1
|
Liu F, Fan M, Liu X, Chen J. One-Pot Synthesis of Cellulose-Based Carbon Aerogel Loaded with TiO 2 and g-C 3N 4 and Its Photocatalytic Degradation of Rhodamine B. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1141. [PMID: 38998746 PMCID: PMC11243333 DOI: 10.3390/nano14131141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
A cellulose-based carbon aerogel (CTN) loaded with titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) was prepared using sol-gel, freeze-drying, and high-temperature carbonization methods. The formation of the sol-gel was carried out through a one-pot method using refining papermaking pulp, tetrabutyl titanate, and urea as raw materials and hectorite as a cross-linking and reinforcing agent. Due to the cross-linking ability of hectorite, the carbonized aerogel maintained a porous structure and had a large specific surface area with low density (0.0209 g/cm3). The analysis of XRD, XPS, and Raman spectra revealed that the titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) were uniformly distributed in the CTN, while TEM and SEM observations demonstrated the uniformly distributed three-dimensional porous structure of CTN. The photocatalytic activity of the CTN was determined according to its ability to degrade rhodamine B. The removal rate reached 89% under visible light after 120 min. In addition, the CTN was still stable after five reuse cycles. The proposed catalyst exhibits excellent photocatalytic performance under visible light conditions.
Collapse
Affiliation(s)
| | | | | | - Jinyang Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China; (F.L.)
| |
Collapse
|
2
|
Chauhan A, Agnihotri S, Vasundhara M. Enhanced solar light-driven photocatalysis of norfloxacin using Fe-doped TiO 2: RSM optimization, DFT simulations, and toxicity study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47991-48013. [PMID: 39017867 DOI: 10.1007/s11356-024-34080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
This study investigates the photocatalytic degradation of norfloxacin (NFX) utilizing Fe-doped TiO2 nanocomposite under natural sunlight. TiO2-based photocatalysts were synthesized using chemical precipitation varying Fe-dopant concentration and characterized in detail. Theoretical modelling, centred on density functional theory (DFT), elucidated that Fe ions within the TiO2 lattice are effectively confined, thereby narrowing the wide band gap of TiO2. The findings strongly support that Fe3+ ions augmented the photocatalytic activity of TiO2 by facilitating an intermediate interfacial route for electron and hole transfer, particularly up to an optimal dopant concentration of 1.5 M%. Subsequently, a three-level Box-Behnken design (BBD) was developed to determine the initial pH, optimal catalyst concentration, and drug dosage. High-performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to identify reaction intermediates, thereby establishing a potential degradation pathway. Notably, sustained recyclability was achieved, with 82% degradation efficiency maintained over five cycles. Additionally, the toxicity of degradation intermediates was evaluated through bacterial and phytotoxicity tests, affirming the environmental safety of treated water. In vitro toxicity of the nanomaterial was also examined, emphasizing its environmental implications. Scavenger experiments revealed that hole and hydroxyl radicals were the primary active species in Fe-TiO2-based photocatalysis. Furthermore, the antibacterial potential of the synthesized catalyst was assessed using Escherichia coli and Staphylococcus aureus to observe their respective antibacterial responses.
Collapse
Affiliation(s)
- Anjali Chauhan
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, 147004, Punjab, India
| | - Shekhar Agnihotri
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, 131028, India.
- Centre for Advanced Translational Research in Food Nano-Biotechnology (CATR-FNB), National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, 131028, India.
| | - Mondem Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, 147004, Punjab, India
| |
Collapse
|
3
|
Selvamani M, Kesavan A, Arulraj A, Ramamurthy PC, Rahaman M, Pandiaraj S, Thiruvengadam M, Sacari Sacari EJ, Limache Sandoval EM, Viswanathan MR. Microwave-Assisted Synthesis of Flower-like MnMoO 4 Nanostructures and Their Photocatalytic Performance. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1451. [PMID: 38611966 PMCID: PMC11012821 DOI: 10.3390/ma17071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 02/02/2024] [Indexed: 04/14/2024]
Abstract
This article describes an affordable method for the synthesis of MnMoO4 nanoflowers through the microwave synthesis approach. By manipulating the reaction parameters like solvent, pH, microwave power, and irradiation duration along this pathway, various nanostructures can be acquired. The synthesized nanoflowers were analyzed by using a powder X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and UV-vis diffuse reflectance spectroscopy (UV-DRS) to determine their crystalline nature, morphological and functional group, and optical properties, respectively. X-ray photoelectron spectroscopy (XPS) was performed for the examination of elemental composition and chemical states by qualitative and quantitative analysis. The results of the investigations demonstrated that the MnMoO4 nanostructures with good crystallinity and distinct shape were formed successfully. The synthesized MnMoO4 nanoflowers were tested for their efficiency as a photocatalyst in the degradation studies of methylene blue (MB) as model organic contaminants in an aqueous medium under visible light, which showed their photocatalytic activity with a degradation of 85%. Through the band position calculations using the electronegative value of MnMoO4, the photocatalytic mechanism of the nanostructures was proposed. The results indicated that the effective charge separation, and transfer mechanisms, in addition to the flower-like shape, were responsible for the photocatalytic performance. The stability of the recovered photocatalyst was examined through its recyclability in the degradation of MB. Leveraging MnMoO4's photocatalytic properties, future studies may focus on scaling up these processes for practical and large-scale environmental remediation.
Collapse
Affiliation(s)
- Muthamizh Selvamani
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Arulvarman Kesavan
- Department of Physics & Nanotechnology, SRM Institute of Science & Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Macul, Santiago 7800002, Chile;
| | - Praveen C. Ramamurthy
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India;
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea;
| | - Elisban Juani Sacari Sacari
- Centro de Energías Renovables de Tacna, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Avenida Miraflores S/N, Ciudad Universitaria, Tacna 23003, Peru;
| | - Elmer Marcial Limache Sandoval
- Grupo de Investigación HIDROCIENCIA, Facultad de Ciencias de la Salud, Universidad Privada de Tacna, Av. Jorge Basadre Grohmann S/N Pocollay, Tacna 23003, Peru
| | - Mangalaraja Ramalinga Viswanathan
- Faulty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, Santiago 7941169, Chile;
- Department of Mechanical Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
4
|
Chandra A, Ghosh S, Sarkar R, Sarkar S, Chattopadhyay KK. TiO 2 nanorods decorated Si nanowire hierarchical structures for UV light activated photocatalytic application. CHEMOSPHERE 2024; 352:141249. [PMID: 38266878 DOI: 10.1016/j.chemosphere.2024.141249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Water remediation techniques like photolysis have recently piqued the interest of many researchers due to water contamination resulting from heavy industrialization and urbanization. In the current work, as-synthesized TiO2 nanorod decorated vertically aligned silicon nanowire (SiNW) leads to a hierarchical morphological structure formation. The photocatalytic nature of the fabricated SiNW/TiO2 nanoheterojunction is examined by the dye degradation of textile pollutants like methylene blue (MB), rhodamine B (RhB), and eosin B (EB). The catalytic dye degradation investigations revealed that 4 h hydrothermal synthesis of TiO2 on the surface of SiNW (ST4) exhibited excellent catalytic behaviour. In the presence of H2O2 and UV irradiation, the ST4 nanoheterostructure can degrade 98.89% of the model pollutant methylene blue (MB) in 15 min, demonstrating remarkable photocatalytic performance. The direct Z-scheme heterojunction exhibited by the SiNW/TiO2 structure facilitates a more efficient charge transfer mechanism with higher reducing and oxidizing ability leading to enhanced photocatalytic behaviour. The degradation pathway examined by LC-MS studies demonstrated the complete breakdown of the organic MB dye molecules ultimately mineralizing into CO2, H2O, and other inorganic substances. The photocatalyst ST4 exhibited excellent reusability and stability after multiple cycles of dye degradation enabling its use in practical water purification purposes.
Collapse
Affiliation(s)
- Ankita Chandra
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Shrabani Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Ratna Sarkar
- Thin film and Nano Science Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Sourav Sarkar
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - K K Chattopadhyay
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India; Thin film and Nano Science Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|