1
|
Dai Y, Tao G, Chen Y, Yao G, Liu D, Dang Z, Liu Z, Peng P, Huang Y, He X, Zhang H, Zheng Z, Sun H, Qian W, Qi P, Gong Y, Guan Y, Liu K, Fang Z. Two-Dimensional Exciton Oriented Diffusion via Periodic Potentials. ACS NANO 2024; 18:23196-23204. [PMID: 39141918 DOI: 10.1021/acsnano.4c05723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Excitonic devices operate based on excitons, which can be excited by photons as well as emitting photons and serve as a medium for photon-carrier conversion. Excitonic devices are expected to combine the advantages of both the high response rate of photonic devices and the high integration of electronic devices simultaneously. However, because of the neutral feature, exciton transport is generally achieved via diffusion rather than using electric fields, and the efficient control of exciton flux directionality has always been difficult. In this work, a precisely designed one-dimensional periodic nanostructure (1DPS) is used to introduce periodic strain field along with resonant mode to the WS2 monolayer, achieving exciton oriented diffusion with a 7.6-fold exciton diffusion coefficient enhancement relative to that of intrinsic, while enhancing the excitonic emission intensity by a factor of 10 and reducing exciton saturation threshold power by 2 orders of magnitude. Based on the analysis of the density functional theory (DFT) and the finite-element method (FEM), we attribute the anisotropy of exciton diffusion to exciton funneling induced by periodic potentials, which do not require excessive potential height difference for an efficient oriented diffusion. As a result of resonant emission, the exciton diffusion is dragged into the nonlinear regime owing to the high exciton density close to saturation, which improves the exciton diffusion coefficient and diffusion anisotropy more appreciably.
Collapse
Affiliation(s)
- Yuchen Dai
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Guangyi Tao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Yuxiang Chen
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Guangjie Yao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Donglin Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Zhibo Dang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Zhengchang Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Pu Peng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Yijing Huang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Xiao He
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Han Zhang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Zhipeng Zheng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Haonan Sun
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Wenqi Qian
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Pengfei Qi
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yan Guan
- Center for Physicochemical Analysis and Measurements in ICCAS, Analytical Instrumentation Center, Peking University, Beijing 100871, China
| | - Kaihui Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Ge A, Ge X, Sun L, Lu X, Ma L, Zhao X, Yao B, Zhang X, Zhang T, Jing W, Zhou X, Shen X, Lu W. Unraveling the strain tuning mechanism of interlayer excitons in WSe 2/MoSe 2heterostructure. NANOTECHNOLOGY 2024; 35:175207. [PMID: 38266306 DOI: 10.1088/1361-6528/ad2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) exhibit rich excitonic physics, due to reduced dielectric screening and strong Coulomb interactions. Especially, some attractive topics in modern condensed matter physics, such as correlated insulator, superconductivity, topological excitons bands, are recently reported in stacking two monolayer (ML) TMDs. Here, we clearly reveal the tuning mechanism of tensile strain on interlayer excitons (IEXs) and intralayer excitons (IAXs) in WSe2/MoSe2heterostructure (HS) at low temperature. We utilize the cryogenic tensile strain platform to stretch the HS, and measure by micro-photoluminescence (μ-PL). The PL peaks redshifts of IEXs and IAXs in WSe2/MoSe2HS under tensile strain are well observed. The first-principles calculations by using density functional theory reveals the PL peaks redshifts of IEXs and IAXs origin from bandgap shrinkage. The calculation results also show the Mo-4d states dominating conduction band minimum shifts of the ML MoSe2plays a dominant role in the redshifts of IEXs. This work provides new insights into understanding the tuning mechanism of tensile strain on IEXs and IAXs in two-dimensional (2D) HS, and paves a way to the development of flexible optoelectronic devices based on 2D materials.
Collapse
Affiliation(s)
- Anping Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xun Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Liaoxin Sun
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xinle Lu
- Key Laboratory of Polar Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Lei Ma
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Xinchao Zhao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bimu Yao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- Department of Physics, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenji Jing
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaohao Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Xuechu Shen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| |
Collapse
|