1
|
Sarfati P, De La Taille T, Portioli C, Spanò R, Lalatonne Y, Decuzzi P, Chauvierre C. REVIEW: "ISCHEMIC STROKE: From Fibrinolysis to Functional Recovery" Nanomedicine: emerging approaches to treat ischemic stroke. Neuroscience 2024; 550:102-113. [PMID: 38056622 DOI: 10.1016/j.neuroscience.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Stroke is responsible for 11% of all deaths worldwide, the majority of which are caused by ischemic strokes, thus making the need to urgently find safe and effective therapies. Today, these can be cured either by mechanical thrombectomy when the thrombus is accessible, or by intravenous injection of fibrinolytics. However, the latter present several limitations, such as potential severe side effects, few eligible patients and low rate of partial and full recovery. To design safer and more effective treatments, nanomedicine appeared in this medical field a few decades ago. This review will explain why nanoparticle-based therapies and imaging techniques are relevant for ischemic stroke management. Then, it will present the different nanoparticle types that have been recently developed to treat this pathology. It will also study the various targeting strategies used to bring nanoparticles to the stroke site, thereby limiting side effects and improving the therapeutic efficacy. Finally, this review will present the few clinical studies testing nanomedicine on stroke and discuss potential causes for their scarcity.
Collapse
Affiliation(s)
- Pierre Sarfati
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France
| | - Thibault De La Taille
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France
| | - Corinne Portioli
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Yoann Lalatonne
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F-93009 Bobigny, France
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Cédric Chauvierre
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France.
| |
Collapse
|
2
|
Pellow C, Jafari Sojahrood A, Zhao X, Kolios MC, Exner AA, Goertz DE. Synchronous Intravital Imaging and Cavitation Monitoring of Antivascular Focused Ultrasound in Tumor Microvasculature Using Monodisperse Low Boiling Point Nanodroplets. ACS NANO 2024; 18:410-427. [PMID: 38147452 PMCID: PMC10786165 DOI: 10.1021/acsnano.3c07711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Focused ultrasound-stimulated microbubbles can induce blood flow shutdown and ischemic necrosis at higher pressures in an approach termed antivascular ultrasound. Combined with conventional therapies of chemotherapy, immunotherapy, and radiation therapy, this approach has demonstrated tumor growth inhibition and profound synergistic antitumor effects. However, the lower cavitation threshold of microbubbles can potentially yield off-target damage that the polydispersity of clinical agent may further exacerbate. Here we investigate the use of a monodisperse nanodroplet formulation for achieving antivascular effects in tumors. We first develop stable low boiling point monodisperse lipid nanodroplets and examine them as an alternative agent to mediate antivascular ultrasound. With synchronous intravital imaging and ultrasound monitoring of focused ultrasound-stimulated nanodroplets in tumor microvasculature, we show that nanodroplets can trigger blood flow shutdown and do so with a sharper pressure threshold and with fewer additional events than conventionally used microbubbles. We further leverage the smaller size and prolonged pharmacokinetic profile of nanodroplets to allow for potential passive accumulation in tumor tissue prior to antivascular ultrasound, which may be a means by which to promote selective tumor targeting. We find that vascular shutdown is accompanied by inertial cavitation and complex-order sub- and ultraharmonic acoustic signatures, presenting an opportunity for effective feedback control of antivascular ultrasound.
Collapse
Affiliation(s)
- Carly Pellow
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada
| | - Amin Jafari Sojahrood
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto M5B 1T8, Canada
| | - Xiaoxiao Zhao
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto M5B 1T8, Canada
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - David E Goertz
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| |
Collapse
|
3
|
Shah R, Phatak N, Choudhary A, Gadewar S, Ajazuddin, Bhattacharya S. Exploring the Theranostic Applications and Prospects of Nanobubbles. Curr Pharm Biotechnol 2024; 25:1167-1181. [PMID: 37861011 DOI: 10.2174/0113892010248189231010085827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
Anticancer medications as well as additional therapeutic compounds, have poor clinical effectiveness due to their diverse distribution, non-selectivity for malignant cells, and undesirable off-target side effects. As a result, ultrasound-based targeted delivery of therapeutic compounds carried in sophisticated nanocarriers has grown in favor of cancer therapy and control. Nanobubbles are nanoscale bubbles that exhibit unique physiochemical properties in both their inner core and outer shell. Manufacturing nanobubbles primarily aims to enhance therapeutic agents' bioavailability, stability, and targeted delivery. The small size of nanobubbles allows for their extravasation from blood vessels into surrounding tissues and site-specific release through ultrasound targeting. Ultrasound technology is widely utilized for therapy due to its speed, safety, and cost-effectiveness, and micro/nanobubbles, as ultrasound contrast agents, have numerous potential applications in disease treatment. Thus, combining ultrasound applications with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side effects on other non-cancerous tissues. This paper provides a brief overview of the production processes for nanobubbles, along with their key characteristics and potential therapeutic uses.
Collapse
Affiliation(s)
- Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Niraj Phatak
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ashok Choudhary
- Department of Quality Assurance, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sakshi Gadewar
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
4
|
Edwards IA, De Carlo F, Sitta J, Varner W, Howard CM, Claudio PP. Enhancing Targeted Therapy in Breast Cancer by Ultrasound-Responsive Nanocarriers. Int J Mol Sci 2023; 24:ijms24065474. [PMID: 36982548 PMCID: PMC10053544 DOI: 10.3390/ijms24065474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Currently, the response to cancer treatments is highly variable, and severe side effects and toxicity are experienced by patients receiving high doses of chemotherapy, such as those diagnosed with triple-negative breast cancer. The main goal of researchers and clinicians is to develop new effective treatments that will be able to specifically target and kill tumor cells by employing the minimum doses of drugs exerting a therapeutic effect. Despite the development of new formulations that overall can increase the drugs’ pharmacokinetics, and that are specifically designed to bind overexpressed molecules on cancer cells and achieve active targeting of the tumor, the desired clinical outcome has not been reached yet. In this review, we will discuss the current classification and standard of care for breast cancer, the application of nanomedicine, and ultrasound-responsive biocompatible carriers (micro/nanobubbles, liposomes, micelles, polymeric nanoparticles, and nanodroplets/nanoemulsions) employed in preclinical studies to target and enhance the delivery of drugs and genes to breast cancer.
Collapse
Affiliation(s)
- Isaiah A. Edwards
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William Varner
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| |
Collapse
|
5
|
Xu X, Gong M, Liu X. Theoretical prediction of the scattering of spherical bubble clusters under ultrasonic excitation. ULTRASONICS SONOCHEMISTRY 2023; 94:106308. [PMID: 36758265 PMCID: PMC9929581 DOI: 10.1016/j.ultsonch.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Due to the nonlinear vibration of ultrasound contrast agent bubbles, a nonlinear scattered sound field will be generated when bubbles are driven by ultrasound. A bubble cluster consists of numerous bubbles gathering in a spherical space. It has been noted that the forward scattering of a bubble cluster is larger than its backscattering, and some studies have experimentally found the angular dependence of a bubble cluster's scattering signal. In this paper, a theory is proposed to explain the difference of acoustic scattering at different directions of a bubble cluster when it is driven by ultrasound, and predicts the angular distribution of scattered acoustic pressure under different parameters. The theory is proved to be correct under circumstances of small clusters and weak interactions by comparing theoretical results with numerical simulations. This theory not only sheds light on the physics of bubble cluster scattering, but also may contribute to the improvement of ultrasound imaging technology, including ultrasonic harmonic imaging and contrast-enhanced ultrasonography.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Menyang Gong
- Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaozhou Liu
- Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Zhao X, Wright A, Goertz DE. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions. ULTRASONICS SONOCHEMISTRY 2023; 93:106291. [PMID: 36640460 PMCID: PMC9852793 DOI: 10.1016/j.ultsonch.2023.106291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 06/04/2023]
Abstract
Therapeutic focused ultrasound in combination with encapsulated microbubbles is being widely investigated for its ability to elicit bioeffects in the microvasculature, such as transient permeabilization for drug delivery or at higher pressures to achieve 'antivascular' effects. While it is well established that the behaviors of microbubbles are altered when they are situated within sufficiently small vessels, there is a paucity of data examining how the bubble population dynamics and emissions change as a function of channel (vessel) diameter over a size range relevant to therapeutic ultrasound, particularly at pressures relevant to antivascular ultrasound. Here we use acoustic emissions detection and high-speed microscopy (10 kframes/s) to examine the behavior of a polydisperse clinically employed agent (Definity®) in wall-less channels as their diameters are scaled from 1200 to 15 µm. Pressures are varied from 0.1 to 3 MPa using either a 5 ms pulse or a sequence of 0.1 ms pulses spaced at 1 ms, both of which have been previously employed in an in vivo context. With increasing pressure, the 1200 µm channel - on the order of small arteries and veins - exhibited inertial cavitation, 1/2 subharmonics and 3/2 ultraharmonics, consistent with numerous previous reports. The 200 and 100 µm channels - in the size range of larger microvessels less affected by therapeutic focused ultrasound - exhibited a distinctly different behavior, having muted development of 1/2 subharmonics and 3/2 ultraharmonics and reduced persistence. These were associated with radiation forces displacing bubbles to the distal wall and inducing clusters that then rapidly dissipated along with emissions. As the diameter transitioned to 50 and then 15 µm - a size regime that is most relevant to therapeutic focused ultrasound - there was a higher threshold for the onset of inertial cavitation as well as subharmonics and ultraharmonics, which importantly had more complex orders that are not normally reported. Clusters also occurred in these channels (e.g. at 3 MPa, the mean lateral and axial sizes were 23 and 72 µm in the 15 µm channel; 50 and 90 µm in the 50 µm channel), however in this case they occupied the entire lumens and displaced the wall boundaries. Damage to the 15 µm channel was observed for both pulse types, but at a lower pressure for the long pulse. Experiments conducted with a 'nanobubble' (<0.45 µm) subpopulation of Definity followed broadly similar features to 'native' Definity, albeit at a higher pressure threshold for inertial cavitation. These results provide new insights into the behavior of microbubbles in small vessels at higher pressures and have implications for therapeutic focused ultrasound cavitation monitoring and control.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Medical Biophysics, University of Toronto, M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada.
| | - Alex Wright
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada.
| |
Collapse
|
7
|
Yusefi H, Helfield B. The influence of inter-bubble spacing on the resonance response of ultrasound contrast agent microbubbles. ULTRASONICS SONOCHEMISTRY 2022; 90:106191. [PMID: 36223708 PMCID: PMC9563339 DOI: 10.1016/j.ultsonch.2022.106191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 06/06/2023]
Abstract
Ultrasound-driven microbubbles, typically between 1 and 8 µm in diameter, are resonant scatterers that are employed as diagnostic contrast agents and emerging as potentiators of targeted therapies. Microbubbles are administered in populations whereby their radial dynamics - key to their effectiveness - are greatly affected by intrinsic (e.g. bubble size) and extrinsic (e.g. boundaries) factors. In this work, we aim to understand how two neighbouring microbubbles influence each other. We developed a finite element model of a system of two individual phospholipid-encapsulated microbubbles vibrating in proximity to each other to study the effect of inter-bubble distance on microbubble radial resonance response. For the case of two equal-sized and identical bubbles, each bubble exhibits a decrease between 7 and 10% in the frequency of maximum response (fMR) and an increase in amplitude of maximum response (AMR) by 9-11% as compared to its isolated response in free-space, depending on the bubble size examined. For a system of two unequal-sized microbubbles, the large bubble shows no significant change, however the smaller microbubble shows an increase in fMR by 7-11% and a significant decrease in AMR by 38-52%. Furthermore, in very close proximity the small bubble shows a secondary off-resonance peak at the corresponding fMR of its larger companion microbubble. Our work suggests that frequency-dependent microbubble response is greatly affected by the presence of another bubble, which has implications in both imaging and therapy applications. Furthermore, our work suggests a mechanism by which nanobubbles show significant off-resonance vibrations in the clinical frequency range, a behaviour that has been observed experimentally but heretofore unexplained.
Collapse
Affiliation(s)
- Hossein Yusefi
- Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Brandon Helfield
- Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada; Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
8
|
Batchelor DV, Armistead FJ, Ingram N, Peyman SA, Mclaughlan JR, Coletta PL, Evans SD. Nanobubbles for therapeutic delivery: Production, stability and current prospects. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Pellow C, Cherin E, Abenojar EC, Exner AA, Zheng G, Demore CEM, Goertz DE. High-Frequency Array-Based Nanobubble Nonlinear Imaging in a Phantom and In Vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2059-2074. [PMID: 33513102 PMCID: PMC8296974 DOI: 10.1109/tuffc.2021.3055141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There has been growing interest in nanobubbles (NBs) for vascular and extravascular ultrasound contrast imaging and therapeutic applications. Studies to date have generally utilized low frequencies (<12 MHz), high concentrations (>109 mL-1), and uncalibrated B-mode or contrast-mode on commercial systems without reporting investigations on NB signatures upon which the imaging protocols should be based. We recently demonstrated that low concentrations (106 mL-1) of porphyrin-lipid-encapsulated NBs scatter nonlinearly at low (2.5, 8 MHz) and high (12.5, 25, 30 MHz) frequencies in a pressure threshold-dependent manner that is advantageous for amplitude modulation (AM) imaging. Here, we implement pressure-calibrated AM at high frequency on a commercial preclinical array system to enhance sensitivity to nonlinear scattering of three phospholipid-based NB formulations. With this approach, improvements in contrast to tissue ratio relative to B-mode between 12.4 and 22.8 dB are demonstrated in a tissue-mimicking phantom, and between 6.7 and 14.8 dB in vivo.
Collapse
|
10
|
Jafari Sojahrood A, de Leon AC, Lee R, Cooley M, Abenojar EC, Kolios MC, Exner AA. Toward Precisely Controllable Acoustic Response of Shell-Stabilized Nanobubbles: High Yield and Narrow Dispersity. ACS NANO 2021; 15:4901-4915. [PMID: 33683878 PMCID: PMC7992193 DOI: 10.1021/acsnano.0c09701] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding the pressure dependence of the nonlinear behavior of ultrasonically excited phospholipid-stabilized nanobubbles (NBs) is important for optimizing ultrasound exposure parameters for implementations of contrast enhanced ultrasound, critical to molecular imaging. The viscoelastic properties of the shell can be controlled by the introduction of membrane additives, such as propylene glycol as a membrane softener or glycerol as a membrane stiffener. We report on the production of high-yield NBs with narrow dispersity and different shell properties. Through precise control over size and shell structure, we show how these shell components interact with the phospholipid membrane, change their structure, affect their viscoelastic properties, and consequently change their acoustic response. A two-photon microscopy technique through a polarity-sensitive fluorescent dye, C-laurdan, was utilized to gain insights on the effect of membrane additives to the membrane structure. We report how the shell stiffness of NBs affects the pressure threshold (Pt) for the sudden amplification in the scattered acoustic signal from NBs. For narrow size NBs with 200 nm mean size, we find Pt to be between 123 and 245 kPa for the NBs with the most flexible membrane as assessed using C-Laurdan, 465-588 kPa for the NBs with intermediate stiffness, and 588-710 kPa for the NBs with stiff membranes. Numerical simulations of the NB dynamics are in good agreement with the experimental observations, confirming the dependence of acoustic response to shell properties, thereby substantiating further the development in engineering the shell of ultrasound contrast agents. The viscoelastic-dependent threshold behavior can be utilized for significantly and selectively enhancing the diagnostic and therapeutic ultrasound applications of potent narrow size NBs.
Collapse
Affiliation(s)
- Amin Jafari Sojahrood
- Department
of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering and Science Technology, A Partnership between Ryerson University and St. Michael’s
Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Al C. de Leon
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Richard Lee
- Light
Microscopy Imaging Core, Case Western Reserve
University, Cleveland, Ohio 44106, United
States
| | - Michaela Cooley
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eric C. Abenojar
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Michael C. Kolios
- Department
of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering and Science Technology, A Partnership between Ryerson University and St. Michael’s
Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Agata A. Exner
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
11
|
Pellow C, Tan J, Chérin E, Demore CEM, Zheng G, Goertz DE. High frequency ultrasound nonlinear scattering from porphyrin nanobubbles. ULTRASONICS 2021; 110:106245. [PMID: 32932144 DOI: 10.1016/j.ultras.2020.106245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Emerging contrast imaging studies have highlighted the potential of nanobubbles for both intravascular and extravascular applications. Reports to date on nanobubbles have generally utilized low frequencies (<12 MHz), high concentrations (>109 mL-1), and B-mode or contrast-mode on preclinical and clinical systems. However, none of these studies directly examined nanobubble acoustic signatures systematically to implement nonlinear imaging schemes in a methodical manner based on nanobubble behaviour. Here, nanobubble nonlinear behaviour is investigated at high frequencies (12.5, 25, 30 MHz) and low concentration (106 mL-1) in a channel phantom, with different pulse types in single- and multi-pulse sequences to examine behaviour under conditions relevant to high frequency imaging. Porphyrin nanobubbles are demonstrated to initiate nonlinear scattering at high frequencies in a pressure-threshold dependent manner, as previously observed at low frequencies. This threshold behaviour was then utilized to demonstrate enhanced nanobubble imaging with pulse inversion, amplitude modulation, and a combination of the two, progressing towards the improved sensitivity and expanded utility of these ultrasound contrast agents.
Collapse
Affiliation(s)
- Carly Pellow
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Research Centre, 101 College St., Toronto, ON M5G 0A3, Canada; Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada.
| | - Josephine Tan
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Emmanuel Chérin
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Christine E M Demore
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Gang Zheng
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Research Centre, 101 College St., Toronto, ON M5G 0A3, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
12
|
Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv 2021; 11:12915-12928. [PMID: 35423829 PMCID: PMC8697319 DOI: 10.1039/d0ra08727k] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The non-specific distribution, non-selectivity towards cancerous cells, and adverse off-target side effects of anticancer drugs and other therapeutic molecules lead to their inferior clinical efficacy. Accordingly, ultrasound-based targeted delivery of therapeutic molecules loaded in smart nanocarriers is currently gaining wider acceptance for the treatment and management of cancer. Nanobubbles (NBs) are nanosize carriers, which are currently used as effective drug/gene delivery systems because they can deliver drugs/genes selectively to target sites. Thus, combining the applications of ultrasound with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side-effects on other non-cancerous tissues. This review illustrates present developments in the field of ultrasound-nanobubble combined strategies for targeted cancer treatment. The first part of this review discusses the composition and the formulation parameters of NBs. Next, we illustrate the interactions and biological effects of combining NBs and ultrasound. Subsequently, we explain the potential of NBs combined with US for targeted cancer therapeutics. Finally, the present and future directions for the improvement of current methods are proposed. NBs combined with ultrasound demonstrated the ability to enhance the targeting of anticancer agents and improve the efficacy.![]()
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - XiaoJun Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Tiangang Li
- Department of Ultrasound Diagnosis, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730030, Gansu Province, China
| | - Wenhao Lv
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Yao Zhang
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| |
Collapse
|
13
|
Pellow C, Abenojar EC, Exner AA, Zheng G, Goertz DE. Concurrent visual and acoustic tracking of passive and active delivery of nanobubbles to tumors. Am J Cancer Res 2020; 10:11690-11706. [PMID: 33052241 PMCID: PMC7545999 DOI: 10.7150/thno.51316] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background: There has been growing interest in nanobubbles for their potential to extend bubble-mediated ultrasound approaches beyond that of their larger microbubble counterparts. In particular, the smaller scale of nanobubbles may enable them to access the tumor extravascular compartment for imaging and therapy in closer proximity to cancer cells. Compelling preliminary demonstrations of the imaging and therapeutic abilities of nanobubbles have thus emerged, with emphasis on their ability to extravasate. However, studies to date rely on indirect histologic evidence that cannot confirm whether the structures remain intact beyond the vasculature - leaving their extravascular potential largely untapped. Methods: Nanobubble acoustic scattering was assessed using a recently reported ultra-stable formulation at low concentration (106 mL-1) and frequency (1 MHz), over a range of pressures (100-1500 kPa) in a channel phantom. The pressure-dependent response was utilized as a basis for in vivo experiments where ultrasound transmitters and receivers were integrated into a window chamber for simultaneous intravital multiphoton microscopy and acoustic monitoring in tumor-affected microcirculation. Microscopy and acoustic data were utilized to assess passive and active delivery of nanobubbles and determine whether they remained intact beyond the vasculature. Results: Nanobubbles exhibit pressure-dependent nonlinear acoustic scattering. Nanobubbles are also found to have prolonged acoustic vascular pharmacokinetics, and passively extravasate intact into tumors. Ultrasound stimulation of nanobubbles is shown to actively enhance the delivery of both intact nanobubbles and shell material, increasing their spatial bioavailability deeper into the extravascular space. A range of acute vascular effects were also observed. Conclusion: This study presents the first direct evidence that nanobubbles passively and actively extravasate intact in tumor tissue, and is the first to directly capture acute vascular events from ultrasound-stimulation of nanobubbles. The insights gained here demonstrate an important step towards unlocking the potential of nanobubbles and extending ultrasound-based applications.
Collapse
|
14
|
Batchelor DVB, Abou-Saleh RH, Coletta PL, McLaughlan JR, Peyman SA, Evans SD. Nested Nanobubbles for Ultrasound-Triggered Drug Release. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29085-29093. [PMID: 32501014 PMCID: PMC7333229 DOI: 10.1021/acsami.0c07022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Because of their size (1-10 μm), microbubble-based drug delivery agents suffer from confinement to the vasculature, limiting tumor penetration and potentially reducing the drug efficacy. Nanobubbles (NBs) have emerged as promising candidates for ultrasound-triggered drug delivery because of their small size, allowing drug delivery complexes to take advantage of the enhanced permeability and retention effect. In this study, we describe a simple method for production of nested-nanobubbles (Nested-NBs) by encapsulation of NBs (∼100 nm) within drug-loaded liposomes. This method combines the efficient and well-established drug-loading capabilities of liposomes while utilizing NBs as an acoustic trigger for drug release. Encapsulation was characterized using transmission electron microscopy with an encapsulation efficiency of 22 ± 2%. Nested-NBs demonstrated echogenicity using diagnostic B-mode imaging, and acoustic emissions were monitored during high-intensity focused ultrasound (HIFU) in addition to monitoring of model drug release. Results showed that although the encapsulated NBs were destroyed by pulsed HIFU [peak negative pressure (PNP) 1.54-4.83 MPa], signified by loss of echogenicity and detection of inertial cavitation, no model drug release was observed. Changing modality to continuous wave (CW) HIFU produced release across a range of PNPs (2.01-3.90 MPa), likely because of a synergistic effect of mechanical and increased thermal stimuli. Because of this, we predict that our NBs contain a mixed population of both gaseous and liquid core particles, which upon CW HIFU undergo rapid phase conversion, triggering liposomal drug release. This hypothesis was investigated using previously described models to predict the existence of droplets and their phase change potential and the ability of this phase change to induce liposomal drug release.
Collapse
Affiliation(s)
| | - Radwa H. Abou-Saleh
- Department of Physics
and Astronomy, University of Leeds, Leeds, U.K.
- Department
of Physics, Mansoura University, Mansoura, Egypt
| | - P. Louise Coletta
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, U.K.
| | - James. R. McLaughlan
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, U.K.
- School
of Electronic and Electrical Engineering, University of Leeds, Leeds, U.K.
| | - Sally A. Peyman
- Department of Physics
and Astronomy, University of Leeds, Leeds, U.K.
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, U.K.
| | - Stephen D. Evans
- Department of Physics
and Astronomy, University of Leeds, Leeds, U.K.
- . Phone/Fax: (+44) (0)113 343 3852
| |
Collapse
|
15
|
Pellow C, O'Reilly MA, Hynynen K, Zheng G, Goertz DE. Simultaneous Intravital Optical and Acoustic Monitoring of Ultrasound-Triggered Nanobubble Generation and Extravasation. NANO LETTERS 2020; 20:4512-4519. [PMID: 32374617 DOI: 10.1021/acs.nanolett.0c01310] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ultrasound-activated nanobubbles are being widely investigated as contrast agents and therapeutic vehicles. Nanobubbles hold potential for accessing the tumor extravascular compartment, though this relies on clinically debated passive accumulation for which evidence to date is indirect. We recently reported ultrasound-triggered conversion of high payload porphyrin-encapsulated microbubbles to nanobubbles, with actively enhanced permeability for local delivery. This platform holds implications for optical/ultrasound-based imaging and therapeutics. While promising, it remains to be established how nanobubbles are generated and whether they extravasate intact. Here, insights into the conversion process are reported, complemented by novel simultaneous intravital and acoustic monitoring in tumor-affected functional circulation. The first direct acoustic evidence of extravascular intact nanobubbles are presented. These insights collectively advance this delivery platform and multimodal micro- and nanobubbles, extending their utility for imaging and therapeutics within and beyond the vasculature.
Collapse
Affiliation(s)
- Carly Pellow
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, M4N 3M5, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 2C1, Canada
| | - Meaghan A O'Reilly
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, M4N 3M5, Canada
| | - Kullervo Hynynen
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, M4N 3M5, Canada
| | - Gang Zheng
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 2C1, Canada
| | - David E Goertz
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, M4N 3M5, Canada
| |
Collapse
|
16
|
Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q, Yue Y, Gu N. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics 2020; 10:462-483. [PMID: 31903132 PMCID: PMC6929974 DOI: 10.7150/thno.37593] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
Drug delivery for tumor theranostics involves the extensive use of the enhanced permeability and retention (EPR) effect. Previously, various types of nanomedicines have been demonstrated to accumulate in solid tumors via the EPR effect. However, EPR is a highly variable phenomenon because of tumor heterogeneity, resulting in low drug delivery efficacy in clinical trials. Because ultrasonication using micro/nanobubbles as contrast agents can disrupt blood vessels and enhance the specific delivery of drugs, it is an effective approach to improve the EPR effect for the passive targeting of tumors. In this review, the basic thermal effect, acoustic streaming, and cavitation mechanisms of ultrasound, which are characteristics that can be utilized to enhance the EPR effect, are briefly introduced. Second, micro/nanobubble-enhanced ultrasound imaging is discussed to understand the validity and variability of the EPR effect. Third, because the tumor microenvironment is complicated owing to elevated interstitial fluid pressure and the deregulated extracellular matrix components, which may be unfavorable for the EPR effect, few new trends in smart bubble drug delivery systems, which may improve the accuracy of EPR-mediated passive drug targeting, are summarized. Finally, the challenging and major concerns that should be considered in the next generation of micro/nanobubble-contrast-enhanced ultrasound theranostics for EPR-mediated passive drug targeting are also discussed.
Collapse
Affiliation(s)
- Lei Duan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Li Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Juan Jin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Dong Liu
- West Anhui University, Lu'an, P.R. China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, P. R. China
| | - Ke Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qinxin Wang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yuanbin Yue
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
17
|
Harmatys KM, Overchuk M, Zheng G. Rational Design of Photosynthesis-Inspired Nanomedicines. Acc Chem Res 2019; 52:1265-1274. [PMID: 31021599 DOI: 10.1021/acs.accounts.9b00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sun is the most abundant source of energy on earth. Phototrophs have discovered clever strategies to harvest this light energy and convert it to chemical energy for biomass production. This is achieved in light-harvesting complexes, or antennas, that funnel the exciton energy into the reaction centers. Antennas contain an array of chlorophylls, linear tetrapyrroles, and carotenoid pigments spatially controlled by neighboring proteins. This fine-tuned regulation of protein-pigment arrangements is crucial for survival in the conditions of both excess and extreme light deficit. Photomedicine and photodiagnosis have long been utilizing naturally derived and synthetic monomer dyes for imaging, photodynamic and photothermal therapy; however, the precise regulation of damage inflicted by these therapies requires more complex architectures. In this Account, we discuss how two mechanisms found in photosynthetic systems, photoprotection and light harvesting, have inspired scientists to create nanomedicines for more effective and precise phototherapies. Researchers have been recapitulating natural photoprotection mechanisms by utilizing carotenoids and other quencher molecules toward the design of photodynamic molecular beacons (PDT beacons) for disease-specific photoactivation. We highlight the seminal studies describing peptide-linked porphyrin-carotenoid PDT beacons, which are locally activated by a disease-specific enzyme. Examples of more advanced constructs include tumor-specific mRNA-activatable and polyionic cell-penetrating PDT beacons. An alternative approach toward harnessing photosynthetic processes for biomedical applications includes the design of various nanostructures. This Account will primarily focus on organic lipid-based micro- and nanoparticles. The phenomenon of nonphotochemical quenching, or excess energy release in the form of heat, has been widely explored in the context of porphyrin-containing nanomedicines. These quenched nanostructures can be implemented toward photoacoustic imaging and photothermal therapy. Upon nanostructure disruption, as a result of tissue accumulation and subsequent cell uptake, activatable fluorescence imaging and photodynamic therapy can be achieved. Alternatively, processes found in nature for light harvesting under dim conditions, such as in the deep sea, can be harnessed to maximize light absorption within the tissue. Specifically, high-ordered dye aggregation that results in a bathochromic shift and increased absorption has been exploited for the collection of more light with longer wavelengths, characterized by maximum tissue penetration. Overall, the profound understanding of photosynthetic systems combined with rapid development of nanotechnology has yielded a unique field of nature-inspired photomedicine, which holds promise toward more precise and effective phototherapies.
Collapse
Affiliation(s)
- Kara M. Harmatys
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Marta Overchuk
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|