1
|
Lim J, Moon D, Kim S, Kim S. Influence of cutoff radius and tip atomic structure on energy barriers encountered during AFM tip sliding on 2D monolayers. NANOTECHNOLOGY 2024; 35:40LT01. [PMID: 38986446 DOI: 10.1088/1361-6528/ad6164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
In computational studies using the Lennard-Jones (LJ) potential, the widely adopted 2.5σcutoff radius effectively truncates pairwise interactions across diverse systems (Santraet al2008J. Chem. Phys.129234704, Chen and Gao 2021Friction9502-12, Bolintineanuet al2014Part. Mech.1321-56, Takahiro and Kazuhiro 2010J. Phys.: Conf. Ser.215012123, Zhouet al2016Fuel180718-26, Toxvaerd and Dyre 2011J. Chem. Phys.134081102, Toxvaerd and Dyre 2011J. Chem. Phys.134081102). Here, we assess its adequacy in determining energy barriers encountered by a Si monoatomic tip sliding on various two-dimensional (2D) monolayers, which is crucial for understanding nanoscale friction. Our findings emphasize the necessity of a cutoff radius of at least 3.5σto achieve energy barrier values exceeding 95% accuracy across all studied 2D monolayers. Specifically, 3.5σcorresponds to 12.70 Å in graphene, 12.99 Å in MoS2and 13.25 Å in MoSe2. The barrier values calculated using this cutoff support previous experiments comparing friction between different orientations of graphene and between graphene and MoS2(Almeidaet al2016Sci. Rep.631569, Zhanget al2014Sci. China57663-7). Furthermore, we demonstrate the applicability of the 3.5σcutoff for graphene on an Au substrate and bilayer graphene. Additionally, we investigate how the atomic configuration of the tip influences the energy barrier, finding a nearly threefold increase in the barrier along the zigzag direction of graphene when using a Si(001) tip composed of seven Si atoms compared to a monoatomic Si tip.
Collapse
Affiliation(s)
- Jaehun Lim
- Department of Photonics and Nanoelectronics, Hanyang University (ERICA), Ansan 15588, Republic of Korea
| | - Donghyeon Moon
- Department of Photonics and Nanoelectronics, Hanyang University (ERICA), Ansan 15588, Republic of Korea
| | - Sunghyun Kim
- Department of Applied Physics, Hanyang University (ERICA), Ansan 15588, Republic of Korea
- Present Address: Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
| | - Suenne Kim
- Department of Photonics and Nanoelectronics, Hanyang University (ERICA), Ansan 15588, Republic of Korea
| |
Collapse
|
2
|
Barri N, Rastogi A, Islam MA, Kumral B, Demingos PG, Onodera M, Machida T, Singh CV, Filleter T. Cyclic Wear Reliability of 2D Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27979-27987. [PMID: 38752682 DOI: 10.1021/acsami.4c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Understanding wear, a critical factor impacting the reliability of mechanical systems, is vital for nano-, meso-, and macroscale applications. Due to the complex nature of nanoscale wear, the behavior of nanomaterials such as two-dimensional materials under cyclic wear and their surface damage mechanism is yet unexplored. In this study, we used atomic force microscopy coupled with molecular dynamic simulations to statistically examine the cyclic wear behavior of monolayer graphene, MoS2, and WSe2. We show that graphene displays exceptional durability and lasts over 3000 cycles at 85% of the applied critical normal load before failure, while MoS2 and WSe2 last only 500 cycles on average. Moreover, graphene undergoes catastrophic failure as a result of stress concentration induced by local out-of-plane deformation. In contrast, MoS2 and WSe2 exhibit intermittent failure, characterized by damage initiation at the edge of the wear track and subsequent propagation throughout the entire contact area. In addition to direct implications for MEMS and NEMS industries, this work can also enable the optimization of the use of 2D materials as lubricant additives on a macroscopic level.
Collapse
Affiliation(s)
- Nima Barri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| | - Akshat Rastogi
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
- Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario, Canada M5S 3E4
| | - Md Akibul Islam
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| | - Boran Kumral
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| | - Pedro Guerra Demingos
- Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario, Canada M5S 3E4
| | - Momoko Onodera
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153 8505, Japan
| | - Tomoki Machida
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153 8505, Japan
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario, Canada M5S 3E4
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| |
Collapse
|
3
|
Song Y, Meyer E. Atomic Friction Processes of Two-Dimensional Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15409-15416. [PMID: 37880203 PMCID: PMC10634352 DOI: 10.1021/acs.langmuir.3c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
In this Perspective, we present the recent advances in atomic friction measured of two-dimensional materials obtained by friction force microscopy. Starting with the atomic-scale stick-slip behavior, a beautiful highly nonequilibrium process, we discuss the main factors that contribute to determine sliding friction between single asperity and a two-dimensional sheet including chemical identity of material, thickness, external load, sliding direction, velocity/temperature, and contact size. In particular, we focus on the latest progress of the more complex friction behavior of moiré systems involving 2D layered materials. The underlying mechanisms of these frictional characteristics observed during the sliding process by theoretical and computational studies are also discussed. Finally, a discussion and outlook on the perspective of this field are provided.
Collapse
Affiliation(s)
- Yiming Song
- Department of Physics, University of Basel, Basel 4056, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel, Basel 4056, Switzerland
| |
Collapse
|
4
|
Buzio R, Gerbi A, Bernini C, Repetto L, Silva A, Vanossi A. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices. ACS APPLIED NANO MATERIALS 2023; 6:11443-11454. [PMID: 37469503 PMCID: PMC10352959 DOI: 10.1021/acsanm.3c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 07/21/2023]
Abstract
Solution-processed few-layer graphene flakes, dispensed to rotating and sliding contacts via liquid dispersions, are gaining increasing attention as friction modifiers to achieve low friction and wear at technologically relevant interfaces. Vanishing friction states, i.e., superlubricity, have been documented for nearly-ideal nanoscale contacts lubricated by individual graphene flakes. However, there is no clear understanding if superlubricity might persist for larger and morphologically disordered contacts, as those typically obtained by incorporating wet-transferred solution-processed flakes into realistic microscale contact junctions. In this study, we address the friction performance of solution-processed graphene flakes by means of colloidal probe atomic force microscopy. We use a state-of-the-art additive-free aqueous dispersion to coat micrometric silica beads, which are then sled under ambient conditions against prototypical material substrates, namely, graphite and the transition metal dichalcogenides (TMDs) MoS2 and WS2. High resolution microscopy proves that the random assembly of the wet-transferred flakes over the silica probes results into an inhomogeneous coating, formed by graphene patches that control contact mechanics through tens-of-nanometers tall protrusions. Atomic-scale friction force spectroscopy reveals that dissipation proceeds via stick-slip instabilities. Load-controlled transitions from dissipative stick-slip to superlubric continuous sliding may occur for the graphene-graphite homojunctions, whereas single- and multiple-slips dissipative dynamics characterizes the graphene-TMD heterojunctions. Systematic numerical simulations demonstrate that the thermally activated single-asperity Prandtl-Tomlinson model comprehensively describes friction experiments involving different graphene-coated colloidal probes, material substrates, and sliding regimes. Our work establishes experimental procedures and key concepts that enable mesoscale superlubricity by wet-transferred liquid-processed graphene flakes. Together with the rise of scalable material printing techniques, our findings support the use of such nanomaterials to approach superlubricity in micro electromechanical systems.
Collapse
Affiliation(s)
- Renato Buzio
- CNR-SPIN, C.so F.M. Perrone 24, Genova 16152, Italy
| | - Andrea Gerbi
- CNR-SPIN, C.so F.M. Perrone 24, Genova 16152, Italy
| | | | - Luca Repetto
- Dipartimento
di Fisica, Università degli Studi
di Genova, Via Dodecaneso 33, Genova 16146, Italy
| | - Andrea Silva
- CNR-IOM
Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
- International
School for Advanced Studies (SISSA), Via Bonomea 265, Trieste 34136, Italy
| | - Andrea Vanossi
- CNR-IOM
Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
- International
School for Advanced Studies (SISSA), Via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|
5
|
Zhao X, Zhang X, Chen R, Lang H, Peng Y. Flexible Tuning of Friction on Atomically Thin Graphene. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10315-10323. [PMID: 36755369 DOI: 10.1021/acsami.3c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The tuning of flexible microscale friction is desirable for the reliability of wearable electronic devices, tactile sensors, and flexible gears. Here, the tuning of friction of atomically thin graphene on a flexible polydimethylsiloxane (PDMS) substrate was obtained with the elastic modulus using a 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) self-assembly monolayers (SAMs)-modified microsphere probe with the diameter of 5 μm at the microscale. The friction can be tuned at a large scale with the difference in the elastic modulus of PDMS and thickness of graphene. The hydrophobic property of the FDTS SAMs-modified probe decreased friction by reducing interfacial adhesion and preventing the effect of capillary interaction; thus, the friction decreased with the increase in the elastic modulus of the PDMS substrate due to decreasing indentation depth and thus the interfacial contact area; and also, the enhanced out-of-plane stiffness effectively decreased the interfacial contact quality with the increase of the thickness of graphene. The flexible tuning of friction on graphene was further verified by the theoretical calculation from the aspects of the friction arising from the normal and lateral deformation around the contacting area. This work is meaningful for promoting the design and reliability of flexible micro-devices.
Collapse
Affiliation(s)
- Xiuhua Zhao
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Xiushuo Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Ruling Chen
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Haojie Lang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Yitian Peng
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
- Shanghai Collaborative Innovation Center for High Performance Fiber Composites, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Buzio R, Gerbi A, Bernini C, Repetto L, Vanossi A. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12570-12580. [PMID: 36190908 DOI: 10.1021/acs.langmuir.2c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Colloidal probe atomic force microscopy (AFM) allows us to explore sliding friction phenomena in graphite contacts of nominal lateral size up to hundreds of nanometers. It is known that contact formation involves tribo-induced material transfer of graphite flakes from the graphitic substrate to the colloidal probe. In this context, sliding states with nearly vanishing friction, i.e., superlubricity, may set in. A comprehensive investigation of the transfer layer properties is mandatory to ascertain the origin of superlubricity. Here we explore the friction response of micrometric beads, of different size and pristine surface roughness, sliding on graphite under ambient conditions. We show that such tribosystems undergo a robust transition toward a low-adhesion, low-friction state dominated by mechanical interactions at one dominant tribo-induced nanocontact. Friction force spectroscopy reveals that the nanocontact can be superlubric or dissipative, in fact undergoing a load-driven transition from dissipative stick-slip to continuous superlubric sliding. This behavior is excellently described by the thermally activated, single-asperity Prandtl-Tomlinson model. Our results indicate that upon formation of the transfer layer, friction depends on the energy landscape experienced by the topographically highest tribo-induced nanoasperity. We consistently find larger dissipation when the tribo-induced nanoasperity is slid against surfaces with higher atomic corrugation than graphite, like MoS2 and WS2, in prototypical van der Waals layered heterojunctions.
Collapse
Affiliation(s)
- Renato Buzio
- CNR-SPIN, C.so F.M. Perrone 24, Genova16152, Italy
| | - Andrea Gerbi
- CNR-SPIN, C.so F.M. Perrone 24, Genova16152, Italy
| | | | - Luca Repetto
- Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, Genova16146, Italy
| | - Andrea Vanossi
- CNR-IOM Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, c/o SISSA, Via Bonomea 265, Trieste34136, Italy
- International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste34136, Italy
| |
Collapse
|
7
|
Kim S, Moon D, Jeon BR, Yeon J, Li X, Kim S. Accurate Atomic-Scale Imaging of Two-Dimensional Lattices Using Atomic Force Microscopy in Ambient Conditions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1542. [PMID: 35564252 PMCID: PMC9104726 DOI: 10.3390/nano12091542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
To facilitate the rapid development of van der Waals materials and heterostructures, scanning probe methods capable of nondestructively visualizing atomic lattices and moiré superlattices are highly desirable. Lateral force microscopy (LFM), which measures nanoscale friction based on the commonly available atomic force microscopy (AFM), can be used for imaging a wide range of two-dimensional (2D) materials, but imaging atomic lattices using this technique is difficult. Here, we examined a number of the common challenges encountered in LFM experiments and presented a universal protocol for obtaining reliable atomic-scale images of 2D materials under ambient environment. By studying a series of LFM images of graphene and transition metal dichalcogenides (TMDs), we have found that the accuracy and the contrast of atomic-scale images critically depended on several scanning parameters including the scan size and the scan rate. We applied this protocol to investigate the atomic structure of the ripped and self-folded edges of graphene and have found that these edges were mostly in the armchair direction. This finding is consistent with the results of several simulations results. Our study will guide the extensive effort on assembly and characterization of new 2D materials and heterostructures.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Applied Physics, Hanyang University, Ansan 15588, Korea; (S.K.); (B.R.J.); (J.Y.)
| | - Donghyeon Moon
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan 15588, Korea;
| | - Bo Ram Jeon
- Department of Applied Physics, Hanyang University, Ansan 15588, Korea; (S.K.); (B.R.J.); (J.Y.)
| | - Jegyeong Yeon
- Department of Applied Physics, Hanyang University, Ansan 15588, Korea; (S.K.); (B.R.J.); (J.Y.)
| | - Xiaoqin Li
- Center for Complex Quantum Systems, Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA;
- Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Suenne Kim
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan 15588, Korea;
| |
Collapse
|
8
|
Zhan H, Tan X, Xie G, Guo D. Load-dependent energy dissipation induced by the tip-membrane friction on suspended 2D materials. Phys Chem Chem Phys 2021; 23:19819-19826. [PMID: 34525145 DOI: 10.1039/d1cp02610k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tip-membrane interface plays a critical role in characterizing the mechanical properties of ultrathin 2D materials by commonly employed nanoindentation based on atomic force microscopy (AFM). However, the reliability of the assumption that the tip-membrane interface remains pinned during nanoindentation remains unclear, which may introduce unignorable uncertainty in evaluating their true mechanical properties. In this work, it is reported that load-dependent frictional behavior would occur on the tip-membrane interface during nanoindentation tests on monolayer and multilayer suspended WS2 and graphene, and the curve hysteresis could be well explained by the stick-slip behavior. Further analyses and finite element simulations demonstrated that the frictional energy dissipation should be mainly attributed to the frictional behavior along the direction parallel to the cantilever beam. Meanwhile, the in-plane membrane stiffness was mainly responsible for the different frictional behavior on monolayer and multilayer 2D materials. Based on these analyses, some suggestions were proposed to help reduce the uncertainty when extracting the mechanical properties of 2D materials. These findings not only facilitate the deep understanding of the origin of the curve hysteresis during nanoindentation, but also help to evaluate the mechanical properties of 2D materials in a more reliable way.
Collapse
Affiliation(s)
- Hao Zhan
- State Key Laboratory, Tsinghua University, Beijing, China.
| | - Xinfeng Tan
- State Key Laboratory, Tsinghua University, Beijing, China.
| | - Guoxin Xie
- State Key Laboratory, Tsinghua University, Beijing, China.
| | - Dan Guo
- State Key Laboratory, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Vazirisereshk MR, Hasz K, Zhao MQ, Johnson ATC, Carpick RW, Martini A. Nanoscale Friction Behavior of Transition-Metal Dichalcogenides: Role of the Chalcogenide. ACS NANO 2020; 14:16013-16021. [PMID: 33090766 DOI: 10.1021/acsnano.0c07558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite extensive research on the tribological properties of MoS2, the frictional characteristics of other members of the transition-metal dichalcogenide (TMD) family have remained relatively unexplored. To understand the effect of the chalcogen on the tribological behavior of these materials and gain broader general insights into the factors controlling friction at the nanoscale, we compared the friction force behavior for a nanoscale single asperity sliding on MoS2, MoSe2, and MoTe2 in both bulk and monolayer forms through a combination of atomic force microscopy experiments and molecular dynamics simulations. Experiments and simulations showed that, under otherwise identical conditions, MoS2 has the highest friction among these materials and MoTe2 has the lowest. Simulations complemented by theoretical analysis based on the Prandtl-Tomlinson model revealed that the observed friction contrast between the TMDs was attributable to their lattice constants, which differed depending on the chalcogen. While the corrugation amplitudes of the energy landscapes are similar for all three materials, larger lattice constants permit the tip to slide more easily across correspondingly wider saddle points in the potential energy landscape. These results emphasize the critical role of the lattice constant, which can be the determining factor for frictional behavior at the nanoscale.
Collapse
Affiliation(s)
- Mohammad R Vazirisereshk
- Department of Mechanical Engineering, University of California, Merced, California 95343, United States
| | - Kathryn Hasz
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Meng-Qiang Zhao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark 07102, United States
| | - A T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert W Carpick
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California, Merced, California 95343, United States
| |
Collapse
|
10
|
Abstract
The exfoliation of graphene has opened a new frontier in material science with a focus on 2D materials. The unique thermal, physical and chemical properties of these materials have made them one of the choicest candidates in novel mechanical and nano-electronic devices. Notably, 2D materials such as graphene, MoS2, WS2, h-BN and black phosphorus have shown outstanding lowest frictional coefficients and wear rates, making them attractive materials for high-performance nano-lubricants and lubricating applications. The objective of this work is to provide a comprehensive overview of the most recent developments in the tribological potentials of 2D materials. At first, the essential physical, wear and frictional characteristics of the 2D materials including their production techniques are discussed. Subsequently, the experimental explorations and theoretical simulations of the most common 2D materials are reviewed in regards to their tribological applications such as their use as solid lubricants and surface lubricant nano-additives. The effects of micro/nano textures on friction behavior are also reviewed. Finally, the current challenges in tribological applications of 2D materials and their prospects are discussed.
Collapse
|