown by MIC analysis of E. coli and S. aureus bacteria, the fabricated nanofibers had superior inhibitory effects on the bacteria growth. Ag nanoparticles incorporation into the nanofibers resulted in increased loading and encapsulation efficiencies from 21% to 56% and from 61% to 86%, respectively. CUR release from PVA/GO-Ag-CUR nanofiber at pH 7.4 was prevented, while the acidic microenvironment (pH 5.4) increased the release of CUR from PVA/GO-Ag-CUR nanofiber, corroborating the pH-sensitivity of the nanofibers. Using the in vitro wound healing test on NIH 3T3 fibroblast cells, we observed accelerated growth and proliferation of cells cultured on PVA/GO-Ag-CUR nanofibers.
Collapse
Affiliation(s)
- Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA
| | - Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran 1983963113, GC, Iran
| | - Nayereh Zandi
- Department of Medical Laboratory Science, School of Medicine, Qazvin University of Medical Sciences, Qazvin 34, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.R.); (F.B.)
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Correspondence: (A.R.); (F.B.)
| |
Collapse
|
14
|
Prema D, Balashanmugam P, Kumar J, Venkatasubbu GD. Fabrication of GO/ZnO nanocomposite incorporated patch for enhanced wound healing in streptozotocin (STZ) induced diabetic rats. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater 2022; 151:1-44. [DOI: 10.1016/j.actbio.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022]
|
16
|
The Infection Control Route in the Operating Room Effectively Reduces the Wound Infection of Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9270045. [PMID: 35707472 PMCID: PMC9192282 DOI: 10.1155/2022/9270045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 12/07/2022]
Abstract
Surgical care is one of the significant aspects of global healthcare, with approximately 234 million operations being conducted annually. Surgical treatment has a substantial risk of complications and death. This study was conducted to explore the application effect of the infection control route in the operating room on the wound infection prevention care of patients. The clinical data of 136 patients receiving surgical treatment from October 2018 to October 2019 were retrospectively analyzed. The participants were assigned via random draw at a ratio of 1 : 1 to receive either routine care management (control group) or the infection control route (research group). The surgical wound infections of patients in the two groups were compared. The research group had higher scores in surgical materials management and disinfectant management than the control group (P < 0.01). In the research group, the total number of colonies within 5 minutes before surgery, 25 minutes after the start of surgery, and after surgery were all smaller than those in the control group (P < 0.01). There were no significant differences in the grade B healing rate between the two groups (P > 0.05), and the research group had a significantly higher healing rate in grade A than the control group, but its grade C healing rate and wound infection rate were significantly lower than those in the control group (P < 0.05). In the research group, the length of hospital stay, the time to get out of bed, the antibiotic use duration, and the stitch removal time was significantly shorter than those in the control group (P < 0.0001). The research group received a higher clinical nursing satisfaction than the control group (P < 0.05). The infection control route in the operating room for infection prevention care effectively reduces the wound infection rate of patients and accelerates their postoperative recovery.
Collapse
|
17
|
Cui L, Xu H, An Y, Xu M, Lei Z, Jin X. N, S co-doped lignin-based carbon microsphere functionalized graphene hydrogel with ‘‘sphere-in-layer” interconnection as electrode materials for supercapacitor and molecularly imprinted electrochemical sensors. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci 2022; 17:353-384. [PMID: 35782328 PMCID: PMC9237601 DOI: 10.1016/j.ajps.2022.01.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health. And bacterial contamination could significantly menace the wound healing process. Considering the sophisticated wound healing process, novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients, antibacterial agents included, into biomaterials with different morphologies to improve cell behaviors and promote wound healing. However, a comprehensive review on anti-bacterial wound dressing to enhance wound healing has not been reported. In this review, various antibacterial biomaterials as wound dressings will be discussed. Different kinds of antibacterial agents, including antibiotics, nanoparticles (metal and metallic oxides, light-induced antibacterial agents), cationic organic agents, and others, and their recent advances are summarized. Biomaterial selection and fabrication of biomaterials with different structures and forms, including films, hydrogel, electrospun nanofibers, sponge, foam and three-dimension (3D) printed scaffold for skin regeneration, are elaborated discussed. Current challenges and the future perspectives are presented in this multidisciplinary field. We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.
Collapse
Affiliation(s)
- Yuqing Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hualei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
19
|
Rahman MA, Harshita, Harwansh RK, Deshmukh R. Carbon-Based Nanomaterials: Carbon Nanotubes, Graphene and Fullerenes in Control of Burns Infections and Wound Healing. Curr Pharm Biotechnol 2022; 23:1483-1496. [PMID: 35264085 DOI: 10.2174/1389201023666220309152340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Burn injuries are extremely debilitating, resulting in high morbidity and mortality rates around the world. The risk of infection escalates in correlation with impairment of skin integrity, creating a barrier to healing and possibly leading to sepsis. With its numerous advantages over traditional treatment methods, nanomaterial-based wound healing has immense capability for treating and preventing wound infections. Carbon-based nanomaterials (CNMs) owing to their distinctive physicochemical and biological properties have emerged as promising platform for biomedical applications. Carbon nanotubes, graphene, fullerenes, and their nanocomposites have demonstrated broad antimicrobial activity against invasive bacteria, fungi, and viruses causing burn wound infection. The specific mechanisms that govern the antimicrobial activity of CNMs must be understood in order to ensure the safe and effective incorporation of these structures into biomaterials. However, it is challenging to decouple individual and synergistic contributions of physical, chemical, and electrical effects of CNMs on cells. This review reported on significant advances in the application of CNMs in burn wound infection and wound healing, with brief discussion on the interaction between different families of CNMs and microorganisms to assess antimicrobial performance.
Collapse
Affiliation(s)
| | - Harshita
- Dept. of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
20
|
A novel 3D Ag (I) metal-organic coordination polymer (Ag-MOCP): Crystallography, Hirshfeld surface analysis, antibacterial effect and molecular docking studies. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Wang B, Guo H, Xu H, Chen Y, Zhao G, Yu H. The Role of Graphene Oxide Nanocarriers in Treating Gliomas. Front Oncol 2022; 12:736177. [PMID: 35155223 PMCID: PMC8831729 DOI: 10.3389/fonc.2022.736177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common primary malignant tumors of the central nervous system, and their conventional treatment involves maximal safe surgical resection combined with radiotherapy and temozolomide chemotherapy; however, this treatment does not meet the requirements of patients in terms of survival and quality of life. Graphene oxide (GO) has excellent physical and chemical properties and plays an important role in the treatment of gliomas mainly through four applications, viz. direct killing, drug delivery, immunotherapy, and phototherapy. This article reviews research on GO nanocarriers in the treatment of gliomas in recent years and also highlights new ideas for the treatment of these tumors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| |
Collapse
|
22
|
Joy A, Unnikrishnan G, Megha M, Haris M, Thomas J, Kolanthai E, Muthuswamy S. Polycaprolactone/Graphene Oxide–Silver Nanocomposite: A Multifunctional Agent for Biomedical Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02180-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Tewari M, Pareek P, Kumar S. Correlating Amino Acid Interaction with Graphene-Based Materials Regulating Cell Function. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-021-00272-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Raja IS, Jang HJ, Kang MS, Kim KS, Choi YS, Jeon JR, Lee JH, Han DW. Role of Graphene Family Nanomaterials in Skin Wound Healing and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:89-105. [DOI: 10.1007/978-981-16-4923-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Yu R, Zhang H, Guo B. Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. NANO-MICRO LETTERS 2021; 14:1. [PMID: 34859323 PMCID: PMC8639891 DOI: 10.1007/s40820-021-00751-y] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 05/06/2023]
Abstract
Conductive biomaterials based on conductive polymers, carbon nanomaterials, or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering, owing to the similar conductivity to human skin, good antioxidant and antibacterial activities, electrically controlled drug delivery, and photothermal effect. However, a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking. In this review, the design and fabrication methods of conductive biomaterials with various structural forms including film, nanofiber, membrane, hydrogel, sponge, foam, and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized. The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies (electrotherapy, wound dressing, and wound assessment) were reviewed. The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound (infected wound and diabetic wound) and for wound monitoring is discussed in detail. The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well.
Collapse
Affiliation(s)
- Rui Yu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
26
|
GO-based antibacterial composites: Application and design strategies. Adv Drug Deliv Rev 2021; 178:113967. [PMID: 34509575 DOI: 10.1016/j.addr.2021.113967] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO), for its unique structure with high biocompatibility and designability, is widely used in the antibacterial field. Various strategies have been designed to fabricate GO-based composites with antibacterial properties. This review summarized these strategies, divided them into three types and interpreted their antibacterial mechanisms: (i) "GO*/non-GO" type in which GO acts as the single antibacterial core, (ii) "GO*/non-GO*" type in which GO and non-GO components function synergistically as dual antibacterial cores, (iii) "GO/non-GO*" type in which non-GO acts as the single antibacterial core, while GO component plays a supportive, not a dominant role in antibiosis. Besides, the fields suiting their applications and factors influencing their antibacterial properties were analyzed. Finally, the limitations and prospects in the current researches were discussed. In summary, GO-based composites have revolutionized antibacterial strategies. This review may serve as a reference to inspire further research on GO-based antibacterial composites.
Collapse
|
27
|
Zhou Y, Liu G, Huang H, Wu J. Advances and impact of arginine-based materials in wound healing. J Mater Chem B 2021; 9:6738-6750. [PMID: 34346479 DOI: 10.1039/d1tb00958c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In studies on wound-dressing materials, bioactive materials have been developed rapidly to accelerate wound healing. In recent years, scientists have studied arginine as a bioactive component due to its excellent biosafety, antimicrobial properties and therapeutic effects on wound healing. Surprisingly, arginine therapy is also used under specific pathological conditions, such as diabetes and trauma/hemorrhagic shock. Due to the broad utilization of arginine-assisted therapy, we present the unique properties of arginine for healing lesions of damaged tissue and examined multiple arginine-based systems for the application of wound healing. This review shows that arginine-based therapy can be separated in two categories: direct supplemental approaches of free arginine, and indirect approaches based on arginine derivatives in which modified arginine can be released after biodegradation. Using these two pathways, arginine-based therapy may prove to be a promising strategy in the development of wound curative treatments.
Collapse
Affiliation(s)
- Yang Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | | | | | | |
Collapse
|
28
|
Rashidi N, Fard MJS, Hayati P, Janczak J, Yazdian F, Rouhani S, Msagati TA. Antibacterial and cytotoxicity assay of two new Zn(ii)complexes: Synthesis, characterization, X-Ray structure, topology, Hirshfeld surface and thermal analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Grant JJ, Pillai SC, Hehir S, McAfee M, Breen A. Biomedical Applications of Electrospun Graphene Oxide. ACS Biomater Sci Eng 2021; 7:1278-1301. [PMID: 33729744 DOI: 10.1021/acsbiomaterials.0c01663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene oxide (GO) has broad potential in the biomedical sector. The oxygen-abundant nature of GO means the material is hydrophilic and readily dispersible in water. GO has also been known to improve cell proliferation, drug loading, and antimicrobial properties of composites. Electrospun composites likewise have great potential for biomedical applications because they are generally biocompatible and bioresorbable, possess low immune rejection risk, and can mimic the structure of the extracellular matrix. In the current review, GO-containing electrospun composites for tissue engineering applications are described in detail. In addition, electrospun GO-containing materials for their use in drug and gene delivery, wound healing, and biomaterials/medical devices have been examined. Good biocompatibility and anionic-exchange properties of GO make it an ideal candidate for drug and gene delivery systems. Drug/gene delivery applications for electrospun GO composites are described with a number of examples. Various systems using electrospun GO-containing therapeutics have been compared for their potential uses in cancer therapy. Micro- to nanosized electrospun fibers for wound healing applications and antimicrobial applications are explained in detail. Applications of various GO-containing electrospun composite materials for medical device applications are listed. It is concluded that the electrospun GO materials will find a broad range of biomedical applications such as cardiac patches, medical device coatings, sensors, and triboelectric nanogenerators for motion sensing and biosensing.
Collapse
Affiliation(s)
- Jamie J Grant
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Suresh C Pillai
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Sarah Hehir
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Marion McAfee
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| |
Collapse
|
30
|
Doostmohammadi M, Forootanfar H, Shakibaie M, Torkzadeh-Mahani M, Rahimi HR, Jafari E, Ameri A, Amirheidari B. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing applications. J Biomater Appl 2021; 36:193-209. [PMID: 33722085 DOI: 10.1177/08853282211001359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, polycaprolactone/gelatin (PCL/GEL) electrospun nanofibers containing biogenic selenium nanoparticles (Se NPs) and Se NPs/vitamin E (VE) with average diameters of 397.8 nm and 279.5 nm, respectively (as determined by SEM inspection) were prepared and their effect on wound healing was evaluated using in-vivo studies. The energy dispersive X-ray (EDX) mapping, TEM micrograph, and FTIR spectra of the prepared nanofibers strongly demonstrated well entrapment of Se NPs and VE into scaffolds. An amount of 57% Se NPs and 43% VE were gradually released from PCL/GEL/Se NPs/VE scaffold after 4 days immersion in PBS solution (pH 7.4). The both PCL/GEL/Se NPs and PCL/GEL/Se NPs/VE scaffolds supported 3T3 cell proliferation and attachment as confirmed by MTT assay and SEM imaging. Complete re-epithelialization, low level of edema and inflammatory cells in coordination with high level of oriented collagens demonstrated the wound healing activity of PCL/GEL/Se NPs/VE. Besides, significant antioxidant efficacy of PCL/GEL/Se NPs and PCL/GEL/Se NPs/VE scaffolds was demonstrated according to GSH and MDA assays. To sum up, the prepared PCL/GEL/Se NPs/VE scaffold in the present study represented suitable healing effect on animal model which candidate it for further studies.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Hamid-Reza Rahimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
31
|
Korupalli C, Li H, Nguyen N, Mi F, Chang Y, Lin Y, Sung H. Conductive Materials for Healing Wounds: Their Incorporation in Electroactive Wound Dressings, Characterization, and Perspectives. Adv Healthc Mater 2021; 10:e2001384. [PMID: 33274846 DOI: 10.1002/adhm.202001384] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The use of conductive materials to promote the activity of electrically responsive cells is an effective means of accelerating wound healing. This article focuses on recent advancements in conductive materials, with emphasis on overviewing their incorporation with non-conducting polymers to fabricate electroactive wound dressings. The characteristics of these electroactive dressings are deliberated, and the mechanisms on how they accelerate the wound healing process are discussed. Potential directions for the future development of electroactive wound dressings and their potential in monitoring the course of wound healing in vivo concomitantly are also proposed.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Hui Li
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Nhien Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Fwu‐Long Mi
- Department of Biochemistry and Molecular Cell Biology School of Medicine College of Medicine Taipei Medical University Taipei Taiwan 110 ROC
| | - Yen Chang
- Taipei Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation and School of Medicine Tzu Chi University Hualien Taiwan 970 ROC
| | - Yu‐Jung Lin
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
- Research Center for Applied Sciences Academia Sinica Taipei Taiwan 11529 ROC
| | - Hsing‐Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| |
Collapse
|
32
|
Aghaee M, Mohammadi K, Hayati P, Ahmadi S, Yazdian F, Gutierrez A, Rouhani S, Msagati TA. Morphology design and control of a novel 3D potassium metal-organic coordination polymer compound: Crystallography, DFT, thermal, and biological studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
An C, Hao P, Li H, Nasiri-Tabrizi B. Silver nanoparticles decorated graphene oxide nanocomposite for bone regeneration applications. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1835974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Cuilan An
- Department of Health Care, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pan Hao
- Department of Trauma Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huilian Li
- Medical Record Room, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bahman Nasiri-Tabrizi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
34
|
Antibacterial poly (ε-caprolactone) fibrous membranes filled with reduced graphene oxide-silver. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound healing: From material sciences to wound healing applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Andreia Barroso
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Henrique Mestre
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Catarina Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences Universidade de Lisboa Campo Grande Lisboa 1649‐016 Portugal
| |
Collapse
|
36
|
Zhang H, Fan T, Chen W, Li Y, Wang B. Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact Mater 2020; 5:1071-1086. [PMID: 32695937 PMCID: PMC7363990 DOI: 10.1016/j.bioactmat.2020.06.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 01/08/2023] Open
Abstract
Smart drug delivery nano-systems show significant changes in their physical or chemical properties in response to slight change in environmental physical and/or chemical signals, and further releasing drugs adjusted to the progression of the disease at the right target and rate intelligently. Two-dimensional materials possess dramatic status extend all over various scientific and technological disciplines by reason of their exceptional unique properties in application of smart drug delivery nano-systems. In this review, we summarized current progress to highlight various kinds of two-dimensional materials drug carriers which are widely explored in smart drug delivery systems as well as classification of stimuli responsive two-dimensional materials and the advantages and disadvantages of their applications. Consequently, we anticipate that this review might inspire the development of new two-dimensional materials with smart drug delivery systems, and deepen researchers' understanding of smart nano-carries based on two-dimensional materials.
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science &Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen, 518060, China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Yingchun Li
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Bing Wang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science &Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
37
|
Wang L, You X, Dai C, Tong T, Wu J. Hemostatic nanotechnologies for external and internal hemorrhage management. Biomater Sci 2020; 8:4396-4412. [PMID: 32658944 DOI: 10.1039/d0bm00781a] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An uncontrolled hemorrhage can easily lead to death during surgery and military operations. Despite the significant advances in hemostatic research, there is still an urgent and increasing need for safer and more effective hemostatic materials. Recently, nanotechnologies have been receiving increasing interest owing to their unique advantages and have been propelling the developement of hemostatic materials. This review summarizes the fundamentals of hemostasis and emphasizes the recent developments regarding hemorrhage-related hemostatic nanotechnologies. In terms of external accessible hemorrhage management, natural and synthetic polymers and inorganic components that have been used in traditional hemostats provide novel nanoscale solutions. Regarding internal noncompressible hemorrhage management, current research endeavors are dedicated to the development of substitutes for blood components, and nanoformulated hemostatic drugs. This review also briefly discusses the main and persistent problems of hemostatic nanomaterials, including safety concerns and clinical translation challenges. This review is hoped to provide critical insight into hemostatic nanomaterial development.
Collapse
Affiliation(s)
- Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | | | | | | | | |
Collapse
|
38
|
Green approach for fabrication of a novel Zn(II) supramolecular compound as new precursor to produce nano-sized Zinc(II) oxide: Crystallography, topology, Hirshfeld Surface Analysis and biological activities. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Malmir S, Karbalaei A, Pourmadadi M, Hamedi J, Yazdian F, Navaee M. Antibacterial properties of a bacterial cellulose CQD-TiO 2 nanocomposite. Carbohydr Polym 2020; 234:115835. [PMID: 32070499 DOI: 10.1016/j.carbpol.2020.115835] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Antibacterial dressing can prevent the occurrence of many infections of wounds. Bacterial cellulose (BC) has the ability to carry and transfer the medicine to achieve a wound healing bandage. In this study, Carbon Quantum Dots-Titanium dioxide (CQD-TiO2) nanoparticles (NP) were added to BC as antibacterial agents. FTIR Spectroscopy illuminated that NPs were well-bonded to BC. Interestingly, MIC test proved that BC/CQD-TiO2 nanostructure (NS) has anti-bacterial properties against Staphylococcus aureus. The findings indicated that, CQD-TiO2 NPs have stronger antibacterial properties with better tensile strength compared to CQD NPs, in a concentration-dependent manner. Toxicity of CQD-TiO2 NPs on human L929 fibroblast cells was also evaluated. Most importantly, the results of the scratch test indicated that the NS was effective in wound healing in L929 cells. The approach in this study may provide an alternative to make an antibacterial wound dressing to achieve an effective drug-based bandage.
Collapse
Affiliation(s)
- Samira Malmir
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Atiyeh Karbalaei
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, GC, Tehran, Iran.
| | - Javad Hamedi
- Microbial Technology and Products (MTP) Research Center, University of Tehran, Tehran, Iran; Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Mona Navaee
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
40
|
Yang C, Yan Z, Lian Y, Wang J, Zhang K. Graphene oxide coated shell-core structured chitosan/PLLA nanofibrous scaffolds for wound dressing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:622-641. [PMID: 31852372 DOI: 10.1080/09205063.2019.1706149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Graphite oxide (GO) and chitosan (CS) nanofibers have aroused intense interest as wound dressing due to their physicochemical, antimicrobial properties and nanotopography. In this study, GO nanosheets were coated on shell (chitosan, CS)-core (L-polylactic acid, PLLA) structured nanofibrous scaffolds to create a synergistic microenvironment for wound healing. Through scanning electron microscopy (SEM) and atomic force microscopy (AFM) tests, results showed that the surface of GO-coated CS/PLLA nanofibers presented corrugated wrinkles and rougher than that of CS/PLLA nanofibers, and the GO nanosheets did not destroy the structure of nanofibers. X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) demonstrated that GO nanosheets were successfully coated on CS/PLLA nanofibrous scaffolds. Furthermore, the coatings of GO nanosheets significantly improved the hydrophilicity of CS/PLLA nanofibrous scaffolds. GO-coated CS/PLLA nanofibrous scaffolds revealed more excellent antimicrobial activity to Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) than that of CS/PLLA nanofibrous scaffolds, meanwhile, they promoted the proliferation of pig iliac endothelial cells (PIECs). Rats wounds covered by GO-coated CS/PLLA nanofibrous scaffolds were healed better than other groups on pathological section. This type of nanofibrous scaffolds with GO nanosheets would possess an excellent potential in wound healing process.
Collapse
Affiliation(s)
- Chengwei Yang
- Department of Spinal Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Zhiyong Yan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Yuan Lian
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Jiayan Wang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Kuihua Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
41
|
Trinh LH, Takzare A, Ghafoor DD, Siddiqi AF, Ravali S, Shalbaf M, Bakhtiar M. Trachyspermum copticum essential oil incorporated niosome for cancer treatment. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Malekimusavi H, Ghaemi A, Masoudi G, Chogan F, Rashedi H, Yazdian F, Omidi M, Javadi S, Haghiralsadat BF, Teimouri M, Faal Hamedani N. Graphene oxide‐
l
‐arginine nanogel: A pH‐sensitive fluorouracil nanocarrier. Biotechnol Appl Biochem 2019; 66:772-780. [DOI: 10.1002/bab.1768] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Hanieh Malekimusavi
- Department of Biotechnology School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
| | - AmirHossein Ghaemi
- Department of Life Science Engineering Faculty of New Science and Technologies University of Tehran Tehran Iran
| | - Ghasem Masoudi
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Faraz Chogan
- Department of Life Science Engineering Faculty of New Science and Technologies University of Tehran Tehran Iran
| | - Hamid Rashedi
- Department of Biotechnology School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering Faculty of New Science and Technologies University of Tehran Tehran Iran
| | - Meisam Omidi
- Protein Research Centre Shahid Beheshti University Velenjak Tehran Iran
- Marquette University School of Dentistry Milwaukee WI USA
| | - Shohreh Javadi
- Department of Chemical Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Bibi Fatemeh Haghiralsadat
- Department of Advanced Medical Sciences and Technologies School of Paramedicine Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Masoumeh Teimouri
- Department of Life Science Engineering Faculty of New Science and Technologies University of Tehran Tehran Iran
| | - Naghmeh Faal Hamedani
- Department of Chemistry Faculty of Valisar Tehran Branch Technical and Vocational University Tehran Iran
| |
Collapse
|
43
|
Nazari H, Azadi S, Hatamie S, Zomorrod MS, Ashtari K, Soleimani M, Hosseinzadeh S. Fabrication of graphene‐silver/polyurethane nanofibrous scaffolds for cardiac tissue engineering. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4641] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hojjatollah Nazari
- Department of Nanotechnology and Tissue EngineeringStem Cell Technology Center Tehran Iran
- Department of Cell Therapy and Hematology, Faculty of Medical SciencesTarbiat Modares University Tehran Iran
| | - Shohreh Azadi
- Faculty of Biomedical EngineeringAmirKabir University of Technology Tehran Iran
- Faculty of biomedical EngineeringUniversity of Technology Sydney Sydney New South Wales Australia
| | - Shadie Hatamie
- Department of Nanotechnology and Tissue EngineeringStem Cell Technology Center Tehran Iran
| | - Mahsa Soufi Zomorrod
- Department of Nanotechnology and Tissue EngineeringStem Cell Technology Center Tehran Iran
| | - Khadijeh Ashtari
- Department of Medical Nanotechnology, School of Advanced Technologies in MedicineIran University of Medical Sciences Tehran Iran
| | - Masoud Soleimani
- Department of Cell Therapy and Hematology, Faculty of Medical SciencesTarbiat Modares University Tehran Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
44
|
Shafiei S, Omidi M, Nasehi F, Golzar H, Mohammadrezaei D, Rezai Rad M, Khojasteh A. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:564-575. [PMID: 30948093 DOI: 10.1016/j.msec.2019.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/31/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Recent exciting findings of the particular properties of Carbon dot (CDs) have shed light on potential biomedical applications of CDs-containing composites. While CDs so far have been widely used as biosensors and bioimaging agents, in the present study for the first time, we evaluate the osteoconductivity of CDs in poly (ε-caprolactone) (PCL)/polyvinyl alcohol (PVA) [PCL/PVA] nanofibrous scaffolds. Moreover, further studies were performed to evaluate egg shell-derived calcium phosphate (TCP3) and its cellular responses, biocompatibility and in vitro osteogenesis. Scaffolds were fabricated by simultaneous electrospinning of PCL with three different types of calcium phosphate, PVA and CDs. Fabricated scaffolds were characterized by Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), contact angle measurement and degradation assessment. SEM, the methyl thiazolyl tetrazolium (MTT) assay, and alkaline phosphatase (ALP) activity test were performed to evaluate cell morphology, proliferation and osteogenic differentiation, respectively. The results demonstrated that while the addition of just 1 wt% CDs and TCP3 individually into PCL/PVA nanocomposite enhanced ALP activity and cell proliferation rate (p < 0.05), the synergetic effect of CDs/TCP3 led to highest osteogenic differentiation and proliferation rate compared to other scaffolds (p < 0.05). Hence, CDs and PCL/PVA-TCP3 could serve as a potential candidate for bone tissue regeneration.
Collapse
Affiliation(s)
- Shervin Shafiei
- Oral and maxillofacial surgery resident, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Fatemeh Nasehi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Golzar
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, Canada
| | | | - Maryam Rezai Rad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Nethi SK, Das S, Patra CR, Mukherjee S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci 2019; 7:2652-2674. [DOI: 10.1039/c9bm00423h] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of inorganic nanoparticles has generated considerable expectation for solving various biomedical issues including wound healing and tissue regeneration. This review article highlights the role and recent advancements of inorganic nanoparticles for wound healing and tissue regeneration along with their advantages, clinical status, challenges and future directions.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- Department of Experimental and Clinical Pharmacology
- College of Pharmacy
- University of Minnesota
- Minneapolis
- USA
| | - Sourav Das
- Department of Applied Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Chitta Ranjan Patra
- Department of Applied Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | |
Collapse
|
46
|
Halim A, Luo Q, Ju Y, Song G. A Mini Review Focused on the Recent Applications of Graphene Oxide in Stem Cell Growth and Differentiation. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E736. [PMID: 30231556 PMCID: PMC6163376 DOI: 10.3390/nano8090736] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Abstract
Stem cells are undifferentiated cells that can give rise to any types of cells in our body. Hence, they have been utilized for various applications, such as drug testing and disease modeling. However, for the successful of those applications, the survival and differentiation of stem cells into specialized lineages should be well controlled. Growth factors and chemical agents are the most common signals to promote the proliferation and differentiation of stem cells. However, those approaches holds several drawbacks such as the negative side effects, degradation or denaturation, and expensive. To address such limitations, nanomaterials have been recently used as a better approach for controlling stem cells behaviors. Graphene oxide is the derivative of graphene, the first two-dimensional (2D) materials in the world. Recently, due to its extraordinary properties and great biological effects on stem cells, many scientists around the world have utilized graphene oxide to enhance the differentiation potential of stem cells. In this mini review, we highlight the key advances about the effects of graphene oxide on controlling stem cell growth and various types of stem cell differentiation. We also discuss the possible molecular mechanisms of graphene oxide in controlling stem cell growth and differentiation.
Collapse
Affiliation(s)
- Alexander Halim
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Qing Luo
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Guanbin Song
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|