1
|
Cao N, Erickson DPJ, Ford EC, Emery RC, Kranz M, Goff P, Schwarz M, Meyer J, Wong T, Saini J, Bloch C, Stewart RD, Sandison GA, Morimoto A, DeLonais-Dick A, Shaver BA, Rengan R, Zeng J. Preclinical Ultra-High Dose Rate (FLASH) Proton Radiation Therapy System for Small Animal Studies. Adv Radiat Oncol 2024; 9:101425. [PMID: 38379895 PMCID: PMC10877683 DOI: 10.1016/j.adro.2023.101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/30/2023] [Indexed: 02/22/2024] Open
Abstract
Purpose Animal studies with ultrahigh dose-rate radiation therapy (FLASH, >40 Gy/s) preferentially spare normal tissues without sacrificing antitumor efficacy compared with conventional dose-rate radiation therapy (CONV). At the University of Washington, we developed a cyclotron-generated preclinical scattered proton beam with FLASH dose rates. We present the technical details of our FLASH radiation system and preliminary biologic results from whole pelvis radiation. Methods and Materials A Scanditronix MC50 compact cyclotron beamline has been modified to produce a 48.7 MeV proton beam at dose rates between 0.1 and 150 Gy/s. The system produces a 6 cm diameter scattered proton beam (flat to ± 3%) at the target location. Female C57BL/6 mice 5 to 6 weeks old were used for all experiments. To study normal tissue effects in the distal colon, mice were irradiated using the entrance region of the proton beam to the whole pelvis, 18.5 Gy at different dose rates: control, CONV (0.6-1 Gy/s) and FLASH (50-80 Gy/s). Survival was monitored daily and EdU (5-ethynyl-2´-deoxyuridine) staining was performed at 24- and 96-hours postradiation. Cleaved caspase-3 staining was performed 24-hours postradiation. To study tumor control, allograft B16F10 tumors were implanted in the right flank and received 18 Gy CONV or FLASH proton radiation. Tumor growth and survival were monitored. Results After 18.5 Gy whole pelvis radiation, survival was 100% in the control group, 0% in the CONV group, and 44% in the FLASH group (P < .01). EdU staining showed cell proliferation was significantly higher in the FLASH versus CONV group at both 24-hours and 96-hours postradiation in the distal colon, although both radiation groups showed decreased proliferation compared with controls (P < .05). Lower cleaved caspase-3 staining was seen in the FLASH versus conventional group postradiation (P < .05). Comparable flank tumor control was observed in the CONV and FLASH groups. Conclusions We present our preclinical FLASH proton radiation system and biologic results showing improved survival after whole pelvis radiation, with equivalent tumor control.
Collapse
Affiliation(s)
- Ning Cao
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | | | - Eric C. Ford
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Robert C. Emery
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Marissa Kranz
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Peter Goff
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Marco Schwarz
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Juergen Meyer
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Tony Wong
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Jatinder Saini
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Charles Bloch
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Robert D. Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - George A. Sandison
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Alec Morimoto
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Ava DeLonais-Dick
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Ben A. Shaver
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
2
|
Overgaard CB, Reaz F, Sitarz M, Poulsen P, Overgaard J, Bassler N, Grau C, Sørensen BS. An experimental setup for proton irradiation of a murine leg model for radiobiological studies. Acta Oncol 2023; 62:1566-1573. [PMID: 37603112 DOI: 10.1080/0284186x.2023.2246641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The purpose of this study was to introduce an experimental radiobiological setup used for in vivo irradiation of a mouse leg target in multiple positions along a proton beam path to investigate normal tissue- and tumor models with varying linear energy transfer (LET). We describe the dosimetric characterizations and an acute- and late-effect assay for normal tissue damage. METHODS The experimental setup consists of a water phantom that allows the right hind leg of three to five mice to be irradiated at the same time. Absolute dosimetry using a thimble (Semiflex) and a plane parallel (Advanced Markus) ionization chamber and Monte Carlo simulations using Geant4 and SHIELD-HIT12A were applied for dosimetric validation of positioning along the spread-out Bragg peak (SOBP) and at the distal edge and dose fall-off. The mice were irradiated in the center of the SOBP delivered by a pencil beam scanning system. The SOBP was 2.8 cm wide, centered at 6.9 cm depth, with planned physical single doses from 22 to 46 Gy. The biological endpoint was acute skin damage and radiation-induced late damage (RILD) assessed in the mouse leg. RESULTS The dose-response curves illustrate the percentage of mice exhibiting acute skin damage, and at a later point, RILD as a function of physical doses (Gy). Each dose-response curve represents a specific severity score of each assay, demonstrating a higher ED50 (50% responders) as the score increases. Moreover, the results reveal the reversible nature of acute skin damage as a function of time and the irreversible nature of RILD as time progresses. CONCLUSIONS We want to encourage researchers to report all experimental details of their radiobiological setups, including experimental protocols and model descriptions, to facilitate transparency and reproducibility. Based on this study, more experiments are being performed to explore all possibilities this radiobiological experimental setup permits.
Collapse
Affiliation(s)
- Cathrine Bang Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fardous Reaz
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Mateusz Sitarz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Per Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Bassler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Cai Grau
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
3
|
Clausen M, Ruangchan S, Sotoudegan A, Resch AF, Knäusl B, Palmans H, Georg D. Small field proton irradiation for in vivo studies: Potential and limitations when adapting clinical infrastructure. Z Med Phys 2023; 33:542-551. [PMID: 36357294 PMCID: PMC10751703 DOI: 10.1016/j.zemedi.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To evaluate the dosimetric accuracy for small field proton irradiation relevant for pre-clinical in vivo studies using clinical infrastructure and technology. In this context additional beam collimation and range reduction was implemented. METHODS AND MATERIALS The clinical proton beam line employing pencil beam scanning (PBS) was adapted for the irradiation of small fields at shallow depths. Cylindrical collimators with apertures of 15, 12, 7 and 5mm as well as two different range shifter types, placed at different distances relative to the target, were tested: a bolus range shifter (BRS) attached to the collimator and a clinical nozzle mounted range shifter (CRS) placed at a distance of 72cm from the collimator. The Monte Carlo (MC) based dose calculation engine implemented in the clinical treatment planning system (TPS) was commissioned for these two additional hardware components. The study was conducted with a phantom and cylindrical target sizes between 2 and 25mm in diameter following a dosimetric end-to-end test concept. RESULTS The setup with the CRS provided a uniform dose distribution across the target. An agreement of better than5% between the planned dose and the measurements was obtained for a target with 3mm diameter (collimator 5mm). A 2mm difference between the collimator and the target diameter (target being 2 mm smaller than the collimator) sufficed to cover the whole target with the planned dose in the setup with CRS. Using the BRS setup (target 8mm, collimator 12mm) resulted in non-homogeneous dose distributions, with a dose discrepancy of up to 10% between the planned and measured doses. CONCLUSION The clinical proton infrastructure with adequate beam line adaptations and a state-of-the-art TPS based on MC dose calculations enables small animal irradiations with a high dosimetric precision and accuracy for target sizes down to 3mm.
Collapse
Affiliation(s)
- Monika Clausen
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.
| | - Sirinya Ruangchan
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; Division of Therapeutic Radiation and Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Arame Sotoudegan
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Andreas F Resch
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Barbara Knäusl
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Hugo Palmans
- Division of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria; National Physical Laboratory, Teddington, United Kingdom
| | - Dietmar Georg
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; Division of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
4
|
Palaniappan P, Knudsen Y, Meyer S, Gianoli C, Schnürle K, Würl M, Bortfeldt J, Parodi K, Riboldi M. Multi-stage image registration based on list-mode proton radiographies for small animal proton irradiation: A simulation study. Z Med Phys 2023:S0939-3889(23)00045-4. [PMID: 37353464 DOI: 10.1016/j.zemedi.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 06/25/2023]
Abstract
We present a multi-stage and multi-resolution deformable image registration framework for image-guidance at a small animal proton irradiation platform. The framework is based on list-mode proton radiographies acquired at different angles, which are used to deform a 3D treatment planning CT relying on normalized mutual information (NMI) or root mean square error (RMSE) in the projection domain. We utilized a mouse X-ray micro-CT expressed in relative stopping power (RSP), and obtained Monte Carlo simulations of proton images in list-mode for three different treatment sites (brain, head and neck, lung). Rigid transformations and controlled artificial deformation were applied to mimic position misalignments, weight loss and breathing changes. Results were evaluated based on the residual RMSE of RSP in the image domain including the comparison of extracted local features, i.e. between the reference micro-CT and the one transformed taking into account the calculated deformation. The residual RMSE of the RSP showed that the accuracy of the registration framework is promising for compensating rigid (>97% accuracy) and non-rigid (∼95% accuracy) transformations with respect to a conventional 3D-3D registration. Results showed that the registration accuracy is degraded when considering the realistic detector performance and NMI as a metric, whereas the RMSE in projection domain is rather insensitive. This work demonstrates the pre-clinical feasibility of the registration framework on different treatment sites and its use for small animal imaging with a realistic detector. Further computational optimization of the framework is required to enable the use of this tool for online estimation of the deformation.
Collapse
Affiliation(s)
- Prasannakumar Palaniappan
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Yana Knudsen
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Meyer
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chiara Gianoli
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Schnürle
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Würl
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonathan Bortfeldt
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Riboldi
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
5
|
Giovannini D, De Angelis C, Astorino MD, Fratini E, Cisbani E, Bazzano G, Ampollini A, Piccinini M, Nichelatti E, Trinca E, Nenzi P, Mancuso M, Picardi L, Marino C, Ronsivalle C, Pazzaglia S. In Vivo Radiobiological Investigations with the TOP-IMPLART Proton Beam on a Medulloblastoma Mouse Model. Int J Mol Sci 2023; 24:ijms24098281. [PMID: 37175984 PMCID: PMC10179102 DOI: 10.3390/ijms24098281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Protons are now increasingly used to treat pediatric medulloblastoma (MB) patients. We designed and characterized a setup to deliver proton beams for in vivo radiobiology experiments at a TOP-IMPLART facility, a prototype of a proton-therapy linear accelerator developed at the ENEA Frascati Research Center, with the goal of assessing the feasibility of TOP-IMPLART for small animal proton therapy research. Mice bearing Sonic-Hedgehog (Shh)-dependent MB in the flank were irradiated with protons to test whether irradiation could be restricted to a specific depth in the tumor tissue and to compare apoptosis induced by the same dose of protons or photons. In addition, the brains of neonatal mice at postnatal day 5 (P5), representing a very small target, were irradiated with 6 Gy of protons with two different collimated Spread-Out Bragg Peaks (SOBPs). Apoptosis was visualized by immunohistochemistry for the apoptotic marker caspase-3-activated, and quantified by Western blot. Our findings proved that protons could be delivered to the upper part while sparing the deepest part of MB. In addition, a comparison of the effectiveness of protons and photons revealed a very similar increase in the expression of cleaved caspase-3. Finally, by using a very small target, the brain of P5-neonatal mice, we demonstrated that the proton irradiation field reached the desired depth in brain tissue. Using the TOP-IMPLART accelerator we established setup and procedures for proton irradiation, suitable for translational preclinical studies. This is the first example of in vivo experiments performed with a "full-linac" proton-therapy accelerator.
Collapse
Affiliation(s)
- Daniela Giovannini
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Cinzia De Angelis
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Denise Astorino
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Emiliano Fratini
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Evaristo Cisbani
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy
| | - Giulia Bazzano
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Alessandro Ampollini
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Massimo Piccinini
- ENEA FSN-TECFIS-MNF, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Enrico Nichelatti
- ENEA FSN-TECFIS-MNF, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Emiliano Trinca
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Paolo Nenzi
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Mariateresa Mancuso
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Luigi Picardi
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Carmela Marino
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Concetta Ronsivalle
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Simonetta Pazzaglia
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
6
|
Verhaegen F, Butterworth KT, Chalmers AJ, Coppes RP, de Ruysscher D, Dobiasch S, Fenwick JD, Granton PV, Heijmans SHJ, Hill MA, Koumenis C, Lauber K, Marples B, Parodi K, Persoon LCGG, Staut N, Subiel A, Vaes RDW, van Hoof S, Verginadis IL, Wilkens JJ, Williams KJ, Wilson GD, Dubois LJ. Roadmap for precision preclinical x-ray radiation studies. Phys Med Biol 2023; 68:06RM01. [PMID: 36584393 DOI: 10.1088/1361-6560/acaf45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.
Collapse
Affiliation(s)
- Frank Verhaegen
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Karl T Butterworth
- Patrick G. Johnston, Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Anthony J Chalmers
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Rob P Coppes
- Departments of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Dirk de Ruysscher
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Department of Medical Physics, Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Germany
| | - John D Fenwick
- Department of Medical Physics & Biomedical Engineering University College LondonMalet Place Engineering Building, London WC1E 6BT, United Kingdom
| | | | | | - Mark A Hill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, Germany
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, NY, United States of America
| | - Katia Parodi
- German Cancer Consortium (DKTK), Partner site Munich, Germany
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. Munich, Germany
| | | | - Nick Staut
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Rianne D W Vaes
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Ioannis L Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jan J Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Physics Department, Technical University of Munich (TUM), Germany
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - George D Wilson
- Department of Radiation Oncology, Beaumont Health, MI, United States of America
- Henry Ford Health, Detroit, MI, United States of America
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Schneider M, Bodenstein E, Bock J, Dietrich A, Gantz S, Heuchel L, Krause M, Lühr A, von Neubeck C, Nexhipi S, Schürer M, Tillner F, Beyreuther E, Suckert T, Müller JR. Combined proton radiography and irradiation for high-precision preclinical studies in small animals. Front Oncol 2022; 12:982417. [PMID: 36419890 PMCID: PMC9677333 DOI: 10.3389/fonc.2022.982417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Proton therapy has become a popular treatment modality in the field of radiooncology due to higher spatial dose conformity compared to conventional radiotherapy, which holds the potential to spare normal tissue. Nevertheless, unresolved research questions, such as the much debated relative biological effectiveness (RBE) of protons, call for preclinical research, especially regarding in vivo studies. To mimic clinical workflows, high-precision small animal irradiation setups with image-guidance are needed. MATERIAL AND METHODS A preclinical experimental setup for small animal brain irradiation using proton radiographies was established to perform planning, repositioning, and irradiation of mice. The image quality of proton radiographies was optimized regarding the resolution, contrast-to-noise ratio (CNR), and minimal dose deposition in the animal. Subsequently, proof-of-concept histological analysis was conducted by staining for DNA double-strand breaks that were then correlated to the delivered dose. RESULTS The developed setup and workflow allow precise brain irradiation with a lateral target positioning accuracy of<0.26mm for in vivo experiments at minimal imaging dose of<23mGy per mouse. The custom-made software for image registration enables the fast and precise animal positioning at the beam with low observer-variability. DNA damage staining validated the successful positioning and irradiation of the mouse hippocampus. CONCLUSION Proton radiography enables fast and effective high-precision lateral alignment of proton beam and target volume in mouse irradiation experiments with limited dose exposure. In the future, this will enable irradiation of larger animal cohorts as well as fractionated proton irradiation.
Collapse
Affiliation(s)
- Moritz Schneider
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Elisabeth Bodenstein
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Johanna Bock
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Antje Dietrich
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Sebastian Gantz
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Lena Heuchel
- Technical University (TU) Dortmund- Faculty of Physics, Medical Physics and Radiotherapy, Dortmund, Germany
| | - Mechthild Krause
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Armin Lühr
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Technical University (TU) Dortmund- Faculty of Physics, Medical Physics and Radiotherapy, Dortmund, Germany
| | - Cläre von Neubeck
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sindi Nexhipi
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Schürer
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Falk Tillner
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Elke Beyreuther
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Theresa Suckert
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Johannes Richard Müller
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Deutsche Forschungsgemeinschaft Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Malimban J, Lathouwers D, Qian H, Verhaegen F, Wiedemann J, Brandenburg S, Staring M. Deep learning-based segmentation of the thorax in mouse micro-CT scans. Sci Rep 2022; 12:1822. [PMID: 35110676 PMCID: PMC8810936 DOI: 10.1038/s41598-022-05868-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
For image-guided small animal irradiations, the whole workflow of imaging, organ contouring, irradiation planning, and delivery is typically performed in a single session requiring continuous administration of anaesthetic agents. Automating contouring leads to a faster workflow, which limits exposure to anaesthesia and thereby, reducing its impact on experimental results and on animal wellbeing. Here, we trained the 2D and 3D U-Net architectures of no-new-Net (nnU-Net) for autocontouring of the thorax in mouse micro-CT images. We trained the models only on native CTs and evaluated their performance using an independent testing dataset (i.e., native CTs not included in the training and validation). Unlike previous studies, we also tested the model performance on an external dataset (i.e., contrast-enhanced CTs) to see how well they predict on CTs completely different from what they were trained on. We also assessed the interobserver variability using the generalized conformity index ([Formula: see text]) among three observers, providing a stronger human baseline for evaluating automated contours than previous studies. Lastly, we showed the benefit on the contouring time compared to manual contouring. The results show that 3D models of nnU-Net achieve superior segmentation accuracy and are more robust to unseen data than 2D models. For all target organs, the mean surface distance (MSD) and the Hausdorff distance (95p HD) of the best performing model for this task (nnU-Net 3d_fullres) are within 0.16 mm and 0.60 mm, respectively. These values are below the minimum required contouring accuracy of 1 mm for small animal irradiations, and improve significantly upon state-of-the-art 2D U-Net-based AIMOS method. Moreover, the conformity indices of the 3d_fullres model also compare favourably to the interobserver variability for all target organs, whereas the 2D models perform poorly in this regard. Importantly, the 3d_fullres model offers 98% reduction in contouring time.
Collapse
Affiliation(s)
- Justin Malimban
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands.
| | - Danny Lathouwers
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629 JB, Delft, The Netherlands
| | - Haibin Qian
- Department of Medical Biology, Amsterdam University Medical Centers (Location AMC) and Cancer Center Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - Julia Wiedemann
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems-Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Sytze Brandenburg
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Marius Staring
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
9
|
Diffenderfer ES, Sørensen BS, Mazal A, Carlson DJ. The current status of preclinical proton FLASH radiation and future directions. Med Phys 2021; 49:2039-2054. [PMID: 34644403 DOI: 10.1002/mp.15276] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
We review the current status of proton FLASH experimental systems, including preclinical physical and biological results. Technological limitations on preclinical investigation of FLASH biological mechanisms and determination of clinically relevant parameters are discussed. A review of the biological data reveals no reproduced proton FLASH effect in vitro and a significant in vivo FLASH sparing effect of normal tissue toxicity observed with multiple proton FLASH irradiation systems. Importantly, multiple studies suggest little or no difference in tumor growth delay for proton FLASH when compared to conventional dose rate proton radiation. A discussion follows on future areas of development with a focus on the determination of the optimal parameters for maximizing the therapeutic ratio between tumor and normal tissue response and ultimately clinical translation of proton FLASH radiation.
Collapse
Affiliation(s)
- Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brita S Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Alejandro Mazal
- Department of Medical Physics, Centro de Protonterapia Quironsalud, Madrid, Spain
| | - David J Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Brasse D, Burckel H, Marchand P, Rousseau M, Ouadi A, Vanstalle M, Finck C, Laquerriere P, Boisson F. Comparison of the [ 18F]-FDG and [ 18F]-FLT PET Tracers in the Evaluation of the Preclinical Proton Therapy Response in Hepatocellular Carcinoma. Mol Imaging Biol 2021; 23:724-732. [PMID: 33847900 DOI: 10.1007/s11307-021-01602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The main objective of the present study was to compare the 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) and 3'-[18F]fluoro-3'-deoxythymidine ([18F]-FLT) PET imaging biomarkers for the longitudinal follow-up of small animal proton therapy studies in the context of hepatocellular carcinoma (HCC). PROCEDURES SK-HEP-1 cells were injected into NMRI nude mice to mimic human HCC. The behavior of [18F]-FDG and [18F]-FLT tumor uptake was evaluated after proton therapy procedures. The proton single-fraction doses were 5, 10, and 20 Gy, with a dose rate of 10 Gy/min. The experimental protocol consisted of 8 groups of 10 mice, each group experiencing a particular dose/radiotracer condition. A reference PET exam was performed on each mouse the day before the irradiation procedure, followed by PET exams every 3 days up to 16 days after irradiation. RESULTS [18F]-FDG uptake showed a linear dose-dependent increase in the first days after treatment (37%, p < 0.05), while [18F]-FLT uptake decreased in a dose-dependent manner (e.g., 21% for 5 Gy compared to 10 Gy, p = 1.1e-2). At the later time point, [18F]-FDG normalized activity showed an 85% decrease (p < 0.01) for both 10 and 20 Gy doses and no variation for 5 Gy. Conversely, a significant 61% (p = 0.002) increase was observed for [18F]-FLT normalized activity at 5 Gy and no variation for higher doses. CONCLUSION We showed that the use of the [18F]-FDG and [18F]-FLT radiolabeled molecules can provide useful and complementary information for longitudinal follow-up of small animal proton therapy studies in the context of HCC. [18F]-FDG PET imaging enables a treatment monitoring several days/weeks postirradiation. On the other hand, [18F]-FLT could represent a good candidate to monitor the treatment few days postirradiation, in the context of hypo-fractioned and close irradiation planning. This opens new perspectives in terms of treatment efficacy verification depending on the irradiation scheme.
Collapse
Affiliation(s)
- David Brasse
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France.
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, 67000, Strasbourg, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Marc Rousseau
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Ali Ouadi
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Marie Vanstalle
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Christian Finck
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | | | - Frédéric Boisson
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| |
Collapse
|
11
|
Gerlach S, Pinto M, Kurichiyanil N, Grau C, Hérault J, Hillbrand M, Poulsen PR, Safai S, Schippers JM, Schwarz M, Søndergaard CS, Tommasino F, Verroi E, Vidal M, Yohannes I, Schreiber J, Parodi K. Beam characterization and feasibility study for a small animal irradiation platform at clinical proton therapy facilities. Phys Med Biol 2020; 65:245045. [DOI: 10.1088/1361-6560/abc832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Ostermayr TM, Kreuzer C, Englbrecht FS, Gebhard J, Hartmann J, Huebl A, Haffa D, Hilz P, Parodi K, Wenz J, Donovan ME, Dyer G, Gaul E, Gordon J, Martinez M, Mccary E, Spinks M, Tiwari G, Hegelich BM, Schreiber J. Laser-driven x-ray and proton micro-source and application to simultaneous single-shot bi-modal radiographic imaging. Nat Commun 2020; 11:6174. [PMID: 33268784 PMCID: PMC7710721 DOI: 10.1038/s41467-020-19838-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
Abstract
Radiographic imaging with x-rays and protons is an omnipresent tool in basic research and applications in industry, material science and medical diagnostics. The information contained in both modalities can often be valuable in principle, but difficult to access simultaneously. Laser-driven solid-density plasma-sources deliver both kinds of radiation, but mostly single modalities have been explored for applications. Their potential for bi-modal radiographic imaging has never been fully realized, due to problems in generating appropriate sources and separating image modalities. Here, we report on the generation of proton and x-ray micro-sources in laser-plasma interactions of the focused Texas Petawatt laser with solid-density, micrometer-sized tungsten needles. We apply them for bi-modal radiographic imaging of biological and technological objects in a single laser shot. Thereby, advantages of laser-driven sources could be enriched beyond their small footprint by embracing their additional unique properties, including the spectral bandwidth, small source size and multi-mode emission. Here the authors show a synchronized single-shot bi-modal x-ray and proton source based on laser-generated plasma. This source can be useful for radiographic and tomographic imaging.
Collapse
Affiliation(s)
- T M Ostermayr
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany. .,Max-Planck-Institut für Quantenoptik, 85748, Garching, Germany. .,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - C Kreuzer
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - F S Englbrecht
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - J Gebhard
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - J Hartmann
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - A Huebl
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - D Haffa
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - P Hilz
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany.,Helmholtz Institute Jena, 07743, Jena, Germany
| | - K Parodi
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - J Wenz
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - M E Donovan
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - G Dyer
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - E Gaul
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - J Gordon
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - M Martinez
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - E Mccary
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - M Spinks
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - G Tiwari
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - B M Hegelich
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - J Schreiber
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany. .,Max-Planck-Institut für Quantenoptik, 85748, Garching, Germany.
| |
Collapse
|
13
|
Darafsheh A, Zhao T, Khan R. Spectroscopic analysis of irradiated radiochromic EBT-XD films in proton and photon beams. ACTA ACUST UNITED AC 2020; 65:205002. [DOI: 10.1088/1361-6560/aba28e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Meyer S, Bortfeldt J, Lämmer P, Englbrecht FS, Pinto M, Schnürle K, Würl M, Parodi K. Optimization and performance study of a proton CT system for pre-clinical small animal imaging. ACTA ACUST UNITED AC 2020; 65:155008. [DOI: 10.1088/1361-6560/ab8afc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Müller J, Schürer M, Neubert C, Tillner F, Beyreuther E, Suckert T, Peters N, von Neubeck C, Lühr A, Krause M, Bütof R, Dietrich A. Multi-modality bedding platform for combined imaging and irradiation of mice. Biomed Phys Eng Express 2020; 6:037003. [PMID: 33438682 DOI: 10.1088/2057-1976/ab79f1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preclinical imaging and irradiation yields valuable insights into clinically relevant research topics. While complementary imaging methods such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) can be combined within single devices, this is technically demanding and cost-intensive. Similarly, bedding and setup solutions are often specific to certain devices and research questions. We present a bedding platform for mice that is compatible with various preclinical imaging modalities (combined PET/MRI, cone beam CT) and irradiation with photons and protons. It consists of a 3D-printed bedding unit (acrylonitrile butadiene styrene, ABS) holding the animal and features an inhalation anesthesia mask, jaw fixation, ear pins, and immobilization for the hind leg. It can be embedded on mounting adaptors for multi-modal imaging and into a transport box (polymethyl methacrylate, PMMA) for experiments outside dedicated animal facilities while maintaining the animal's hygiene status. A vital support unit provides heating, inhalation anesthesia, and a respiration monitor. We dosimetrically evaluated used materials in order to assess their interaction with incident irradiation. Proof-of-concept multi-modal imaging protocols were used on phantoms and mice. The measured attenuation of the bedding unit for 40/60/80/200 kV X-rays was less than 3%. The measured stopping-power-ratio of ABS was 0.951, the combined water-equivalent thickness of bedding unit and transport box was 4.2 mm for proton energies of 150 MeV and 200 MeV. Proof-of-concept imaging showed no loss of image quality. Imaging data of individual mice from different imaging modalities could be aligned rigidly. The presented bed aims to provide a platform for experiments related to both multi-modal imaging and irradiation, thus offering the possibility for image-guided irradiation which relies on precise imaging and positioning. The usage as a self-contained, stand-alone unit outside dedicated animal facilities represents an advantage over setups designed for specific devices.
Collapse
Affiliation(s)
- Johannes Müller
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany. Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Institute of Radiooncology-OncoRay, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Suckert T, Müller J, Beyreuther E, Azadegan B, Brüggemann A, Bütof R, Dietrich A, Gotz M, Haase R, Schürer M, Tillner F, von Neubeck C, Krause M, Lühr A. High-precision image-guided proton irradiation of mouse brain sub-volumes. Radiother Oncol 2020; 146:205-212. [PMID: 32222488 DOI: 10.1016/j.radonc.2020.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/31/2020] [Accepted: 02/27/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Proton radiotherapy offers the potential to reduce normal tissue toxicity. However, clinical safety margins, range uncertainties, and varying relative biological effectiveness (RBE) may result in a critical dose in tumor-surrounding normal tissue. To assess potential adverse effects in preclinical studies, image-guided proton mouse brain irradiation and analysis of DNA damage repair was established. MATERIAL AND METHODS We designed and characterized a setup to shape proton beams with 7 mm range in water and 3 mm in diameter and commissioned a Monte Carlo model for in vivo dose simulation. Cone-beam computed tomography and orthogonal X-ray imaging were used to delineate the right hippocampus and position the mice. The brains of three C3H/HeNRj mice were irradiated with 8 Gy and excised 30 min later. Initial DNA double-strand breaks were visualized by staining brain sections for cell nuclei and γH2AX. Imaged sections were analyzed with an automated and validated processing pipeline to provide a quantitative, spatially resolved radiation damage indicator. RESULTS The analyzed DNA damage pattern clearly visualized the radiation effect in the mouse brains and could be mapped to the simulated dose distribution. The proton beam passed the right hippocampus and stopped in the central brain region for all evaluated mice. CONCLUSION We established image-guided proton irradiation of mouse brains. The clinically oriented workflow facilitates (back-) translational studies. Geometric accuracy, detailed Monte Carlo dose simulations, and cell-based assessment enable a biologically and spatially resolved analysis of radiation response and RBE.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Germany
| | - Johannes Müller
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany
| | - Elke Beyreuther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute for Radiation Physics, Germany
| | - Behnam Azadegan
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Anja Brüggemann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Rebecca Bütof
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Antje Dietrich
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Germany
| | - Malte Gotz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Robert Haase
- Myers Lab, Max Planck Institute CBG, Dresden, Germany
| | - Michael Schürer
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Falk Tillner
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Cläre von Neubeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Germany; Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Armin Lühr
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; Department of Medical Physics, Faculty of Physics, TU Dort-mund University, Germany.
| |
Collapse
|
17
|
Stripay JL, Merchant TE, Roussel MF, Tinkle CL. Preclinical Models of Craniospinal Irradiation for Medulloblastoma. Cancers (Basel) 2020; 12:cancers12010133. [PMID: 31948065 PMCID: PMC7016884 DOI: 10.3390/cancers12010133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Medulloblastoma is an embryonal tumor that shows a predilection for distant metastatic spread and leptomeningeal seeding. For most patients, optimal management of medulloblastoma includes maximum safe resection followed by adjuvant craniospinal irradiation (CSI) and chemotherapy. Although CSI is crucial in treating medulloblastoma, the realization that medulloblastoma is a heterogeneous disease comprising four distinct molecular subgroups (wingless [WNT], sonic hedgehog [SHH], Group 3 [G3], and Group 4 [G4]) with distinct clinical characteristics and prognoses has refocused efforts to better define the optimal role of CSI within and across disease subgroups. The ability to deliver clinically relevant CSI to preclinical models of medulloblastoma offers the potential to study radiation dose and volume effects on tumor control and toxicity in these subgroups and to identify subgroup-specific combination adjuvant therapies. Recent efforts have employed commercial image-guided small animal irradiation systems as well as custom approaches to deliver accurate and reproducible fractionated CSI in various preclinical models of medulloblastoma. Here, we provide an overview of the current clinical indications for, and technical aspects of, irradiation of pediatric medulloblastoma. We then review the current literature on preclinical modeling of and treatment interventions for medulloblastoma and conclude with a summary of challenges in the field of preclinical modeling of CSI for the treatment of leptomeningeal seeding tumors.
Collapse
Affiliation(s)
- Jennifer L. Stripay
- Departments of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.S.); (M.F.R.)
| | - Thomas E. Merchant
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Martine F. Roussel
- Departments of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.S.); (M.F.R.)
| | - Christopher L. Tinkle
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Correspondence: ; Tel.: +1-(901)-595-8735; Fax: +1-(901)-595-3113
| |
Collapse
|
18
|
Asp J, Santos AMC, Moghaddasi L, Afshar SV, Bezak E. Design and verification of an external radiobiological beam port on a 16.5 MeV GE PETtrace proton cyclotron. Med Phys 2019; 47:393-403. [PMID: 31778235 DOI: 10.1002/mp.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Protons and heavy ions are considered to be ideal particles for use in external beam radiotherapy due to the superior properties of the dose distribution. While a photon (x-ray) beam delivers considerable dose to healthy tissues around the tumor, a proton beam that is delivered with sufficient energies has: a low entrance dose (the dose in front of the tumor); a high-dose region within the tumor, known as the Bragg peak; and, no exit dose beyond the tumor. Proton therapy is the next major step in advancing radiotherapy treatment. The purpose of this project was to adapt an existing radioisotope production cyclotron, a General Electric (GE) PETtrace, to enable radiobiological studies using proton beams. During routine use the PETtrace delivers 16.5 MeV protons to target with beam currents in the range of 10-100 µA resulting in dose rates in the order of kGy/s. To achieve the aim of the project the dose rate had to be reduced to the Gy/min range, without attenuating the proton energy below 5 MeV. This paper covers the design, construction and validation of the beam port. METHODS Monte Carlo simulations were performed, using GEANT4, SRIM and PACE4 to design the beam port and optimize its components. Once the beam port was fabricated, validation experiments were performed using EBT3 and HD-V2 Gafchromic™ films, and a Keithley 6485 picoampere meter. RESULTS AND CONCLUSION The external beam port was successfully modeled, designed and fabricated. By using a 0.25 mm thick gold foil and a brass pin-hole collimator the beam was spread from a narrow full beam diameter of 10 mm to a wide beam with a 5% flatness area in the center of the beam that had a diameter of ~20 mm. In using this system the dose rate was reduced from kGy/s to ~30 Gy/min.
Collapse
Affiliation(s)
- Johan Asp
- Division of Information Technology, Engineering and Environment, School of Engineering, University of South Australia, Adelaide, SA, 5001, Australia
| | - Alexandre M Caraça Santos
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.,School of Physical Sciences and Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Leyla Moghaddasi
- Genesiscare, Adelaide, SA, 5000, Australia.,Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shahraam V Afshar
- Division of Information Technology, Engineering and Environment, School of Engineering, University of South Australia, Adelaide, SA, 5001, Australia.,School of Physical Sciences and Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eva Bezak
- Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.,Cancer Research Institute and the School of Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| |
Collapse
|
19
|
Parodi K, Assmann W, Belka C, Bortfeldt J, Clevert DA, Dedes G, Kalunga R, Kundel S, Kurichiyanil N, Lämmer P, Lascaud J, Lauber K, Lovatti G, Meyer S, Nitta M, Pinto M, Safari MJ, Schnürle K, Schreiber J, Thirolf PG, Wieser HP, Würl M. Towards a novel small animal proton irradiation platform: the SIRMIO project. Acta Oncol 2019; 58:1470-1475. [PMID: 31271091 DOI: 10.1080/0284186x.2019.1630752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Precision small animal radiotherapy research is a young emerging field aiming to provide new experimental insights into tumor and normal tissue models in different microenvironments, to unravel complex mechanisms of radiation damage in target and non-target tissues and assess efficacy of novel therapeutic strategies. For photon therapy, modern small animal radiotherapy research platforms have been developed over the last years and are meanwhile commercially available. Conversely, for proton therapy, which holds potential for an even superior outcome than photon therapy, no commercial system exists yet. Material and methods: The project SIRMIO (Small Animal Proton Irradiator for Research in Molecular Image-guided Radiation-Oncology) aims at realizing and demonstrating an innovative portable prototype system for precision image-guided small animal proton irradiation, suitable for installation at existing clinical treatment facilities. The proposed design combines precise dose application with in situ multi-modal anatomical image guidance and in vivo verification of the actual treatment delivery. Results and conclusions: This manuscript describes the status of the different components under development, featuring a dedicated beamline for degradation and focusing of clinical proton beams, along with novel detector systems for in situimaging and range verification. The foreseen workflow includes pre-treatment proton transmission imaging, complemented by ultrasonic tumor localization, for treatment planning and position verification, followed by image-guided delivery with on site range verification by means of ionoacoustics (for pulsed beams) and positron-emission-tomography (PET, for continuous beams). The proposed compact and cost-effective system promises to open a new era in small animal proton therapy research, contributing to the basic understanding of in vivo radiation action to identify areas of potential breakthroughs for future translation into innovative clinical strategies.
Collapse
Affiliation(s)
- Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Walter Assmann
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jonathan Bortfeldt
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Dirk-André Clevert
- Department of Radiology, Interdisziplinäres Ultraschall-Zentrum, University Hospital, LMU Munich, Munich, Germany
| | - George Dedes
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Ronaldo Kalunga
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Sonja Kundel
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Neeraj Kurichiyanil
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Paulina Lämmer
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Julie Lascaud
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Giulio Lovatti
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Sebastian Meyer
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Munetaka Nitta
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Marco Pinto
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Mohammad J. Safari
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Katrin Schnürle
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Jörg Schreiber
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Peter G. Thirolf
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Hans-Peter Wieser
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Matthias Würl
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| |
Collapse
|
20
|
Darafsheh A, León-Marroquín EY, Mulrow DJ, Baradaran-Ghahfarokhi M, Zhao T, Khan R. On the spectral characterization of radiochromic films irradiated with clinical proton beams. ACTA ACUST UNITED AC 2019; 64:135016. [DOI: 10.1088/1361-6560/ab23cd] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Kim MM, Irmen P, Shoniyozov K, Verginadis II, Cengel KA, Koumenis C, Metz JM, Dong L, Diffenderfer ES. Design and commissioning of an image-guided small animal radiation platform and quality assurance protocol for integrated proton and x-ray radiobiology research. Phys Med Biol 2019; 64:135013. [PMID: 31075786 PMCID: PMC8690893 DOI: 10.1088/1361-6560/ab20d9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Small animal x-ray irradiation platforms are expanding the capabilities and future pathways for radiobiology research. Meanwhile, proton radiotherapy is transitioning to a standard treatment modality in the clinician’s precision radiotherapy toolbox, highlighting a gap between state-of-the-art clinical radiotherapy and small animal radiobiology research. Comparative research of the biological differences between proton and x-ray beams could benefit from an integrated small animal irradiation system for in vivo experiments and corresponding quality assurance (QA) protocols to ensure rigor and reproducibility. The objective of this study is to incorporate a proton beam into a small animal radiotherapy platform while implementing QA modelled after clinical protocols. A 225 kV x-ray small animal radiation research platform (SARRP) was installed on rails to align with a modified proton experimental beamline from a 230 MeV cyclotron-based clinical system. Collimated spread out Bragg peaks (SOBP) were produced with beam parameters compatible with small animal irradiation. Proton beam characteristics were measured and alignment reproducibility with the x-ray system isocenter was evaluated. A QA protocol was designed to ensure consistent proton beam quality and alignment. As a preliminary study, cellular damage via γ-H2AX immunofluorescence staining in an irradiated mouse tumor model was used to verify the beam range in vivo. The beam line was commissioned to deliver Bragg peaks with range 4–30 mm in water at 2 Gy min−1. SOBPs were delivered with width up to 25 mm. Proton beam alignment with the x-ray system agreed within 0.5 mm. A QA phantom was created to ensure reproducible alignment of the platform and verify beam delivery. γ-H2AX staining verified expected proton range in vivo. An image-guided small animal proton/x-ray research system was developed to enable in vivo investigations of radiobiological effects of proton beams, comparative studies between proton and x-ray beams, and investigations into novel proton treatment methods.
Collapse
|
22
|
Constanzo J, Vanstalle M, Finck C, Brasse D, Rousseau M. Dosimetry and characterization of a 25-MeV proton beam line for preclinical radiobiology research. Med Phys 2019; 46:2356-2362. [PMID: 30924942 DOI: 10.1002/mp.13512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/26/2019] [Accepted: 03/21/2019] [Indexed: 11/12/2022] Open
Abstract
PURPOSE With the increase in proton therapy centers, there is a growing need to make progress in preclinical proton radiation biology to give accessible data to medical physicists and practicing radiation oncologists. METHODS A cyclotron usually producing radioisotopes with a proton beam at an energy of about 25 MeV after acceleration, was used for radiobiology studies. Depleted silicon surface barrier detectors were used for the beam energy measurement. A complementary metal oxide semiconductor (CMOS) sensor and a plastic scintillator detector were used for fluence measurement, and compared to Geant4 and an in-house analytical dose modeling developed for this purpose. Also, from the energy measurement of each attenuated beam, the dose-averaged linear energy transfer (LETd ) was calculated with Geant4. RESULTS The measured proton beam energy was 24.85 ± 0.14 MeV with an energy straggling of 127 ± 22 keV before scattering and extraction in air. The measured flatness was within ± 2.1% over 9 mm in diameter. A wide range of LETd is achievable: constant between the entrance and the exit of the cancer cell sample ranging from 2.2 to 8 keV/μm, beyond 20 keV/μm, and an average of 2-5 keV/μm in a scattering spread-out Bragg peak calculated for an example of a 6-mm-thick xenograft tumor. CONCLUSION The dosimetry and the characterization of a 25-MeV proton beam line for preclinical radiobiology research was performed by measurements and modeling, demonstrating the feasibility of delivering a proton beam for preclinical in vivo and in vitro studies with LETd of clinical interest.
Collapse
Affiliation(s)
- Julie Constanzo
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| | - Marie Vanstalle
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| | - Christian Finck
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| | - David Brasse
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| | - Marc Rousseau
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| |
Collapse
|
23
|
Evolution of the Supermodel: Progress in Modelling Radiotherapy Response in Mice. Clin Oncol (R Coll Radiol) 2019; 31:272-282. [PMID: 30871751 DOI: 10.1016/j.clon.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Mouse models are essential tools in cancer research that have been used to understand the genetic basis of tumorigenesis, cancer progression and to test the efficacies of anticancer treatments including radiotherapy. They have played a critical role in our understanding of radiotherapy response in tumours and normal tissues and continue to evolve to better recapitulate the underlying biology of humans. In addition, recent developments in small animal irradiators have significantly improved in vivo irradiation techniques, allowing previously unimaginable experimental approaches to be explored in the laboratory. The combination of contemporary mouse models with small animal irradiators represents a major step forward for the radiobiology field in being able to much more accurately replicate clinical exposure scenarios. As radiobiology studies become ever more sophisticated in reflecting developments in the clinic, it is increasingly important to understand the basis and potential limitations of extrapolating data from mice to humans. This review provides an overview of mouse models and small animal radiotherapy platforms currently being used as advanced radiobiological research tools towards improving the translational power of preclinical studies.
Collapse
|
24
|
Meyer J, Eley J, Schmid TE, Combs SE, Dendale R, Prezado Y. Spatially fractionated proton minibeams. Br J Radiol 2019; 92:20180466. [PMID: 30359081 PMCID: PMC6541186 DOI: 10.1259/bjr.20180466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Extraordinary normal tissue response to highly spatially fractionated X-ray beams has been explored for over 25 years. More recently, alternative radiation sources have been developed and utilized with the aim to evoke comparable effects. These include protons, which lend themselves well for this endeavour due to their physical depth dose characteristics as well as corresponding variable biological effectiveness. This paper addresses the motivation for using protons to generate spatially fractionated beams and reviews the technological implementations and experimental results to date. This includes simulation and feasibility studies, collimation and beam characteristics, dosimetry and biological considerations as well as the results of in vivo and in vitro studies. Experimental results are emerging indicating an extraordinary normal tissue sparing effect analogous to what has been observed for synchrotron generated X-ray microbeams. The potential for translational research and feasibility of spatially modulated proton beams in clinical settings is discussed.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Remi Dendale
- Institut Curie, Centre de Protonthérapie d’Orsay, Orsay, France
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique, Universités Paris 11 and Paris 7, Campus d'Orsay, Orsay, France
| |
Collapse
|
25
|
Ghita M, Dunne V, Hanna GG, Prise KM, Williams JP, Butterworth KT. Preclinical models of radiation-induced lung damage: challenges and opportunities for small animal radiotherapy. Br J Radiol 2019; 92:20180473. [PMID: 30653332 DOI: 10.1259/bjr.20180473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite a major paradigm shift in radiotherapy planning and delivery over the past three decades with continuing refinements, radiation-induced lung damage (RILD) remains a major dose limiting toxicity in patients receiving thoracic irradiations. Our current understanding of the biological processes involved in RILD which includes DNA damage, inflammation, senescence and fibrosis, is based on clinical observations and experimental studies in mouse models using conventional radiation exposures. Whilst these studies have provided vital information on the pulmonary radiation response, the current implementation of small animal irradiators is enabling refinements in the precision and accuracy of dose delivery to mice which can be applied to studies of RILD. This review presents the current landscape of preclinical studies in RILD using small animal irradiators and highlights the challenges and opportunities for the further development of this emerging technology in the study of normal tissue damage in the lung.
Collapse
Affiliation(s)
- Mihaela Ghita
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Victoria Dunne
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Gerard G Hanna
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK.,2 Northern Ireland Cancer Centre, Belfast City Hospital , Belfast , Northern Ireland, UK
| | - Kevin M Prise
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Jaqueline P Williams
- 3 University of Rochester Medical Centre, University of Rochester , Rochester , USA
| | - Karl T Butterworth
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| |
Collapse
|
26
|
Vanstalle M, Constanzo J, Finck C. Investigation of Optimal Physical Parameters for Precise Proton Irradiation of Orthotopic Tumors in Small Animals. Int J Radiat Oncol Biol Phys 2018; 103:1241-1250. [PMID: 30513379 DOI: 10.1016/j.ijrobp.2018.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE The lack of evidence of biomarkers identifying patients who would benefit from proton therapy has driven the emergence of preclinical proton irradiation platforms using advanced small-animal models to mimic clinical therapeutic conditions. This study aimed to determine the optimal physical parameters of the proton beam with a high radiation targeting accuracy, considering small-animal tumors can reach millimetric dimensions at a maximum depth of about 2 cm. METHODS AND MATERIALS Several treatment plans, simulated using Geant4, were generated with different proton beam features to assess the optimal physical parameters for small-volume irradiations. The quality of each treatment plan was estimated by dose-volume histograms and gamma index maps. RESULTS Because of its low-energy straggling, low-energy proton (<50 MeV) single-field irradiation can generate homogeneous spread-out Bragg peaks to deliver a uniform dose in millimeter-sized tumors, while sparing healthy tissues located within or near the target volume. However, multifield irradiation can limit the dose delivered in critical structures surrounding the target for attenuated high-energy beams (E > 160 MeV). CONCLUSION Low-energy proton beam platforms are suitable for precision irradiation for translational radiobiology studies.
Collapse
Affiliation(s)
- Marie Vanstalle
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France.
| | - Julie Constanzo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Christian Finck
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
27
|
Almeida IP, Vaniqui A, Schyns LE, van der Heyden B, Cooley J, Zwart T, Langenegger A, Verhaegen F. Exploring the feasibility of a clinical proton beam with an adaptive aperture for pre-clinical research. Br J Radiol 2018; 92:20180446. [PMID: 30362812 DOI: 10.1259/bjr.20180446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE: To investigate whether the Mevion S250i with HYPERSCAN clinical proton system could be used for pre-clinical research with millimetric beams. METHODS: The nozzle of the proton beam line, consisting of an energy modulation system (EMS) and an adaptive aperture (AA), was modelled with the TOPAS Monte Carlo Simulation Toolkit. With the EMS, the 230 MeV beam nominal range can be decreased in multiples of 2.1 mm. Monte Carlo dose calculations were performed in a mouse lung tumour CT image. The AA allows fields as small as 5 × 1 mm2 to be used for irradiation. The best plans to give 2 Gy to the tumour were derived from a set of discrete energies allowed by the EMS, different field sizes and beam directions. The final proton plans were compared to a precision photon irradiation plan. Treatment times were also assessed. RESULTS: Seven different proton beam plans were investigated, with a good coverage to the tumour (D95 > 1.95 Gy, D5 < 2.3 Gy) and with potentially less damage to the organs at risk than the photon plan. For very small fields and low energies, the number of protons arriving to the target drops to 1-3%, nevertheless the treatment times would be below 5 s. CONCLUSION: The proton plans made in this study, collimated by an AA, could be used for animal irradiation. ADVANCES IN KNOWLEDGE: This is one of the first study to demonstrate the feasibility of pre-clinical research with a clinical proton beam with an adaptive aperture used to create small fields.
Collapse
Affiliation(s)
- Isabel P Almeida
- 1 Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastrich , Netherlands
| | - Ana Vaniqui
- 1 Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastrich , Netherlands
| | - Lotte Ejr Schyns
- 1 Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastrich , Netherlands
| | - Brent van der Heyden
- 1 Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastrich , Netherlands
| | - James Cooley
- 2 Mevion Medical Systems Inc , Littleton, MA , USA
| | | | | | - Frank Verhaegen
- 1 Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastrich , Netherlands
| |
Collapse
|
28
|
MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors. PLoS One 2018; 13:e0198065. [PMID: 29847586 PMCID: PMC5976174 DOI: 10.1371/journal.pone.0198065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/14/2018] [Indexed: 01/20/2023] Open
Abstract
Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol is wide-ranging and not limited to the orthotopic prostate tumor study presented in the study.
Collapse
|
29
|
Spirou SV, Costa Lima SA, Bouziotis P, Vranješ-Djurić S, Efthimiadou EΚ, Laurenzana A, Barbosa AI, Garcia-Alonso I, Jones C, Jankovic D, Gobbo OL. Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E306. [PMID: 29734795 PMCID: PMC5977320 DOI: 10.3390/nano8050306] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/22/2018] [Accepted: 04/29/2018] [Indexed: 12/23/2022]
Abstract
Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy ("Radiomag"). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.
Collapse
Affiliation(s)
- Spiridon V Spirou
- Department of Radiology, Sismanoglio General Hospital of Attica, Sismanogliou 1, Marousi 15126, Athens, Greece.
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Aghia Paraskevi, Athens 15310, Greece.
| | - Sanja Vranješ-Djurić
- "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11351, Serbia.
| | - Eleni Κ Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15784, Greece.
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Agia Paraskevi Attikis, Athens 15310, Greece.
| | - Anna Laurenzana
- Department of Biomedical and Clinical Science "Mario Serio", University of Florence, 50134 Firenze, Italy.
| | - Ana Isabel Barbosa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
| | - Ignacio Garcia-Alonso
- Department of Surgery, Radiology & Ph.M. University of the Basque Country, Bilbao E48940, Spain.
| | - Carlton Jones
- NanoTherics Ltd., Studio 3, Unit 3, Silverdale Enterprise Centre Kents Lane, Newcastle under Lyme ST5 6SR, UK.
| | - Drina Jankovic
- "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11351, Serbia.
| | - Oliviero L Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02PN40 Dublin, Ireland.
| |
Collapse
|
30
|
Verhaegen F, Dubois L, Gianolini S, Hill MA, Karger CP, Lauber K, Prise KM, Sarrut D, Thorwarth D, Vanhove C, Vojnovic B, Weersink R, Wilkens JJ, Georg D. ESTRO ACROP: Technology for precision small animal radiotherapy research: Optimal use and challenges. Radiother Oncol 2018; 126:471-478. [PMID: 29269093 DOI: 10.1016/j.radonc.2017.11.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/21/2017] [Indexed: 11/30/2022]
Abstract
Many radiotherapy research centers have recently installed novel research platforms enabling the investigation of the radiation response of tumors and normal tissues in small animal models, possibly in combination with other treatment modalities. Many more research institutes are expected to follow in the coming years. These novel platforms are capable of mimicking human radiotherapy more closely than older technology. To facilitate the optimal use of these novel integrated precision irradiators and various small animal imaging devices, and to maximize the impact of the associated research, the ESTRO committee on coordinating guidelines ACROP (Advisory Committee in Radiation Oncology Practice) has commissioned a report to review the state of the art of the technology used in this new field of research, and to issue recommendations. This report discusses the combination of precision irradiation systems, small animal imaging (CT, MRI, PET, SPECT, bioluminescence) systems, image registration, treatment planning, and data processing. It also provides guidelines for reporting on studies.
Collapse
Affiliation(s)
- Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Ludwig Dubois
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | | | - Mark A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, UK
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Germany
| | - Kevin M Prise
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, UK
| | - David Sarrut
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, France
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Germany
| | - Christian Vanhove
- Institute Biomedical Technology (IBiTech), Medical Imaging and Signal Processing (MEDISIP), Ghent University, Belgium
| | - Boris Vojnovic
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, UK
| | - Robert Weersink
- Department of Radiation Oncology, University of Toronto, Department of Radiation Medicine, Princess Margaret Hospital, Canada
| | - Jan J Wilkens
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Germany
| | - Dietmar Georg
- Division of Medical Radiation Physics, Department of Radiation Oncology and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Austria
| |
Collapse
|
31
|
Vanstalle M, Constanzo J, Karakaya Y, Finck C, Rousseau M, Brasse D. Analytical dose modeling for preclinical proton irradiation of millimetric targets. Med Phys 2017; 45:470-478. [PMID: 29178161 DOI: 10.1002/mp.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. METHODS The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. RESULTS We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. CONCLUSION Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse models for radiation studies. Our results demonstrate that the choice of analytical rather than simulated treatment planning depends on the animal model under consideration.
Collapse
Affiliation(s)
- Marie Vanstalle
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, F-67000, France
| | - Julie Constanzo
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, F-67000, France
| | - Yusuf Karakaya
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, F-67000, France
| | - Christian Finck
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, F-67000, France
| | - Marc Rousseau
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, F-67000, France
| | - David Brasse
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, F-67000, France
| |
Collapse
|
32
|
Meyer J, Stewart RD, Smith D, Eagle J, Lee E, Cao N, Ford E, Hashemian R, Schuemann J, Saini J, Marsh S, Emery R, Dorman E, Schwartz J, Sandison G. Biological and dosimetric characterisation of spatially fractionated proton minibeams. Phys Med Biol 2017; 62:9260-9281. [PMID: 29053105 DOI: 10.1088/1361-6560/aa950c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Müller J, Neubert C, von Neubeck C, Baumann M, Krause M, Enghardt W, Bütof R, Dietrich A, Lühr A. Proton radiography for inline treatment planning and positioning verification of small animals. Acta Oncol 2017; 56:1399-1405. [PMID: 28835182 DOI: 10.1080/0284186x.2017.1352102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION As proton therapy becomes increasingly well established, there is a need for high-quality clinically relevant in vivo data to gain better insight into the radiobiological effects of proton irradiation on both healthy and tumor tissue. This requires the development of easily applicable setups that allow for efficient, fractionated, image-guided proton irradiation of small animals, the most widely used pre-clinical model. MATERIAL AND METHODS Here, a method is proposed to perform dual-energy proton radiography for inline positioning verification and treatment planning. Dual-energy proton radiography exploits the differential enhancement of object features in two successively measured two-dimensional (2D) dose distributions at two different proton energies. The two raw images show structures that are dominated by energy absorption (absorption mode) or scattering (scattering mode) of protons in the object, respectively. Data post-processing allowed for the separation of both signal contributions in the respective images. The images were evaluated regarding recognizable object details and feasibility of rigid registration to acquired planar X-ray scans. RESULTS Robust, automated rigid registration of proton radiography and planar X-ray images in scattering mode could be reliably achieved with the animal bedding unit used as registration landmark. Distinguishable external and internal features of the imaged mouse included the outer body contour, the skull with substructures, the lung, abdominal structures and the hind legs. Image analysis based on the combined information of both imaging modes allowed image enhancement and calculation of 2D water-equivalent path length (WEPL) maps of the object along the beam direction. DISCUSSION Fractionated irradiation of exposed target volumes (e.g., subcutaneous tumor model or brain) can be realized with the suggested method being used for daily positioning and range determination. Robust registration of X-ray and proton radiography images allows for the irradiation of tumor entities that require conventional computed tomography (CT)-based planning, such as orthotopic lung or brain tumors, similar to conventional patient treatment.
Collapse
Affiliation(s)
- Johannes Müller
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Christian Neubert
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Cläre von Neubeck
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Baumann
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mechthild Krause
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Wolfgang Enghardt
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rebecca Bütof
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Antje Dietrich
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin Lühr
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| |
Collapse
|