1
|
Negahdary M, Sakthinathan I, Kodam RS, Forster R, Coté GL, Mabbott S. Fabrication of a 3D-printed electrode applied to electrochemical sensing of lamotrigine. APPLIED MATERIALS TODAY 2024; 41:102491. [DOI: 10.1016/j.apmt.2024.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Richert M, Dudek M, Sala D. Surface Quality as a Factor Affecting the Functionality of Products Manufactured with Metal and 3D Printing Technologies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5371. [PMID: 39517644 PMCID: PMC11547365 DOI: 10.3390/ma17215371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Surface engineering is one of the most extensive industries. Virtually all areas of the economy benefit from the achievements of surface engineering. Surface quality affects the quality of finished products as well as the quality of manufactured parts. It affects both functional qualities and esthetics. Surface quality affects the image and reputation of a brand. This is particularly true for cars and household appliances. Surface modification of products is also aimed at improving their functional and protective properties. This applies to surfaces for producing hydrophobic surfaces, anti-wear protection of friction pairs, corrosion protection, and others. Metal technologies and 3D printing benefit from surface technologies that improve their functionality and facilitate the operation of products. Surface engineering offers a range of different coating and layering methods from varnishing and painting to sophisticated nanometric coatings. This paper presents an overview of selected surface engineering issues pertaining to metal products, with a particular focus on surface modification of products manufactured by 3D printing technology. It evaluates the impact of the surface quality of products on their functional and performance qualities.
Collapse
Affiliation(s)
- Maria Richert
- Management Faculty, AGH University, Gramatyka 10 str., 30-067 Kraków, Poland; (M.D.); (D.S.)
| | | | | |
Collapse
|
3
|
Nizam M, Purohit R, Taufik M. Materials for 3D printing in healthcare sector: A review. Proc Inst Mech Eng H 2024; 238:939-963. [PMID: 39397720 DOI: 10.1177/09544119241289731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Additive Manufacturing (AM) encompasses various techniques creating intricate components from digital models. The aim of incorporating 3D printing (3DP) in the healthcare sector is to transform patient care by providing personalized solutions, improving medical procedures, fostering research and development, and ultimately optimizing the efficiency and effectiveness of healthcare delivery. This review delves into the historical beginnings of AM's 9 integration into medical contexts exploring various categories of AM methodologies and their roles within the medical sector. This survey also dives into the issue of material requirements and challenges specific to AM's medical applications. Emphasis is placed on how AM processes directly enhance human well-being. The primary focus of this paper is to highlight the evolution and incentives for cross-disciplinary AM applications, particularly in the realm of healthcare by considering their principle, materials and applications. It is designed for a diverse audience, including manufacturing professionals and researchers, seeking insights into this transformative technology's medical dimensions.
Collapse
Affiliation(s)
- Maruf Nizam
- Centre of Excellence in Product Design and Smart Manufacturing, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rajesh Purohit
- Centre of Excellence in Product Design and Smart Manufacturing, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Mohammad Taufik
- Centre of Excellence in Product Design and Smart Manufacturing, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
4
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Zhu Z, Yan Z, Ni S, Yang H, Xie Y, Wang X, Zou D, Tao C, Jiang W, Jiang J, Su Z, Xia Y, Zhou Z, Sun L, Fan C, Tao TH, Wei X, Qian Y, Liu K. Tissue/Organ Adaptable Bioelectronic Silk-Based Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405892. [PMID: 39036824 DOI: 10.1002/adma.202405892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Implantable bioelectronic devices, designed for both monitoring and modulating living organisms, require functional and biological adaptability. Pure silk is innovatively employed, which is known for its excellent biocompatibility, to engineer water-triggered, geometrically reconfigurable membranes, on which functions can be integrated by Micro Electro Mechanical System (MEMS) techniques and specially functionalized silk. These devices can undergo programmed shape deformations within 10 min once triggered by water, and thus establishing stable bioelectronic interfaces with natively fitted geometries. As a testament to the applicability of this approach, a twining peripheral nerve electrode is designed, fabricated, and rigorously tested, demonstrating its efficacy in nerve modulation while ensuring biocompatibility for successful implantation.
Collapse
Affiliation(s)
- Ziyi Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Siyuan Ni
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
| | - Yating Xie
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 200120, China
| | - Xueying Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Dujuan Zou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
| | - Chen Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 200120, China
| | - Wanqi Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Jianbo Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Zexi Su
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
| | - Yuxin Xia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 200120, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, 200040, China
| | - Xiaoling Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| |
Collapse
|
6
|
Singh R, Gupta R, Bansal D, Bhateria R, Sharma M. A Review on Recent Trends and Future Developments in Electrochemical Sensing. ACS OMEGA 2024; 9:7336-7356. [PMID: 38405479 PMCID: PMC10882602 DOI: 10.1021/acsomega.3c08060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
Electrochemical methods and devices have ignited prodigious interest for sensing and monitoring. The greatest challenge for science is far from meeting the expectations of consumers. Electrodes made of two-dimensional (2D) materials such as graphene, metal-organic frameworks, MXene, and transition metal dichalcogenides as well as alternative electrochemical sensing methods offer potential to improve selectivity, sensitivity, detection limit, and response time. Moreover, these advancements have accelerated the development of wearable and point-of-care electrochemical sensors, opening new possibilities and pathways for their applications. This Review presents a critical discussion of the recent developments and trends in electrochemical sensing.
Collapse
Affiliation(s)
- Rimmy Singh
- Department
of Applied Science & Humanities, DPG
Institute of Technology and Management, Gurugram 122004, India
| | - Ruchi Gupta
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Rachna Bhateria
- Department
of Environmental Science, Maharshi Dayanand
University, Rohtak 124001, India
| | - Mona Sharma
- Department
of Environmental Studies, Central University
of Haryana, Mahendergarh 123031, India
| |
Collapse
|
7
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
8
|
Zhang K, Liu Y, Song Y, Xu S, Yang Y, Jiang L, Sun S, Luo J, Wu Y, Cai X. Exploring retinal ganglion cells encoding to multi-modal stimulation using 3D microelectrodes arrays. Front Bioeng Biotechnol 2023; 11:1245082. [PMID: 37600306 PMCID: PMC10434521 DOI: 10.3389/fbioe.2023.1245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Microelectrode arrays (MEA) are extensively utilized in encoding studies of retinal ganglion cells (RGCs) due to their capacity for simultaneous recording of neural activity across multiple channels. However, conventional planar MEAs face limitations in studying RGCs due to poor coupling between electrodes and RGCs, resulting in low signal-to-noise ratio (SNR) and limited recording sensitivity. To overcome these challenges, we employed photolithography, electroplating, and other processes to fabricate a 3D MEA based on the planar MEA platform. The 3D MEA exhibited several improvements compared to planar MEA, including lower impedance (8.73 ± 1.66 kΩ) and phase delay (-15.11° ± 1.27°), as well as higher charge storage capacity (CSC = 10.16 ± 0.81 mC/cm2), cathodic charge storage capacity (CSCc = 7.10 ± 0.55 mC/cm2), and SNR (SNR = 8.91 ± 0.57). Leveraging the advanced 3D MEA, we investigated the encoding characteristics of RGCs under multi-modal stimulation. Optical, electrical, and chemical stimulation were applied as sensory inputs, and distinct response patterns and response times of RGCs were detected, as well as variations in rate encoding and temporal encoding. Specifically, electrical stimulation elicited more effective RGC firing, while optical stimulation enhanced RGC synchrony. These findings hold promise for advancing the field of neural encoding.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Longhui Jiang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shutong Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Wu Y, Gao X, Wu J, Zhou T, Nguyen TT, Wang Y. Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports. Polymers (Basel) 2023; 15:3096. [PMID: 37514485 PMCID: PMC10384257 DOI: 10.3390/polym15143096] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Polylactic acid (PLA) is a biodegradable polyester polymer that is produced from renewable resources, such as corn or other carbohydrate sources. However, its poor toughness limits its commercialization. PLA composites can meet the growing performance needs of various fields, but limited research has focused on their sustainable applications in sports. This paper reviews the latest research on PLA and its composites by describing the characteristics, production, degradation process, and the latest modification methods of PLA. Then, it discusses the inherent advantages of PLA composites and expounds on different biodegradable materials and their relationship with the properties of PLA composites. Finally, the importance and application prospects of PLA composites in the field of sports are emphasized. Although PLA composites mixed with natural biomass materials have not been mass produced, they are expected to be sustainable materials used in various industries because of their simple process, nontoxicity, biodegradability, and low cost.
Collapse
Affiliation(s)
- Yueting Wu
- Graduate School, College of Sports and Human Sciences, Post-Doctoral Mobile Research Station, Harbin Sport University, Harbin 150008, China
| | - Xing Gao
- Graduate School, College of Sports and Human Sciences, Post-Doctoral Mobile Research Station, Harbin Sport University, Harbin 150008, China
| | - Jie Wu
- Graduate School, College of Sports and Human Sciences, Post-Doctoral Mobile Research Station, Harbin Sport University, Harbin 150008, China
| | - Tongxi Zhou
- Graduate School, College of Sports and Human Sciences, Post-Doctoral Mobile Research Station, Harbin Sport University, Harbin 150008, China
| | - Tat Thang Nguyen
- College of Wood Industry and Interior Design, Vietnam National University of Forestry, Xuan Mai, Hanoi 13417, Vietnam
| | - Yutong Wang
- Graduate School, College of Sports and Human Sciences, Post-Doctoral Mobile Research Station, Harbin Sport University, Harbin 150008, China
| |
Collapse
|
10
|
Rossin ARS, Spessato L, Cardoso FDSL, Caetano J, Caetano W, Radovanovic E, Dragunski DC. Electrospinning in personal protective equipment for healthcare work. Polym Bull (Berl) 2023:1-24. [PMID: 37362955 PMCID: PMC10183089 DOI: 10.1007/s00289-023-04814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Protection in many service areas is mandatory for good performance in daily activities of workers, especially health areas. Personal protective equipment (PPE) is used to protect patients and health workers from contamination by harmful pathogens and body fluids during clinical attendance. The pandemic scenario caused by SARS-CoV-2 has shown that the world is not prepared to face global disease outbreaks, especially when it comes to the PPE of healthcare workers. In the last years, the world has faced a deficiency in the development of advanced technologies to produce high-quality PPE to attend to the exponential increasing demand. Electrospinning is a technology that can be used to produce high-quality PPE by improving the protective action of clothing. In the face of this concern, this manuscript presents as focus the potential of electrospinning to be applied in protective clothing. PPE mostly used by healthcare workers are also presented. The physico-chemical characteristics and production processes of medical textiles for PPE are addressed. Furthermore, an overview of the electrospinning technique is shown. It is important to highlight most research about electrospinning applied to PPE for health areas presents gaps and challenges; thus, future projections are also addressed in this manuscript.
Collapse
Affiliation(s)
- Ariane Regina Souza Rossin
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| | - Lucas Spessato
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
| | - Fabiana da Silva Lima Cardoso
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| | - Josiane Caetano
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
| | - Eduardo Radovanovic
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
| | - Douglas Cardoso Dragunski
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| |
Collapse
|
11
|
Słoma M. 3D printed electronics with nanomaterials. NANOSCALE 2023; 15:5623-5648. [PMID: 36880539 DOI: 10.1039/d2nr06771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A large variety of printing, deposition and writing techniques have been incorporated to fabricate electronic devices in the last decades. This approach, printed electronics, has gained great interest in research and practical applications and is successfully fuelling the growth in materials science and technology. On the other hand, a new player is emerging, additive manufacturing, called 3D printing, introducing a new capability to create geometrically complex constructs with low cost and minimal material waste. Having such tremendous technology in our hands, it was just a matter of time to combine advances of printed electronics technology for the fabrication of unique 3D structural electronics. Nanomaterial patterning with additive manufacturing techniques can enable harnessing their nanoscale properties and the fabrication of active structures with unique electrical, mechanical, optical, thermal, magnetic and biological properties. In this paper, we will briefly review the properties of selected nanomaterials suitable for electronic applications and look closer at the current achievements in the synergistic integration of nanomaterials with additive manufacturing technologies to fabricate 3D printed structural electronics. The focus is fixed strictly on techniques allowing as much as possible fabrication of spatial 3D objects, or at least conformal ones on 3D printed substrates, while only selected techniques are adaptable for 3D printing of electronics. Advances in the fabrication of conductive paths and circuits, passive components, antennas, active and photonic components, energy devices, microelectromechanical systems and sensors are presented. Finally, perspectives for development with new nanomaterials, multimaterial and hybrid techniques, bioelectronics, integration with discrete components and 4D-printing are briefly discussed.
Collapse
Affiliation(s)
- Marcin Słoma
- Micro- and Nanotechnology Division, Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 8 Sw. A Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
12
|
Zhang B, Li S, He J, Lei Q, Wu C, Song A, Zhang C. Electrohydrodynamic printing of submicron-microscale hybrid scaffolds with improved cellular adhesion and proliferation behaviors. NANOTECHNOLOGY 2022; 34:105102. [PMID: 36562511 DOI: 10.1088/1361-6528/aca97f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Electrohydrodynamic (EHD) printing has been considered as a mature strategy to mimic the hierarchical microarchitectures in native extracellular matrix (ECM). Most of the EHD-printed scaffolds possess single-dimensional fibrous structures, which cannot mimic the multi-dimensional architectures for enhanced cellular behaviors. Here we developed a two-nozzle EHD printing system to fabricate hybrid scaffolds involving submicron and microscale features. The polyethylene oxide- polycaprolactone (PEO-PCL) submicron fibers were fabricated via solution-based EHD printing with a width of 527 ± 56 nm. The PCL microscale fibers were fabricated via melt-based EHD printing with a width of 11.2 ± 2.3μm. The hybrid scaffolds were fabricated by printing the submicron and microscale fibers in a layer-by-layer manner. The microscale scaffolds were utilized as a control group. Rat myocardial cells (H9C2 cells) were cultured on the two kinds of scaffolds for the culturing period of 1, 3 and 5 d. Biological results indicated that H9C2 cells showed enhanced adhesion and proliferation behaviors on the hybrid scaffold than those on the pure microscale scaffold. This work offers a facile and scalable strategy to fabricate multiscale synthetic scaffolds, which might be further explored to regulate cellular behaviors in the fields of tissue regeneration and biomedical engineering.
Collapse
Affiliation(s)
- Bing Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Shikang Li
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qi Lei
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Chuang Wu
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Aiping Song
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| |
Collapse
|
13
|
Greenwood TE, Cagle H, Pulver B, Pak OS, Lin Kong Y. Ingestible Functional Magnetic Robot with Localized Flexibility (MR-LF). ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 4:2200166. [PMID: 37994359 PMCID: PMC10665024 DOI: 10.1002/aisy.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/24/2023]
Abstract
The integration of an ingestible dosage form with sensing, actuation, and drug delivery capabilities can enable a broad range of surgical-free diagnostic and treatment strategies. However, the gastrointestinal (GI) tract is a highly constrained and complex luminal construct that fundamentally limits the size of an ingestible system. Recent advancements in mesoscale magnetic crawlers have demonstrated the ability to effectively traverse complex and confined systems by leveraging magnetic fields to induce contraction and bending-based locomotion. However, the integration of functional components (e.g., electronics) in the proposed ingestible system remains fundamentally challenging. Herein, the creation of a centralized compartment in a magnetic robot by imparting localized flexibility (MR-LF) is demonstrated. The centralized compartment enables MR-LF to be readily integrated with modular functional components and payloads, such as commercial off-the-shelf electronics and medication, while preserving its bidirectionality in an ingestible form factor. The ability of MR-LF to incorporate electronics, perform drug delivery, guide continuum devices such as catheters, and navigate air-water environments in confined lumens is demonstrated. The MR-LF enables functional integration to create a highly-integrated ingestible system that can ultimately address a broad range of unmet clinical needs.
Collapse
Affiliation(s)
- Taylor E Greenwood
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 (USA)
| | - Henry Cagle
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 (USA)
| | - Benson Pulver
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 (USA)
| | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053 (USA)
| | - Yong Lin Kong
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 (USA)
| |
Collapse
|
14
|
Mahadik B, Margolis R, McLoughlin S, Melchiorri A, Lee SJ, Yoo J, Atala A, Mikos AG, Fisher JP. An open-source bioink database for microextrusion 3D printing. Biofabrication 2022; 15:10.1088/1758-5090/ac933a. [PMID: 36126638 PMCID: PMC9652762 DOI: 10.1088/1758-5090/ac933a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
3D printing has rapidly become a critical enabling technology in tissue engineering and regenerative medicine for the fabrication of complex engineered tissues. 3D bioprinting, in particular, has advanced greatly to facilitate the incorporation of a broad spectrum of biomaterials along with cells and biomolecules of interest forin vitrotissue generation. The increasing complexity of novel bioink formulations and application-dependent printing conditions poses a significant challenge for replicating or innovating new bioprinting strategies. As the field continues to grow, it is imperative to establish a cohesive, open-source database that enables users to search through existing 3D printing formulations rapidly and efficiently. Through the efforts of the NIH/NIBIB Center for Engineering Complex Tissues, we have developed, to our knowledge, the first bioink database for extrusion-based 3D printing. The database is publicly available and allows users to search through and easily access information on biomaterials and cells specifically used in 3D printing. In order to enable a community-driven database growth, we have established an open-source portal for researchers to enter their publication information for addition into the database. Although the database has a broad range of capabilities, we demonstrate its utility by performing a comprehensive analysis of the printability domains of two well-established biomaterials in the printing world, namely poly(ϵ-caprolactone) and gelatin methacrylate. The database allowed us to rapidly identify combinations of extrusion pressure, temperature, and speed that have been used to print these biomaterials and more importantly, identify domains within which printing was not possible. The data also enabled correlation analysis between all the printing parameters, including needle size and type, that exhibited compatibility for cell-based 3D printing. Overall, this database is an extremely useful tool for the 3D printing and bioprinting community to advance their research and is an important step towards standardization in the field.
Collapse
Affiliation(s)
- Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, 20742, USA
- NIH/NIBIB Center for Engineering Complex Tissues
| | - Ryan Margolis
- Fischell Department of Bioengineering, University of Maryland, 20742, USA
| | - Shannon McLoughlin
- Fischell Department of Bioengineering, University of Maryland, 20742, USA
- NIH/NIBIB Center for Engineering Complex Tissues
| | - Anthony Melchiorri
- NIH/NIBIB Center for Engineering Complex Tissues
- Department of Bioengineering, Rice University, Houston TX
| | - Sang Jin Lee
- NIH/NIBIB Center for Engineering Complex Tissues
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
| | - James Yoo
- NIH/NIBIB Center for Engineering Complex Tissues
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
| | - Anthony Atala
- NIH/NIBIB Center for Engineering Complex Tissues
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
| | - Antonios G. Mikos
- NIH/NIBIB Center for Engineering Complex Tissues
- Department of Bioengineering, Rice University, Houston TX
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, 20742, USA
- NIH/NIBIB Center for Engineering Complex Tissues
| |
Collapse
|
15
|
Zhang L, Forgham H, Shen A, Wang J, Zhu J, Huang X, Tang SY, Xu C, Davis TP, Qiao R. Nanomaterial integrated 3D printing for biomedical applications. J Mater Chem B 2022; 10:7473-7490. [PMID: 35993266 DOI: 10.1039/d2tb00931e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D printing technology, otherwise known as additive manufacturing, has provided a promising tool for manufacturing customized biomaterials for tissue engineering and regenerative medicine applications. A vast variety of biomaterials including metals, ceramics, polymers, and composites are currently being used as base materials in 3D printing. In recent years, nanomaterials have been incorporated into 3D printing polymers to fabricate innovative, versatile, multifunctional hybrid materials that can be used in many different applications within the biomedical field. This review focuses on recent advances in novel hybrid biomaterials composed of nanomaterials and 3D printing technologies for biomedical applications. Various nanomaterials including metal-based nanomaterials, metal-organic frameworks, upconversion nanoparticles, and lipid-based nanoparticles used for 3D printing are presented, with a summary of the mechanisms, functional properties, advantages, disadvantages, and applications in biomedical 3D printing. To finish, this review offers a perspective and discusses the challenges facing the further development of nanomaterials in biomedical 3D printing.
Collapse
Affiliation(s)
- Liwen Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Helen Forgham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Ao Shen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiafan Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiayuan Zhu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.,Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Yoon J, Lim J, Shin M, Lee JY, Choi JW. Recent progress in nanomaterial-based bioelectronic devices for biocomputing system. Biosens Bioelectron 2022; 212:114427. [PMID: 35653852 DOI: 10.1016/j.bios.2022.114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Bioelectronic devices have received the massive attention because of their huge potential to develop the core electronic components for biocomputing system. Up to now, numerous bioelectronic devices have been reported such as biomemory and biologic gate by employment of biomolecules including metalloproteins and nucleic acids. However, the intrinsic limitations of biomolecules such as instability and low signal production hinder the development of novel bioelectronic devices capable of performing various novel computing functions. As a way to overcome these limitations, nanomaterials have the great potential and wide applicability to grant and extend the electronic functions, and improve the inherent properties from biomolecules. Accordingly, lots of nanomaterials including the conductive metal, graphene, and transition metal dichalcogenide nanomaterials are being used to develop the remarkable functional bioelectronic devices like the multi-bit biomemory and resistive random-access biomemory. This review discusses the nanomaterial-based superb bioelectronic devices including the biomemory, biologic gates, and bioprocessors. In conclusion, this review will provide the interdisciplinary information about utilization of various novel nanomaterials applicable for biocomputing system.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Valencia LM, Herrera M, de la Mata M, de León AS, Delgado FJ, Molina SI. Synthesis of Silver Nanocomposites for Stereolithography: In Situ Formation of Nanoparticles. Polymers (Basel) 2022; 14:1168. [PMID: 35335499 PMCID: PMC8948828 DOI: 10.3390/polym14061168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
Additive Manufacturing (AM) offers remarkable advantages in relation to traditional methods used to obtain solid structures, such as the capability to obtain customized complex geometries adapted to individual requirements. The design of novel nanocomposites suitable for AM is an excellent strategy to widen the application field of these techniques. In this work, we report on the fabrication of metal/polymer nanocomposites with enhanced optical/electrical behaviour for stereolithography (SLA). In particular, we analyse the in situ generation of Ag nanoparticles (NPs) from Ag precursors (AgNO3 and AgClO4) within acrylic resins via SLA. Transmission electron microscopy (TEM) analysis confirmed the formation of Ag NPs smaller than 5 nm in all nanocomposites, providing optical activity to the materials. A high density of Ag NPs with a good distribution through the material for the larger concentration of AgClO4 precursor tested was observed, in contrast to the isolated agglomerations found when the precursor amount was reduced to 0.1%. A significant reduction in the electrical resistivity up to four orders of magnitude was found for this material compared to the unfilled resin. However, consumption of part of the photoinitiator in the formation process of the Ag NPs contributed to a reduction in the polymerization degree of the resin and, consequently, degraded the mechanical properties of the nanocomposites. Experiments with longer curing times showed that, for the higher AgClO4 concentrations tested, post-curing times of 300 min allowed an 80% degree of polymerization to be achieved. These conditions turned these materials into promising candidates to obtain solid structures with multifunctional properties.
Collapse
Affiliation(s)
- Luisa M. Valencia
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, Puerto Real, 11510 Cádiz, Spain; (M.H.); (M.d.l.M.); (A.S.d.L.); (F.J.D.); (S.I.M.)
| | | | | | | | | | | |
Collapse
|
18
|
Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021; 10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Negar Mansouri
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| |
Collapse
|
19
|
Herbert R, Lim H, Park S, Kim J, Yeo W. Recent Advances in Printing Technologies of Nanomaterials for Implantable Wireless Systems in Health Monitoring and Diagnosis. Adv Healthc Mater 2021; 10:e2100158. [PMID: 34019731 DOI: 10.1002/adhm.202100158] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/03/2021] [Indexed: 12/17/2022]
Abstract
The development of wireless implantable sensors and integrated systems, enabled by advances in flexible and stretchable electronics technologies, is emerging to advance human health monitoring, diagnosis, and treatment. Progress in material and fabrication strategies allows for implantable electronics for unobtrusive monitoring via seamlessly interfacing with tissues and wirelessly communicating. Combining new nanomaterials and customizable printing processes offers unique possibilities for high-performance implantable electronics. Here, this report summarizes the recent progress and advances in nanomaterials and printing technologies to develop wireless implantable sensors and electronics. Advances in materials and printing processes are reviewed with a focus on challenges in implantable applications. Demonstrations of wireless implantable electronics and advantages based on these technologies are discussed. Lastly, existing challenges and future directions of nanomaterials and printing are described.
Collapse
Affiliation(s)
- Robert Herbert
- George W. Woodruff School of Mechanical Engineering Center for Human‐Centric Interfaces and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Hyo‐Ryoung Lim
- George W. Woodruff School of Mechanical Engineering Center for Human‐Centric Interfaces and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Sehyun Park
- School of Engineering and Computer Science Washington State University Vancouver WA 98686 USA
| | - Jong‐Hoon Kim
- School of Engineering and Computer Science Washington State University Vancouver WA 98686 USA
| | - Woon‐Hong Yeo
- George W. Woodruff School of Mechanical Engineering Center for Human‐Centric Interfaces and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Wallace H. Coulter Department of Biomedical Engineering Parker H. Petit Institute for Bioengineering and Biosciences Neural Engineering Center Institute for Materials Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
20
|
Elder B, Zou Z, Ghosh S, Silverberg O, Greenwood TE, Demir E, Su VSE, Pak OS, Kong YL. A 3D-Printed Self-Learning Three-Linked-Sphere Robot for Autonomous Confined-Space Navigation. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 3:2170064. [PMID: 35356413 PMCID: PMC8963778 DOI: 10.1002/aisy.202100039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 06/14/2023]
Abstract
Reinforcement learning control methods can impart robots with the ability to discover effective behavior, reducing their modeling and sensing requirements, and enabling their ability to adapt to environmental changes. However, it remains challenging for a robot to achieve navigation in confined and dynamic environments, which are characteristic of a broad range of biomedical applications, such as endoscopy with ingestible electronics. Herein, a compact, 3D-printed three-linked-sphere robot synergistically integrated with a reinforcement learning algorithm that can perform adaptable, autonomous crawling in a confined channel is demonstrated. The scalable robot consists of three equally sized spheres that are linearly coupled, in which the extension and contraction in specific sequences dictate its navigation. The ability to achieve bidirectional locomotion across frictional surfaces in open and confined spaces without prior knowledge of the environment is also demonstrated. The synergistic integration of a highly scalable robotic apparatus and the model-free reinforcement learning control strategy can enable autonomous navigation in a broad range of dynamic and confined environments. This capability can enable sensing, imaging, and surgical processes in previously inaccessible confined environments in the human body.
Collapse
Affiliation(s)
- Brian Elder
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Zonghao Zou
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Samannoy Ghosh
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Oliver Silverberg
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Taylor E Greenwood
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ebru Demir
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Vivian Song-En Su
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Yong Lin Kong
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Effects of 3D Printing-Line Directions for Stretchable Sensor Performances. MATERIALS 2021; 14:ma14071791. [PMID: 33916372 PMCID: PMC8038555 DOI: 10.3390/ma14071791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Health monitoring sensors that are attached to clothing are a new trend of the times, especially stretchable sensors for human motion measurements or biological markers. However, price, durability, and performance always are major problems to be addressed and three-dimensional (3D) printing combined with conductive flexible materials (thermoplastic polyurethane) can be an optimal solution. Herein, we evaluate the effects of 3D printing-line directions (45°, 90°, 180°) on the sensor performances. Using fused filament fabrication (FDM) technology, the sensors are created with different print styles for specific purposes. We also discuss some main issues of the stretch sensors from Carbon Nanotube/Thermoplastic Polyurethane (CNT/TPU) and FDM. Our sensor achieves outstanding stability (10,000 cycles) and reliability, which are verified through repeated measurements. Its capability is demonstrated in a real application when detecting finger motion by a sensor-integrated into gloves. This paper is expected to bring contribution to the development of flexible conductive materials-based on 3D printing.
Collapse
|
22
|
Honrado C, Bisegna P, Swami NS, Caselli F. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. LAB ON A CHIP 2021; 21:22-54. [PMID: 33331376 PMCID: PMC7909465 DOI: 10.1039/d0lc00840k] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biophysical analysis of single-cells by microfluidic impedance cytometry is emerging as a label-free and high-throughput means to stratify the heterogeneity of cellular systems based on their electrophysiology. Emerging applications range from fundamental life-science and drug assessment research to point-of-care diagnostics and precision medicine. Recently, novel chip designs and data analytic strategies are laying the foundation for multiparametric cell characterization and subpopulation distinction, which are essential to understand biological function, follow disease progression and monitor cell behaviour in microsystems. In this tutorial review, we present a comparative survey of the approaches to elucidate cellular and subcellular features from impedance cytometry data, covering the related subjects of device design, data analytics (i.e., signal processing, dielectric modelling, population clustering), and phenotyping applications. We give special emphasis to the exciting recent developments of the technique (timeframe 2017-2020) and provide our perspective on future challenges and directions. Its synergistic application with microfluidic separation, sensor science and machine learning can form an essential toolkit for label-free quantification and isolation of subpopulations to stratify heterogeneous biosystems.
Collapse
Affiliation(s)
- Carlos Honrado
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
23
|
Chakraborty PK, Azadmanjiri J, Pavithra CLP, Wang X, Masood SH, Dey SR, Wang J. Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D Nanomaterial Inks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004900. [PMID: 33185035 DOI: 10.1002/smll.202004900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Indexed: 06/11/2023]
Abstract
2D nanomaterials (2DNMs) possess fascinating properties and are found in multifarious devices and applications including energy storage devices, new generation of battery technologies, sensor devices, and more recently in biomedical applications. Their use in biomedical applications such as tissue engineering, photothermal therapy, neural regeneration, and drug delivery has opened new horizons in treatment of age-old ailments. It is also a rapidly developing area of advanced research. A new approach of integrating 3D printing (3DP), a layer-by-layer deposition technique for building structures, along with 2DNM multifunctional inks, has gained considerable attention in recent times, especially in biomedical applications. With the ever-growing demand in healthcare industry for novel, efficient, and rapid technologies for therapeutic treatment methods, 3DP structures of 2DNMs provide vast scope for evolution of a new generation of biomedical devices. Recent advances in 3DP structures of dispersed 2DNM inks with established high-performance biomedical properties are focused on. The advantages of their 3D structures, the sustainable formulation methods of such inks, and their feasible printing methods are also covered. Subsequently, it deals with the therapeutic applications of some already researched 3DP structures of 2DNMs and concludes with highlighting the challenges as well as the future directions of research in this area.
Collapse
Affiliation(s)
- Pritam K Chakraborty
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, Prague, 166 28, Czech Republic
| | - Chokkakula L P Pavithra
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Xiaojian Wang
- Centre for 3D Printing Materials and Additive Manufacturing Technology, Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Syed H Masood
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| | - Suhash Ranjan Dey
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - James Wang
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| |
Collapse
|
24
|
Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2020; 93:167-183. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Chemical Research Institute Andres M. del Rio, University of Alcalá, E-28871 Madrid, Spain
| |
Collapse
|
25
|
Sleczkowski P, Borkowski M, Zajaczkowska H, Ulanski J, Pisula W, Marszalek T. Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4974. [PMID: 33167331 PMCID: PMC7663849 DOI: 10.3390/ma13214974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023]
Abstract
In this work we study the influence of dielectric surface and process parameters on the geometry and electrical properties of silver electrodes obtained by electrohydrodynamic inkjet printing. The cross-section and thickness of printed silver tracks are optimized to achieve a high conductivity. Silver overprints with cross-section larger than 4 μm2 and thickness larger than 90 nm exhibit the lowest resistivity. To fabricate electrodes in the desired geometry, a sufficient volume of ink is distributed on the surface by applying appropriate voltage amplitude. Single and multilayer overprints are incorporated as bottom contacts in bottom gate organic field-effect transistors (OFETs) with a semiconducting polymer as active layer. The multilayer electrodes result in significantly higher electrical parameters than single layer contacts, confirming the importance of a careful design of the printed tracks for reliable device performance. The results provide important design guidelines for precise fabrication of electrodes in electronic devices by electrohydrodynamic inkjet printing.
Collapse
Affiliation(s)
- Piotr Sleczkowski
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
| | - Michal Borkowski
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
| | - Hanna Zajaczkowska
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
| | - Jacek Ulanski
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
| | - Wojciech Pisula
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tomasz Marszalek
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
26
|
Pérez P, Serrano JA, Olmo A. 3D-Printed Sensors and Actuators in Cell Culture and Tissue Engineering: Framework and Research Challenges. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5617. [PMID: 33019576 PMCID: PMC7582847 DOI: 10.3390/s20195617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022]
Abstract
Three-dimensional printing technologies have been recently proposed to monitor cell cultures and implement cell bioreactors for different biological applications. In tissue engineering, the control of tissue formation is crucial to form tissue constructs of clinical relevance, and 3D printing technologies can also play an important role for this purpose. In this work, we study 3D-printed sensors that have been recently used in cell culture and tissue engineering applications in biological laboratories, with a special focus on the technique of electrical impedance spectroscopy. Furthermore, we study new 3D-printed actuators used for the stimulation of stem cells cultures, which is of high importance in the process of tissue formation and regenerative medicine. Key challenges and open issues, such as the use of 3D printing techniques in implantable devices for regenerative medicine, are also discussed.
Collapse
Affiliation(s)
- Pablo Pérez
- Instituto de Microelectrónica de Sevilla, IMSE-CNM (CSIC, Universidad de Sevilla), Av. Américo Vespucio, sn, 41092 Sevilla, Spain; (P.P.); (J.A.S.)
- Escuela Técnica Superior de Ingeniería Informática, Departamento de Tecnología Electrónica, Universidad de Sevilla, Av. Reina Mercedes sn, 41012 Sevilla, Spain
| | - Juan Alfonso Serrano
- Instituto de Microelectrónica de Sevilla, IMSE-CNM (CSIC, Universidad de Sevilla), Av. Américo Vespucio, sn, 41092 Sevilla, Spain; (P.P.); (J.A.S.)
- Escuela Técnica Superior de Ingeniería Informática, Departamento de Tecnología Electrónica, Universidad de Sevilla, Av. Reina Mercedes sn, 41012 Sevilla, Spain
| | - Alberto Olmo
- Instituto de Microelectrónica de Sevilla, IMSE-CNM (CSIC, Universidad de Sevilla), Av. Américo Vespucio, sn, 41092 Sevilla, Spain; (P.P.); (J.A.S.)
- Escuela Técnica Superior de Ingeniería Informática, Departamento de Tecnología Electrónica, Universidad de Sevilla, Av. Reina Mercedes sn, 41012 Sevilla, Spain
| |
Collapse
|