1
|
Dhariwal A, Banerjee D, Sen N, Chakraborty N, Chattopadhyay K. Synergistic effect of adsorption and photo-catalysis in removal of various textile dyes: Excellent efficacy of molybdenum disulfide-zinc oxide hybrids. Catal Today 2025; 446:115116. [DOI: 10.1016/j.cattod.2024.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Jacob JAE, Antony R, Ivan Jebakumar DS. Synergistic effect of silver nanoparticle-embedded calcite-rich biochar derived from Tamarindus indica bark on 4-nitrophenol reduction. CHEMOSPHERE 2024; 349:140765. [PMID: 38006917 DOI: 10.1016/j.chemosphere.2023.140765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Calcite-biochar composites are attractive materials with outstanding adsorption capabilities for removing various recalcitrant contaminants in wastewater treatment, however, the complexity of their synthesis limits their practical applications. In this work, we have prepared calcite-rich biochar (Ca-BC) from a single precursor (Tamarindus indica bark), which simplifies the synthetic route for preparing calcite-biochar composite. The as-synthesized composite is utilized to make a heterogeneous catalytic system containing the supported silver nanoparticles (Ag@Ca-BC) formed by the reduction of Ag+ ions on the surface of the composite. The formation of Ag@Ca-BC is confirmed by various characterization techniques such as PXRD, FT-IR, UV-Vis, cyclic voltammetry, impedance measurement, SEM, and TEM analyses. Especially, the TEM analysis confirms the presence of Ag nanoparticles with size ranging between 20 and 50 nm on the surface of Ca-BC composite. The nano-catalyst Ag@Ca-BC efficiently promotes the conversion of 4-nitrophenol to 4-aminophenol using NaBH4 as the reductant in water within 24 minutes at room temperature, suggesting that Ag@Ca-BC can be an efficient catalyst to remove nitroaromatics from the industrial effluents. The straightforward synthesis of Ca-BC from a single precursor along with its utility as a catalytic support presents a compelling proposition for application in the field of materials synthesis, catalysis, and green chemistry.
Collapse
Affiliation(s)
- J Amala Ebi Jacob
- Postgraduate Department of Chemistry, St. John's College, Palayamkottai, 627002, Tamil Nadu, India
| | - R Antony
- Department of Chemistry, Mepco Schlenk Engineering College (Autonomous), Sivakasi, 626005, Tamil Nadu, India.
| | - D S Ivan Jebakumar
- Postgraduate Department of Chemistry, St. John's College, Palayamkottai, 627002, Tamil Nadu, India.
| |
Collapse
|
3
|
Sirajudheen P, Vigneshwaran S, Kasim VCR, Basheer MC, Meenakshi S. Mechanistic view of MoS 2 confined chitosan-polyaniline hybrid composite for the photo-oxidation of cationic dyes. Int J Biol Macromol 2023; 249:126008. [PMID: 37516229 DOI: 10.1016/j.ijbiomac.2023.126008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
In this article, we describe the formulation of polyaniline-chitosan/MoS2 (PANI-CS @MoS2) blended composite and evaluated its efficiency to degrade the dye molecules Rhodamine B (RhB) and Malachite Green (MG) under visible light. In the photocatalytic mechanism, the CS acts as an electron carrier and binding agent during the oxidation reaction to decrease the recombination of electrons and holes generated by the irradiation of light. FTIR, XPS, XRD, TG, Zeta Potential, UV, SEM, AFM and TEM were used to characterize the PANI-CS@MoS2 composite after it had been synthesized. For the degradation analysis, 30 mg/L concentrations of 50 mL MG and RhB dye solutions were used. The recommended dosage of the composite was 100 mg. For MG and RhB dyes, the colour removal rates were 96.2 % and 91.5 %, respectively, under exposure to visible light and at the pH ranges of 8-11. After being exposed to visible light for 60 min, the whole decay process was accomplished. The photocatalyst offers great extensibility up to five iterations. The Langmuir-Hinshelwood kinetic model governs the rate of dye molecules degradation. The result of the study revealed that the PANI-CS@MoS2 composite matrix perhaps be a trustworthy and practical substrate for the efficient refinement of dye-deteriorated water.
Collapse
Affiliation(s)
- P Sirajudheen
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, Malappuram, Kerala 676306, India.
| | - S Vigneshwaran
- Environmental System Laboratory, Department of Civil Engineering, Kyung Hee University Global Campus, 1732 Deogyong-daero, Giheung-Gu, Yongin-Si, Gyeonggi-Do 16705, Republic of Korea
| | - V C Resha Kasim
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, Malappuram, Kerala 676306, India
| | - M C Basheer
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, Malappuram, Kerala 676306, India
| | - S Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute- Deemed to be University, Gandhigram, Dindigul, Tamil Nadu 624302, India.
| |
Collapse
|
4
|
Wibowo YG, Ramadan BS, Taher T, Khairurrijal K. Advancements of Nanotechnology and Nanomaterials in Environmental and Human Protection for Combatting the COVID-19 During and Post-pandemic Era: A Comprehensive Scientific Review. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-24. [PMID: 37363141 PMCID: PMC10171735 DOI: 10.1007/s44174-023-00086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
In December 2019, an outbreak of unknown pneumonia emerged in Wuhan City, Hubei Province, China. It was later identified as the SARS-CoV-2 virus and has since infected over 9 million people in more than 213 countries worldwide. Massive papers on the topic of SARS-CoV-2 that have already been published are necessary to be analyzed and discussed. This paper used the combination of systematic literature network analysis and content analysis to develop a comprehensive discussion related to the use of nanotechnology and materials in environmental and human protection. Its is shown that various efforts have been made to control the transmission of this pandemic. Nanotechnology plays a crucial role in modern vaccine design, as nanomaterials are essential tools for antigen delivery, adjuvants, and mimics of viral structures. In addition, nanomaterials and nanotechnology also reported a crucial role in environmental protection for defence and treating the pandemic. To eradicate pandemics now and in the future, successful treatments must enable rapid discovery, scalable manufacturing, and global distribution. In this review, we discuss the current approaches to COVID-19 development and highlight the critical role of nanotechnology and nanomaterials in combating the virus in the human body and the environment.
Collapse
Affiliation(s)
- Yudha Gusti Wibowo
- Department of Mining Engineering, Institut Teknologi Sumatrea, Lampung, 35365 Indonesia
| | | | - Tarmizi Taher
- Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
- Department of Physics, Institut Teknologi Bandung, Bandung, 40132 Indonesia
| |
Collapse
|
5
|
Ikram M, Atiq I, Rafiq Butt A, shahzadi I, Ul-Hamid A, Haider A, Nabgan W, Medina F. Graphene oxide/polyvinylpyrrolidone-doped MoO 3 nanocomposites used for dye degradation and their antibacterial activity: a molecular docking analysis. Front Chem 2023; 11:1191849. [PMID: 37228862 PMCID: PMC10205020 DOI: 10.3389/fchem.2023.1191849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
In this study, MoO3 nanostructures were prepared, doped with various concentrations of graphene oxide (2 and 4% GO) and a fixed amount of polyvinylpyrrolidone (PVP) using the co-precipitation method. The motive of this study was to examine the catalytic and antimicrobial efficacy with evidential molecular docking analyses of GO/PVP-doped MoO3. GO and PVP were utilized as doping agents to reduce the exciton recombination rate of MoO3 by providing more active sites that increase the antibacterial activity of MoO3. The prepared binary dopant (GO and PVP)-dependent MoO3 was used as an effective antibacterial agent against Escherichia coli (E. coli). Notably, 4% GO/PVP-doped MoO3 showed good bactericidal potential against E. coli at higher concentrations in comparison to ciprofloxacin. Furthermore, in silico docking revealed the possible inhibitory impact of the synthesized nanocomposites on folate and fatty acid synthesis enzymes, dihydrofolate reductase and enoyl-[acyl carrier protein] reductase, respectively.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Iram Atiq
- Department of Physics, Lahore Garrison University, Lahore, Punjab, Pakistan
| | - Alvina Rafiq Butt
- Department of Physics, Lahore Garrison University, Lahore, Punjab, Pakistan
| | - Iram shahzadi
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Punjab, Pakistan
| | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
| | - Francisco Medina
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
6
|
Riaz S, Ikram M, Naz S, Shahzadi A, Nabgan W, Ul-Hamid A, Haider A, Haider J, Al-Shanini A. Bactericidal Action and Industrial Dye Degradation of Graphene Oxide and Polyacrylic Acid-Doped SnO 2 Quantum Dots: In Silico Molecular Docking Study. ACS OMEGA 2023; 8:5808-5819. [PMID: 36816704 PMCID: PMC9933192 DOI: 10.1021/acsomega.2c07460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The present work demonstrates the systematic incorporation of different concentrations of graphene oxide (GO) into a fixed amount of polyacrylic acid (PAA)-doped SnO2 quantum dots (QDs) through a co-precipitation approach. The research aimed to evaluate the catalytic and antibacterial actions of GO/PAA-SnO2 QDs. Moreover, optical properties, surface morphologies, crystal structures, elemental compositions, and d-spacings of prepared QDs were examined. X-ray diffraction patterns revealed the tetragonal configuration of SnO2, and the crystallinity of QDs was suppressed upon dopants verified by the SAED patterns. Electronic spectra identified the blue shift by incorporating GO and PAA led to a reduction in band gap energy. Fourier transform infrared spectra showed the existence of rotational and vibrational modes associated with the functional groups during the synthesis process. A drastic increase in the catalytic efficacy of QDs was observed in the neutral medium by including dopants, indicating that GO/PAA-SnO2 is a promising catalyst. GO/PAA-SnO2 showed strong bactericidal efficacy against Escherichia coli (E. coli) at higher GO concentrations. Molecular docking studies predicted the given nanocomposites, i.e., SnO2, PAA-SnO2, and GO/PAA-SnO2, as potential inhibitors of beta-lactamaseE. coli and DNA gyraseE. coli.
Collapse
Affiliation(s)
- Saira Riaz
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Sadia Naz
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Anum Shahzadi
- Faculty
of Pharmacy, The University of Lahore, Lahore54000, Pakistan
| | - Walid Nabgan
- Departamentd’EnginyeriaQuímica, UniversitatRovira i Virgili, Tarragona43007, Spain
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran31261, Saudi Arabia
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad
Nawaz Shareef, University of Agriculture, Multan66000, Punjab, Pakistan
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Ali Al-Shanini
- College
of Petroleum and Engineering, Hadhramout
University, Mukalla P. O. Box 50511, Hadhramout, Yemen
| |
Collapse
|
7
|
Krutyakov YA, Khina AG. Bacterial Resistance to Nanosilver: Molecular Mechanisms and Possible Ways to Overcome them. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ikram M, Rasheed F, Haider A, Naz S, Ul-Hamid A, Shahzadi A, Haider J, Shahzadi I, Hayat S, Ali S. Photocatalytic and antibacterial activity of graphene oxide/cellulose-doped TiO 2 quantum dots: in silico molecular docking studies. NANOSCALE ADVANCES 2022; 4:3764-3776. [PMID: 36133332 PMCID: PMC9470022 DOI: 10.1039/d2na00383j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO) and cellulose nanocrystal (CNC)-doped TiO2 quantum dots (QDs) were effectively synthesized by employing the co-precipitation method for the degradation of dyes and antimicrobial applications. A series of characterizations, i.e., XRD, FTIR, UV-visible spectroscopy, EDS, FE-SEM, and HR-TEM, was used to characterize the prepared samples. A reduction in PL intensity was observed, while the band gap energy (E g) decreased from 3.22 to 2.96 eV upon the incorporation of GO/CNC in TiO2. In the Raman spectra, the D and G bands were detected, indicating the presence of graphene oxide in the composites. Upon doping, the crystallinity of TiO2 increased. HR-TEM was employed to estimate the interlayer d-spacing of the nanocomposites, which matched well with the XRD data. The photocatalytic potential of the prepared samples was tested against methylene blue, methylene violet, and ciprofloxacin (MB:MV:CF) when exposed to visible light for a certain period. The antibacterial activity of GO/CNC/TiO2 QDs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria in vitro was tested to determine their potential for medicinal applications. The molecular docking investigations of CNC-TiO2 and GO/CNC-doped TiO2 against DNA gyrase and FabI from E. coli and S. aureus were found to be consistent with the results of the in vitro bactericidal activity test. We believe that the prepared nanocomposites will be highly efficient for wastewater treatment and antimicrobial activities.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Fahad Rasheed
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 6000 Pakistan
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab 54000 Pakistan
| | - Shaukat Hayat
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
9
|
In-silico predicting as a tool to develop plant-based biomedicines and nanoparticles: Lycium shawii metabolites. Biomed Pharmacother 2022; 150:113008. [PMID: 35489282 DOI: 10.1016/j.biopha.2022.113008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION AND PURPOSE In silico approach helps develop biomedicines and is useful for exploring the pharmacology of potential therapeutics using computer-simulated models. In vitro assays were used to determine the anti-microbial and cytotoxic efficacies of silver nanoparticles (AgNPs) synthesized with the shrub Lycium shawii. METHODS In silico predicting was performed to assess the L. shawii metabolites identified using QTOF-LCMS for their pharmacological properties. L. shawii mediated AgNPs were synthesized and characterized (FTIR, TEM, SEM, DLS and EDX). The anti-bacterial efficacies of L. shawii extract, AgNPs, and penicillin-conjugated AgNPs (pen-AgNPs) were determined. The cytotoxicity of the AgNPs was measured against colorectal cancer cell line (HCT116), normal breast epithelium (MCF 10 A), and breast cancer cell line (MDA MB 231). RESULTS AND DISCUSSION Five molecules (costunolide, catechin, emodin, lyciumaside, and aloe emodin 11-O-rhamnoside) were detected in the L. shawii extract. AgNPs (69 nm) were spherical with crystallographic structure. All three agents prepared showed inhibitory activity against the tested bacteria, the most efficacious being pen-AgNPs. High cytotoxicity of AgNPs (IC50 62 μg/ml) was observed against HCT116, IC50 was 78 μg/ml for MCF 10 A, and 250 μg/ml for MDA MB 231, of which cells showed apoptotic features under TEM examination. The in silico approach indicated that the carbonic anhydrase IX enzyme was the target molecule mediating anti-cancer and anti-bacterial activities and that emodin was the metabolite in action. CONCLUSIONS Combining in vitro studies and in silico molecular target prediction helps find novel therapeutic agents. Among L. shawii metabolites, emodin is suggested for further studies as an agent for drug development against pathogenic bacteria and cancer.
Collapse
|
10
|
Combination of MoS2 nanopetals with Ag nanoparticles decorated graphene oxide for boosting photocatalytic abatement of recalcitrant pollutants under visible light irradiation. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Khina AG, Krutyakov YA. Similarities and Differences in the Mechanism of Antibacterial Action of Silver Ions and Nanoparticles. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821060053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|