1
|
Gordon R, Peters M, Ying C. Optical scattering methods for the label-free analysis of single biomolecules. Q Rev Biophys 2024; 57:e12. [PMID: 39443300 DOI: 10.1017/s0033583524000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Single-molecule techniques to analyze proteins and other biomolecules involving labels and tethers have allowed for new understanding of the underlying biophysics; however, the impact of perturbation from the labels and tethers has recently been shown to be significant in several cases. New approaches are emerging to measure single proteins through light scattering without the need for labels and ideally without tethers. Here, the approaches of interference scattering, plasmonic scattering, microcavity sensing, nanoaperture optical tweezing, and variants are described and compared. The application of these approaches to sizing, oligomerization, interactions, conformational dynamics, diffusion, and vibrational mode analysis is described. With early commercial successes, these approaches are poised to have an impact in the field of single-molecule biophysics.
Collapse
Affiliation(s)
- Reuven Gordon
- Department of Electrical Engineering, University of Victoria, Victoria, BC, Canada
| | - Matthew Peters
- Department of Electrical Engineering, University of Victoria, Victoria, BC, Canada
| | - Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
2
|
Banerjee A, Mathew S, Naqvi MM, Yilmaz SZ, Zacharopoulou M, Doruker P, Kumita JR, Yang SH, Gur M, Itzhaki LS, Gordon R, Bahar I. Influence of point mutations on PR65 conformational adaptability: Insights from molecular simulations and nanoaperture optical tweezers. SCIENCE ADVANCES 2024; 10:eadn2208. [PMID: 38820156 PMCID: PMC11141623 DOI: 10.1126/sciadv.adn2208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
PR65 is the HEAT repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem repeat protein. Its conformational mechanics plays a crucial role in PP2A function by opening/closing substrate binding/catalysis interface. Using in silico saturation mutagenesis, we identified PR65 "hinge" residues whose substitutions could alter its conformational adaptability and thereby PP2A function, and selected six mutations that were verified to be expressed and soluble. Molecular simulations and nanoaperture optical tweezers revealed consistent results on the specific effects of the mutations on the structure and dynamics of PR65. Two mutants observed in simulations to stabilize extended/open conformations exhibited higher corner frequencies and lower translational scattering in experiments, indicating a shift toward extended conformations, whereas another displayed the opposite features, confirmed by both simulations and experiments. The study highlights the power of single-molecule nanoaperture-based tweezers integrated with in silico approaches for exploring the effect of mutations on protein structure and dynamics.
Collapse
Affiliation(s)
- Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Samuel Mathew
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
| | - Mohsin M. Naqvi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Sema Z. Yilmaz
- Department of Mechanical Engineering, Istanbul Technical University, 34437 Istanbul, Turkey
| | - Maria Zacharopoulou
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Janet R. Kumita
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Shang-Hua Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mert Gur
- Department of Mechanical Engineering, Istanbul Technical University, 34437 Istanbul, Turkey
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Bahar I, Banerjee A, Mathew S, Naqvi M, Yilmaz S, Zachoropoulou M, Doruker P, Kumita J, Yang SH, Gur M, Itzhaki L, Gordon R. Influence of Point Mutations on PR65 Conformational Adaptability: Insights from Nanoaperture Optical Tweezer Experiments and Molecular Simulations. RESEARCH SQUARE 2023:rs.3.rs-3599809. [PMID: 38014259 PMCID: PMC10680943 DOI: 10.21203/rs.3.rs-3599809/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PR65 is the HEAT-repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem-repeat protein, forming a spring-like architecture. PR65 conformational mechanics play a crucial role in PP2A function by opening/closing the substrate-binding/catalysis interface. Using in-silico saturation mutagenesis we identified "hinge" residues of PR65, whose substitutions are predicted to restrict its conformational adaptability and thereby disrupt PP2A function. Molecular simulations revealed that a subset of hinge mutations stabilized the extended/open conformation, whereas another had the opposite effect. By trapping in nanoaperture optical tweezer, we characterized PR65 motion and showed that the former mutants exhibited higher corner frequencies and lower translational scattering, indicating a shift towards extended conformations, whereas the latter showed the opposite behavior. Thus, experiments confirm the conformations predicted computationally. The study highlights the utility of nanoaperture-based tweezers for exploring structure and dynamics, and the power of integrating this single-molecule method with in silico approaches.
Collapse
|
4
|
Fan YY, Wen J, Li J, Yang XW, Zhang L, Zhang ZQ. Structure-switching aptasensors for sensitive detection of ochratoxin A. LUMINESCENCE 2023; 38:1678-1685. [PMID: 37455261 DOI: 10.1002/bio.4556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Ochratoxin A (OTA) is a toxic metabolite commonly found in various foods and feedstuffs. Accurate and sensitive detection of OTA is needed for food safety and human health. Based on a common OTA-binding aptamer (OTABA), two structure-switching OTABAs, namely OTABA4 and OTABA3, were designed by configuring a split G-quadruplex and a split G-triplex, respectively, at the two ends of OTABA to construct aptasensors for the detection of OTA. The OTABA, G-quadruplex, and G-triplex all can capture the thioflavin T (ThT) probe, thereby enhancing the fluorescence intensity of ThT. Bonding with OTA could change the conformations of OTABA and G-quadruplex or G-triplex regions, resulting in the release of the captured ThT and diminution of its fluorescence intensity. Dual conformation changes in structure-switching OTABA synergistically amplified the fluorescence signal and improved the sensitivity of the aptasensor, especially for that with OTABA3. The detection limits of the OTABA4-ThT and OTABA3-ThT systems for OTA were 0.28 and 0.059 ng ml-1 , with a 1.4-fold and 6.7-fold higher sensitivity than that of the original OTABA-ThT system, respectively. They performed well in corn and peanut samples and met the requirements of the food safety inspections.
Collapse
Affiliation(s)
- Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Jie Wen
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Xiao-Wen Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Lu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
5
|
Babaei E, Wright D, Gordon R. Fringe Dielectrophoresis Nanoaperture Optical Trapping with Order of Magnitude Speed-Up for Unmodified Proteins. NANO LETTERS 2023; 23:2877-2882. [PMID: 36999922 DOI: 10.1021/acs.nanolett.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single molecule analysis of proteins in an aqueous environment without modification (e.g., labels or tethers) elucidates their biophysics and interactions relevant to drug discovery. By combining fringe-field dielectrophoresis with nanoaperture optical tweezers we demonstrate an order of magnitude faster time-to-trap for proteins when the counter electrode is outside of the solution. When the counter electrode is inside the solution (the more common configuration found in the literature), electrophoresis speeds up the trapping of polystyrene nanospheres, but this was not effective for proteins in general. Since time-to-trap is critical for high-thoughput analysis, these findings are a major advancement to the nanoaperture optical trapping technique for protein analysis.
Collapse
Affiliation(s)
- Elham Babaei
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| | - Demelza Wright
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| |
Collapse
|
6
|
Ying C, Ma T, Xu L, Rahmani M. Localized Nanopore Fabrication via Controlled Breakdown. NANOMATERIALS 2022; 12:nano12142384. [PMID: 35889608 PMCID: PMC9323289 DOI: 10.3390/nano12142384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Nanopore sensors provide a unique platform to detect individual nucleic acids, proteins, and other biomolecules without the need for fluorescent labeling or chemical modifications. Solid-state nanopores offer the potential to integrate nanopore sensing with other technologies such as field-effect transistors (FETs), optics, plasmonics, and microfluidics, thereby attracting attention to the development of commercial instruments for diagnostics and healthcare applications. Stable nanopores with ideal dimensions are particularly critical for nanopore sensors to be integrated into other sensing devices and provide a high signal-to-noise ratio. Nanopore fabrication, although having benefited largely from the development of sophisticated nanofabrication techniques, remains a challenge in terms of cost, time consumption and accessibility. One of the latest developed methods—controlled breakdown (CBD)—has made the nanopore technique broadly accessible, boosting the use of nanopore sensing in both fundamental research and biomedical applications. Many works have been developed to improve the efficiency and robustness of pore formation by CBD. However, nanopores formed by traditional CBD are randomly positioned in the membrane. To expand nanopore sensing to a wider biomedical application, controlling the localization of nanopores formed by CBD is essential. This article reviews the recent strategies to control the location of nanopores formed by CBD. We discuss the fundamental mechanism and the efforts of different approaches to confine the region of nanopore formation.
Collapse
Affiliation(s)
- Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
- Correspondence:
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| |
Collapse
|
7
|
Zhao Y, Iarossi M, De Fazio AF, Huang JA, De Angelis F. Label-Free Optical Analysis of Biomolecules in Solid-State Nanopores: Toward Single-Molecule Protein Sequencing. ACS PHOTONICS 2022; 9:730-742. [PMID: 35308409 PMCID: PMC8931763 DOI: 10.1021/acsphotonics.1c01825] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Sequence identification of peptides and proteins is central to proteomics. Protein sequencing is mainly conducted by insensitive mass spectroscopy because proteins cannot be amplified, which hampers applications such as single-cell proteomics and precision medicine. The commercial success of portable nanopore sequencers for single DNA molecules has inspired extensive research and development of single-molecule techniques for protein sequencing. Among them, three challenges remain: (1) discrimination of the 20 amino acids as building blocks of proteins; (2) unfolding proteins; and (3) controlling the motion of proteins with nonuniformly charged sequences. In this context, the emergence of label-free optical analysis techniques for single amino acids and peptides by solid-state nanopores shows promise for addressing the first challenge. In this Perspective, we first discuss the current challenges of single-molecule fluorescence detection and nanopore resistive pulse sensing in a protein sequencing. Then, label-free optical methods are described to show how they address the single-amino-acid identification within single peptides. They include localized surface plasmon resonance detection and surface-enhanced Raman spectroscopy on plasmonic nanopores. Notably, we report new data to show the ability of plasmon-enhanced Raman scattering to record and discriminate the 20 amino acids at a single-molecule level. In addition, we discuss briefly the manipulation of molecule translocation and liquid flow in plasmonic nanopores for controlling molecule movement to allow high-resolution reading of protein sequences. We envision that a combination of Raman spectroscopy with plasmonic nanopores can succeed in single-molecule protein sequencing in a label-free way.
Collapse
Affiliation(s)
- Yingqi Zhao
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marzia Iarossi
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Jian-An Huang
- Faculty
of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | | |
Collapse
|
8
|
Hajisalem G, Babaei E, Dobinson M, Iwamoto S, Sharifi Z, Eby J, Synakewicz M, Itzhaki LS, Gordon R. Accessible high-performance double nanohole tweezers. OPTICS EXPRESS 2022; 30:3760-3769. [PMID: 35209628 DOI: 10.1364/oe.446756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Nanohole optical tweezers have been used by several groups to trap and analyze proteins. In this work, we demonstrate that it is possible to create high-performance double nanohole (DNH) substrates for trapping proteins without the need for any top-down approaches (such as electron microscopy or focused-ion beam milling). Using polarization analysis, we identify DNHs as well as determine their orientation and then use them for trapping. We are also able to identify other hole configurations, such as single, trimers and other clusters. We explore changing the substrate from glass to polyvinyl chloride to enhance trapping ability, showing 7 times lower minimum trapping power, which we believe is due to reduced surface repulsion. Finally, we present tape exfoliation as a means to expose DNHs without damaging sonication or chemical methods. Overall, these approaches make high quality optical trapping using DNH structures accessible to a broad scientific community.
Collapse
|
9
|
Peng X, Kotnala A, Rajeeva BB, Wang M, Yao K, Bhatt N, Penley D, Zheng Y. Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications. ADVANCED OPTICAL MATERIALS 2021; 9:2100050. [PMID: 34434691 PMCID: PMC8382230 DOI: 10.1002/adom.202100050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 05/12/2023]
Abstract
The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bharath Bangalore Rajeeva
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kan Yao
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Neel Bhatt
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Penley
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Sharifi Z, Dobinson M, Hajisalem G, Shariatdoust MS, Frencken AL, van Veggel FCJM, Gordon R. Isolating and enhancing single-photon emitters for 1550 nm quantum light sources using double nanohole optical tweezers. J Chem Phys 2021; 154:184204. [PMID: 34241038 DOI: 10.1063/5.0048728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-photon sources are required for quantum technologies and can be created from individual atoms and atom-like defects. Erbium ions produce single photons at low-loss fiber optic wavelengths, but they have low emission rates, making them challenging to isolate reliably. Here, we tune the size of gold double nanoholes (DNHs) to enhance the emission of single erbium emitters, achieving 50× enhancement over rectangular apertures previously demonstrated. This produces enough enhancement to show emission from single nanocrystals at wavelengths not seen in our previous work, i.e., 400 and 1550 nm. We observe discrete levels of emission for nanocrystals with low numbers of emitters and demonstrate isolating single emitters. We describe how the trapping time is proportional to the enhancement factor for a given DNH structure, giving us an independent way to measure the enhancement. This shows a promising path to achieving single emitter sources at 1550 nm.
Collapse
Affiliation(s)
- Zohreh Sharifi
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Michael Dobinson
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ghazal Hajisalem
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mirali Seyed Shariatdoust
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Adriaan L Frencken
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Frank C J M van Veggel
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
11
|
Multi-stage responsive peptide nanosensor: Anchoring EMT and mitochondria with enhanced fluorescence and boosting tumor apoptosis. Biosens Bioelectron 2021; 184:113235. [PMID: 33887614 DOI: 10.1016/j.bios.2021.113235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is closely related to tumor metastasis and invasion. Thereinto, mesenchymal tumor mitochondria are the critical target for tumor inhibition. Therefore, real-time in vivo monitoring of EMT as well as inhibiting mesenchymal tumor mitochondria is of great diagnosis and therapy significance. Herein, we construct a multi-stage recognition and morphological transformable self-assembly-peptide nano biosensor NDRP which can response the EMT marker and specifically damage the mesenchymal tumor cell in vivo. This nano-molar-affinity sensor is designed and screened with sensitive peptides containing a molecular switching which could be specifically triggered by the receptor to achieve the vesicle-to-fibril transformation in living system with enhanced fluorescent signal. NDRP nanosensor could target the tumor lesion in circulatory system, recognize mesenchymal tumor marker DDR2 (Discoidin domain receptor 2) in cellular level and specifically achieve mitochondria in subcellular level as well as damaged mitochondria which could be applied as a in vivo theranostic platform.
Collapse
|