1
|
Alzahrani M, Broadbent DA, Teh I, Al-Qaisieh B, Speight R. Assessing suitability and stability of materials for a head and neck anthropomorphic multimodality (MRI/CT) phantoms for radiotherapy. Phys Med Biol 2024; 69:215034. [PMID: 39419093 DOI: 10.1088/1361-6560/ad8830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective:This study aims to identify and evaluate suitable and stable materials for developing a head and neck anthropomorphic multimodality phantom for radiotherapy purposes. These materials must mimic human head and neck tissues in both computed tomography (CT) and magnetic resonance imaging (MRI) and maintain stable imaging properties over time and after radiation exposure, including the high levels associated with linear accelerator (linac) use.Approach:Various materials were assessed by measuring their CT numbers and T1 and T2 relaxation times. These measurements were compared to literature values to determine how closely the properties of the candidate materials resemble those of human tissues in the head and neck region. The stability of these properties was evaluated monthly over a year and after radiation exposure to doses up to 1000 Gy. Statistical analyzes were conducted to identify any significant changes over time and after radiation exposure.Main results:10% and 12.6% Polyvinyl alcohol cryogel (PVA-c) both exhibited T1 and T2 relaxation times and CT numbers within the range appropriate for brain grey matter. 14.3% PVA-c and some plastic-based materials matched the MRI properties of brain white matter, with CT numbers close to the clinical range. Additionally, some plastic-based materials showed T1 and T2 relaxation times consistent with MRI properties of fat, although their CT numbers were not suitable. Over time and after irradiation, 10% PVA-c maintained consistent properties for brain grey matter. 12.6% PVA-c's T1 relaxation time decreased beyond the range after the first month.Significance:This study identified 10% PVA-c as a substitute for brain grey matter, demonstrating stable imaging properties over a year and after radiation exposure up to 1000 Gy. However, the results highlight a need for further research to find additional materials to accurately simulate a wider range of human tissues.
Collapse
Affiliation(s)
- Meshal Alzahrani
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Biomedical Imaging Science Department, University of Leeds, Leeds, United Kingdom
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David A Broadbent
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Biomedical Imaging Science Department, University of Leeds, Leeds, United Kingdom
| | - Irvin Teh
- Biomedical Imaging Science Department, University of Leeds, Leeds, United Kingdom
| | - Bashar Al-Qaisieh
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Richard Speight
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Biomedical Imaging Science Department, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Wong YM, Koh CWY, Lew KS, Chua CGA, Yeap PL, Zhang ET, Ong ALK, Tuan JKL, Ng BF, Lew WS, Lee JCL, Tan HQ. Deformable anthropomorphic pelvis phantom for dose accumulation verification. Phys Med Biol 2024; 69:12NT01. [PMID: 38821109 DOI: 10.1088/1361-6560/ad52e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
Objective.The validation of deformable image registration (DIR) for contour propagation is often done using contour-based metrics. Meanwhile, dose accumulation requires evaluation of voxel mapping accuracy, which might not be accurately represented by contour-based metrics. By fabricating a deformable anthropomorphic pelvis phantom, we aim to (1) quantify the voxel mapping accuracy for various deformation scenarios, in high- and low-contrast regions, and (2) identify any correlation between dice similarity coefficient (DSC), a commonly used contour-based metric, and the voxel mapping accuracy for each organ.Approach. Four organs, i.e. pelvic bone, prostate, bladder and rectum (PBR), were 3D printed using PLA and a Polyjet digital material, and assembled. The latter three were implanted with glass bead and CT markers within or on their surfaces. Four deformation scenarios were simulated by varying the bladder and rectum volumes. For each scenario, nine DIRs with different parameters were performed on RayStation v10B. The voxel mapping accuracy was quantified by finding the discrepancy between true and mapped marker positions, termed the target registration error (TRE). Pearson correlation test was done between the DSC and mean TRE for each organ.Main results. For the first time, we fabricated a deformable phantom purely from 3D printing, which successfully reproduced realistic anatomical deformations. Overall, the voxel mapping accuracy dropped with increasing deformation magnitude, but improved when more organs were used to guide the DIR or limit the registration region. DSC was found to be a good indicator of voxel mapping accuracy for prostate and rectum, but a comparatively poorer one for bladder. DSC > 0.85/0.90 was established as the threshold of mean TRE ⩽ 0.3 cm for rectum/prostate. For bladder, extra metrics in addition to DSC should be considered.Significance. This work presented a 3D printed phantom, which enabled quantification of voxel mapping accuracy and evaluation of correlation between DSC and voxel mapping accuracy.
Collapse
Affiliation(s)
- Yun Ming Wong
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore, Singapore
| | - Calvin Wei Yang Koh
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Ai3 Lab, National Cancer Centre Singapore, Singapore, Singapore
| | - Kah Seng Lew
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Clifford Ghee Ann Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Ai3 Lab, National Cancer Centre Singapore, Singapore, Singapore
| | - Ping Lin Yeap
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Ee Teng Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for 3D Printing, Nanyang Technological University, Singapore, Singapore
| | - Ashley Li Kuan Ong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Ai3 Lab, National Cancer Centre Singapore, Singapore, Singapore
| | - Jeffrey Kit Loong Tuan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Ai3 Lab, National Cancer Centre Singapore, Singapore, Singapore
| | - Bing Feng Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wen Siang Lew
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore, Singapore
| | - James Cheow Lei Lee
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Hong Qi Tan
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Ai3 Lab, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Nenoff L, Amstutz F, Murr M, Archibald-Heeren B, Fusella M, Hussein M, Lechner W, Zhang Y, Sharp G, Vasquez Osorio E. Review and recommendations on deformable image registration uncertainties for radiotherapy applications. Phys Med Biol 2023; 68:24TR01. [PMID: 37972540 PMCID: PMC10725576 DOI: 10.1088/1361-6560/ad0d8a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Deformable image registration (DIR) is a versatile tool used in many applications in radiotherapy (RT). DIR algorithms have been implemented in many commercial treatment planning systems providing accessible and easy-to-use solutions. However, the geometric uncertainty of DIR can be large and difficult to quantify, resulting in barriers to clinical practice. Currently, there is no agreement in the RT community on how to quantify these uncertainties and determine thresholds that distinguish a good DIR result from a poor one. This review summarises the current literature on sources of DIR uncertainties and their impact on RT applications. Recommendations are provided on how to handle these uncertainties for patient-specific use, commissioning, and research. Recommendations are also provided for developers and vendors to help users to understand DIR uncertainties and make the application of DIR in RT safer and more reliable.
Collapse
Affiliation(s)
- Lena Nenoff
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, Dresden Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany
| | - Florian Amstutz
- Department of Physics, ETH Zurich, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Martina Murr
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | | | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Mohammad Hussein
- Metrology for Medical Physics, National Physical Laboratory, Teddington, United Kingdom
| | - Wolfgang Lechner
- Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Greg Sharp
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Dal Bello R, Lapaeva M, La Greca Saint-Esteven A, Wallimann P, Günther M, Konukoglu E, Andratschke N, Guckenberger M, Tanadini-Lang S. Patient-specific quality assurance strategies for synthetic computed tomography in magnetic resonance-only radiotherapy of the abdomen. Phys Imaging Radiat Oncol 2023; 27:100464. [PMID: 37497188 PMCID: PMC10366576 DOI: 10.1016/j.phro.2023.100464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Background and purpose The superior tissue contrast of magnetic resonance (MR) compared to computed tomography (CT) led to an increasing interest towards MR-only radiotherapy. For the latter, the dose calculation should be performed on a synthetic CT (sCT). Patient-specific quality assurance (PSQA) methods have not been established yet and this study aimed to assess several software-based solutions. Materials and methods A retrospective study was performed on 20 patients treated at an MR-Linac, which were selected to evenly cover four subcategories: (i) standard, (ii) air pockets, (iii) lung and (iv) implant cases. The neural network (NN) CycleGAN was adopted to generate a reference sCT, which was then compared to four PSQA methods: (A) water override of body, (B) five tissue classes with bulk densities, (C) sCT generated by a separate NN (pix2pix) and (D) deformed CT. Results The evaluation of the dose endpoints demonstrated that while all methods A-D provided statistically equivalent results (p = 0.05) within the 2% level for the standard cases (i), only the methods C-D guaranteed the same result over the whole cohort. The bulk densities override was shown to be a valuable method in absence of lung tissue within the beam path. Conclusion The observations of this study suggested that the use of an additional sCT generated by a separate NN was an appropriate tool to perform PSQA of a sCT in an MR-only workflow at an MR-Linac. The time and dose endpoints requirements were respected, namely within 10 min and 2%.
Collapse
Affiliation(s)
- Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Mariia Lapaeva
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Artificial Intelligence and Machine Learning Group, Department of Informatics, University of Zurich, Zurich, Switzerland
- Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland
| | - Agustina La Greca Saint-Esteven
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland
| | - Philipp Wallimann
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Manuel Günther
- Artificial Intelligence and Machine Learning Group, Department of Informatics, University of Zurich, Zurich, Switzerland
| | | | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Hatamikia S, Jaksa L, Kronreif G, Birkfellner W, Kettenbach J, Buschmann M, Lorenz A. Silicone phantoms fabricated with multi-material extrusion 3D printing technology mimicking imaging properties of soft tissues in CT. Z Med Phys 2023:S0939-3889(23)00076-4. [PMID: 37380561 DOI: 10.1016/j.zemedi.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/30/2023]
Abstract
Recently, 3D printing has been widely used to fabricate medical imaging phantoms. So far, various rigid 3D printable materials have been investigated for their radiological properties and efficiency in imaging phantom fabrication. However, flexible, soft tissue materials are also needed for imaging phantoms for simulating several clinical scenarios where anatomical deformations is important. Recently, various additive manufacturing technologies have been used to produce anatomical models based on extrusion techniques that allow the fabrication of soft tissue materials. To date, there is no systematic study in the literature investigating the radiological properties of silicone rubber materials/fluids for imaging phantoms fabricated directly by extrusion using 3D printing techniques. The aim of this study was to investigate the radiological properties of 3D printed phantoms made of silicone in CT imaging. To achieve this goal, the radiodensity as described as Hounsfield Units (HUs) of several samples composed of three different silicone printing materials were evaluated by changing the infill density to adjust their radiological properties. A comparison of HU values with a Gammex Tissue Characterization Phantom was performed. In addition, a reproducibility analysis was performed by creating several replicas for specific infill densities. A scaled down anatomical model derived from an abdominal CT was also fabricated and the resulting HU values were evaluated. For the three different silicone materials, a spectrum ranging from -639 to +780 HU was obtained on CT at a scan setting of 120 kVp. In addition, using different infill densities, the printed materials were able to achieve a similar radiodensity range as obtained in different tissue-equivalent inserts in the Gammex phantom (238 HU to -673 HU). The reproducibility results showed good agreement between the HU values of the replicas compared to the original samples, confirming the reproducibility of the printed materials. A good agreement was observed between the HU target values in abdominal CT and the HU values of the 3D-printed anatomical phantom in all tissues.
Collapse
Affiliation(s)
- Sepideh Hatamikia
- Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria; Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Danube Private University, Krems, Austria.
| | - Laszlo Jaksa
- Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
| | - Gernot Kronreif
- Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Joachim Kettenbach
- Institute of Diagnostic, Interventional Radiology and Nuclear Medicine, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Martin Buschmann
- Department of Radiation Oncology, Medical University of Vienna/AKH Wien, Vienna, Austria
| | - Andrea Lorenz
- Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
| |
Collapse
|
6
|
Motovilova E, Aronowitz E, Vincent J, Shin J, Tan ET, Robb F, Taracila V, Sneag DB, Dyke JP, Winkler SA. Silicone-based materials with tailored MR relaxation characteristics for use in reduced coil visibility and in tissue-mimicking phantom design. Med Phys 2023; 50:3498-3510. [PMID: 36737839 PMCID: PMC10272082 DOI: 10.1002/mp.16255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/24/2022] [Accepted: 01/15/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The development of materials with tailored signal intensity in MR imaging is critically important both for the reduction of signal from non-tissue hardware, as well as for the construction of tissue-mimicking phantoms. Silicone-based phantoms are becoming more popular due to their structural stability, stretchability, longer shelf life, and ease of handling, as well as for their application in dynamic imaging of physiology in motion. Moreover, silicone can be also used for the design of stretchable receive radio-frequency (RF) coils. PURPOSE Fabrication of materials with tailored signal intensity for MRI requires knowledge of precise T1 and T2 relaxation times of the materials used. In order to increase the range of possible relaxation times, silicone materials can be doped with gadolinium (Gd). In this work, we aim to systematically evaluate relaxation properties of Gd-doped silicone material at a broad range of Gd concentrations and at three clinically relevant magnetic field strengths (1.5 T, 3 T, and 7 T). We apply the findings for rendering silicone substrates of stretchable receive RF coils less visible in MRI. Moreover, we demonstrate early stage proof-of-concept applicability in tissue-mimicking phantom development. MATERIALS AND METHODS Ten samples of pure and Gd-doped Ecoflex silicone polymer samples were prepared with various Gd volume ratios ranging from 1:5000 to 1:10, and studied using 1.5 T and 3 T clinical and 7 T preclinical scanners. T1 and T2 relaxation times of each sample were derived by fitting the data to Bloch signal intensity equations. A receive coil made from Gd-doped Ecoflex silicone polymer was fabricated and evaluated in vitro at 3 T. RESULTS With the addition of a Gd-based contrast agent, it is possible to significantly change T2 relaxation times of Ecoflex silicone polymer (from 213 ms to 20 ms at 1.5 T; from 135 ms to 17 ms at 3 T; and from 111.4 ms to 17.2 ms at 7 T). T1 relaxation time is less affected by the introduction of the contrast agent (changes from 608 ms to 579 ms; from 802.5 ms to 713 ms at 3 T; from 1276 ms to 979 ms at 7 T). First results also indicate that liver, pancreas, and white matter tissues can potentially be closely mimicked using this phantom preparation technique. Gd-doping reduces the appearance of the silicone-based coil substrate during the MR scan by up to 81%. CONCLUSIONS Gd-based contrast agents can be effectively used to create Ecoflex silicone polymer-based phantoms with tailored T2 relaxation properties. The relative low cost, ease of preparation, stretchability, mechanical stability, and long shelf life of Ecoflex silicone polymer all make it a good candidate for "MR invisible" coil development and bears promise for tissue-mimicking phantom development applicability.
Collapse
Affiliation(s)
- Elizaveta Motovilova
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- Department of Radiology, Hospital for Special Surgery, New York, New York, USA
| | - Eric Aronowitz
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | | - James Shin
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ek Tsoon Tan
- Department of Radiology, Hospital for Special Surgery, New York, New York, USA
| | | | | | - Darryl B. Sneag
- Department of Radiology, Hospital for Special Surgery, New York, New York, USA
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
7
|
Jusufbegović M, Pandžić A, Busuladžić M, Čiva LM, Gazibegović-Busuladžić A, Šehić A, Vegar-Zubović S, Jašić R, Beganović A. Utilisation of 3D Printing in the Manufacturing of an Anthropomorphic Paediatric Head Phantom for the Optimisation of Scanning Parameters in CT. Diagnostics (Basel) 2023; 13:328. [PMID: 36673137 PMCID: PMC9858362 DOI: 10.3390/diagnostics13020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023] Open
Abstract
Computed tomography (CT) is a diagnostic imaging process that uses ionising radiation to obtain information about the interior anatomic structure of the human body. Considering that the medical use of ionising radiation implies exposing patients to radiation that may lead to unwanted stochastic effects and that those effects are less probable at lower doses, optimising imaging protocols is of great importance. In this paper, we used an assembled 3D-printed infant head phantom and matched its image quality parameters with those obtained for a commercially available adult head phantom using the imaging protocol dedicated for adult patients. In accordance with the results, an optimised scanning protocol was designed which resulted in dose reductions for paediatric patients while keeping image quality at an adequate level.
Collapse
Affiliation(s)
- Merim Jusufbegović
- Radiology Clinic, Sarajevo University Clinical Center, 71000 Sarajevo, Bosnia and Herzegovina
- Department of Radiological Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Adi Pandžić
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mustafa Busuladžić
- Faculty of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Lejla M. Čiva
- Sarajevo Medical School, University Sarajevo School of Science and Technology, 71210 Ilidža, Bosnia and Herzegovina
| | | | - Adnan Šehić
- Department of Radiological Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sandra Vegar-Zubović
- Radiology Clinic, Sarajevo University Clinical Center, 71000 Sarajevo, Bosnia and Herzegovina
- Faculty of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Rahima Jašić
- Department of Radiation Protection and Medical Physics, Sarajevo University Clinical Center, 71000 Sarajevo, Bosnia and Herzegovina
| | - Adnan Beganović
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- Department of Radiation Protection and Medical Physics, Sarajevo University Clinical Center, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
8
|
Okkalidis N, Bliznakova K, Kolev N. A filament 3D printing approach for CT-compatible bone tissues replication. Phys Med 2022; 102:96-102. [PMID: 36162230 DOI: 10.1016/j.ejmp.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE The aim of this study is the development of a methodology for manufacturing 3D printed anthropomorphic structures, which mimic the X-ray properties of the human bone tissue. METHODS A mixing approach of two different materials is proposed for the fabrication of a radiologically equivalent hip bone for an anthropomorphic abdominal phantom. The materials employed for the phantom were polylactic acid (PLA) and Stonefil, while a custom-made dual motor filament extrusion setup and a custom-made software associating medical images directly with the 3D printing process were employed. RESULTS Three phantoms representing the hip bone were 3D printed utilizing two filaments under three different printing scenarios. The phantoms are based on a patient's abdominal CT scan images. Histograms of CT scans of the printed hip bone phantoms were calculated and compared to the original patient's hip bone histogram, demonstrating that a constant mixing composition of 30% Stonefil and 70% PLA with 0.0375 extrusion rate per voxel (93.75% flow for fulfilling a single voxel) for the cancellous bone, and using 100% Stonefil with 0.04 extrusion rate per voxel (100% flow) for the cortical bone results in a realistic anatomy replication of the hip bone. Reproduced HU varied between 700 and 800, which are close to those of the hip bone. CONCLUSIONS The study demonstrated that it is possible to mix two different filaments in real-time during the printing process to obtain phantoms with realistic and radiographically bone tissue equivalent attenuation. The results will be explored for manufacturing a CT-compatible abdominal phantom.
Collapse
Affiliation(s)
- Nikiforos Okkalidis
- Medical University of Varna, Bulgaria; Morphé, Praxitelous 1, Thessaloniki, Greece.
| | | | - Nikola Kolev
- Medical University of Varna, Bulgaria; First Clinic of Surgery in UMHAT "Saint Marina", Varna, Bulgaria
| |
Collapse
|
9
|
Jin H, Lee SY, An HJ, Choi CH, Chie EK, Wu HG, Park JM, Park S, Kim JI. Development of an anthropomorphic multimodality pelvic phantom for quantitative evaluation of a deep-learning-based synthetic computed tomography generation technique. J Appl Clin Med Phys 2022; 23:e13644. [PMID: 35579090 PMCID: PMC9359037 DOI: 10.1002/acm2.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The objective of this study was to fabricate an anthropomorphic multimodality pelvic phantom to evaluate a deep-learning-based synthetic computed tomography (CT) algorithm for magnetic resonance (MR)-only radiotherapy. METHODS Polyurethane-based and silicone-based materials with various silicone oil concentrations were scanned using 0.35 T MR and CT scanner to determine the tissue surrogate. Five tissue surrogates were determined by comparing the organ intensity with patient CT and MR images. Patient-specific organ modeling for three-dimensional printing was performed by manually delineating the structures of interest. The phantom was finally fabricated by casting materials for each structure. For the quantitative evaluation, the mean and standard deviations were measured within the regions of interest on the MR, simulation CT (CTsim ), and synthetic CT (CTsyn ) images. Intensity-modulated radiation therapy plans were generated to assess the impact of different electron density assignments on plan quality using CTsim and CTsyn . The dose calculation accuracy was investigated in terms of gamma analysis and dose-volume histogram parameters. RESULTS For the prostate site, the mean MR intensities for the patient and phantom were 78.1 ± 13.8 and 86.5 ± 19.3, respectively. The mean intensity of the synthetic image was 30.9 Hounsfield unit (HU), which was comparable to that of the real CT phantom image. The original and synthetic CT intensities of the fat tissue in the phantom were -105.8 ± 4.9 HU and -107.8 ± 7.8 HU, respectively. For the target volume, the difference in D95% was 0.32 Gy using CTsyn with respect to CTsim values. The V65Gy values for the bladder in the plans using CTsim and CTsyn were 0.31% and 0.15%, respectively. CONCLUSION This work demonstrated that the anthropomorphic phantom was physiologically and geometrically similar to the patient organs and was employed to quantitatively evaluate the deep-learning-based synthetic CT algorithm.
Collapse
Affiliation(s)
- Hyeongmin Jin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung Young Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Joon An
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Robotics Research Laboratory for Extreme Environments, Advanced Institute of Convergence Technology, Suwon, Republic of Korea
| | - Sukwon Park
- Department of Radiation Oncology, Myongji Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
10
|
Aldosary G, Belec J, Foottit C, Vandervoort E. Dosimetric considerations for moldable silicone composites used in radiotherapy applications. J Appl Clin Med Phys 2022; 23:e13605. [PMID: 35436377 PMCID: PMC9195024 DOI: 10.1002/acm2.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/18/2021] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Due to their many favorable characteristics, moldable silicone (MS) composites have gained popularity in medicine and recently, in radiotherapy applications. We investigate the dosimetric properties of silicones in radiotherapy beams and determine their suitability as water substitutes for constructing boluses and phantoms. Two types of silicones were assessed (ρ= 1.04 g/cm3 and ρ= 1.07 g/cm3). Various dosimetric properties were characterized, including the relative electron density, the relative mean mass energy‐absorption coefficient, and the relative mean mass restricted stopping power. Silicone slabs with thickness of 1.5 cm and 5.0 cm were molded to mimic a bolus setup and a phantom setup, respectively. Measurements were conducted for Co‐60 and 6 MV photon beams, and 6 MeV electron beams. The doses at 1.5 cm and 5.0 cm depths in MS were measured with solid water (SW) backscatter material (DMS–SW), and with a full MS setup (DMS–MS), then compared with doses at the same depths in a full SW setup (DSW–SW). Relative doses were reported as DMS–SW/DMS–SW and DMS–MS/DSW–SW. Experimental results were verified using Monaco treatment planning system dose calculations and Monte Carlo EGSnrc simulations. Film measurements showed varying dose ratios according to MS and beam types. For photon beams, the bolus setup DMS–SW/DSW–SW exhibited a 5% relative dose reduction. The dose for 6 MV beams was reduced by nearly 2% in a full MS setup. Up to 2% dose increase in both scenarios was observed for electron beams. Compared with dose in SW, an interface of MS–SW can cause relatively high differences. We conclude that it is important to characterize a particular silicone's properties in a given beam quality prior to clinical use. Because silicone compositions vary between manufacturers and differ from water/SW, accurate dosimetry using these materials requires consideration of the reported differences.
Collapse
Affiliation(s)
- Ghada Aldosary
- Department of Physics, Carleton University, Ottawa, Ontario, Canada.,Radiation Oncology Section, Department of Oncology, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Jason Belec
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada.,Department of Medicine, The University of Ottawa, Ottawa, Ontario, Canada
| | - Claire Foottit
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada.,Department of Medicine, The University of Ottawa, Ottawa, Ontario, Canada
| | - Eric Vandervoort
- Department of Physics, Carleton University, Ottawa, Ontario, Canada.,Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada.,Department of Medicine, The University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Hatamikia S, Kronreif G, Unger A, Oberoi G, Jaksa L, Unger E, Koschitz S, Gulyas I, Irnstorfer N, Buschmann M, Kettenbach J, Birkfellner W, Lorenz A. 3D printed patient-specific thorax phantom with realistic heterogenous bone radiopacity using filament printer technology. Z Med Phys 2022; 32:438-452. [PMID: 35221154 PMCID: PMC9948829 DOI: 10.1016/j.zemedi.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Current medical imaging phantoms are usually limited by simplified geometry and radiographic skeletal homogeneity, which confines their usage for image quality assessment. In order to fabricate realistic imaging phantoms, replication of the entire tissue morphology and the associated CT numbers, defined as Hounsfield Unit (HU) is required. 3D printing is a promising technology for the production of medical imaging phantoms with accurate anatomical replication. So far, the majority of the imaging phantoms using 3D printing technologies tried to mimic the average HU of soft tissue human organs. One important aspect of the anthropomorphic imaging phantoms is also the replication of realistic radiodensities for bone tissues. In this study, we used filament printing technology to develop a CT-derived 3D printed thorax phantom with realistic bone-equivalent radiodensity using only one single commercially available filament. The generated thorax phantom geometry closely resembles a patient and includes direct manufacturing of bone structures while creating life-like heterogeneity within bone tissues. A HU analysis as well as a physical dimensional comparison were performed in order to evaluate the density and geometry agreement between the proposed phantom and the corresponding CT data. With the achieved density range (-482 to 968 HU) we could successfully mimic the realistic radiodensity of the bone marrow as well as the cortical bone for the ribs, vertebral body and dorsal vertebral column in the thorax skeleton. In addition, considering the large radiodensity range achieved a full thorax imaging phantom mimicking also soft tissues can become feasible. The physical dimensional comparison using both Extrema Analysis and Collision Detection methods confirmed a mean surface overlap of 90% and a mean volumetric overlap of 84,56% between the patient and phantom model. Furthermore, the reproducibility analyses revealed a good geometry and radiodensity duplicability in 24 printed cylinder replicas. Thus, according to our results, the proposed additively manufactured anthropomorphic thorax phantom has the potential to be efficiently used for validation of imaging- and radiation-based procedures in precision medicine.
Collapse
Affiliation(s)
- Sepideh Hatamikia
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria; Danube Private University, 3500 Krems an der Donau, Austria; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Gernot Kronreif
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Alexander Unger
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Laszlo Jaksa
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Stefan Koschitz
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Ingo Gulyas
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Irnstorfer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy at the Medical University of Vienna
| | - Martin Buschmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Joachim Kettenbach
- Institute of Diagnostic, Interventional Radiology and Nuclear Medicine, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andrea Lorenz
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| |
Collapse
|
12
|
Elter A, Rippke C, Johnen W, Mann P, Hellwich E, Schwahofer A, Dorsch S, Buchele C, Klüter S, Karger CP. End-to-end test for fractionated online adaptive MR-guided radiotherapy using a deformable anthropomorphic pelvis phantom. Phys Med Biol 2021; 66. [PMID: 34845991 DOI: 10.1088/1361-6560/ac3e0c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
Objective.In MR-guided radiotherapy (MRgRT) for prostate cancer treatments inter-fractional anatomy changes such as bladder and rectum fillings may be corrected by an online adaption of the treatment plan. To clinically implement such complex treatment procedures, however, specific end-to-end tests are required that are able to validate the overall accuracy of all treatment steps from pre-treatment imaging to dose delivery.Approach.In this study, an end-to-end test of a fractionated and online adapted MRgRT prostate irradiation was performed using the so-called ADAM-PETer phantom. The phantom was adapted to perform 3D polymer gel (PG) dosimetry in the prostate and rectum. Furthermore, thermoluminescence detectors (TLDs) were placed at the center and on the surface of the prostate for additional dose measurements as well as for an external dose renormalization of the PG. For the end-to-end test, a total of five online adapted irradiations were applied in sequence with different bladder and rectum fillings, respectively.Main results.A good agreement of measured and planned dose was found represented by highγ-index passing rates (3%/3mmcriterion) of the PG evaluation of98.9%in the prostate and93.7%in the rectum. TLDs used for PG renormalization at the center of the prostate showed a deviation of-2.3%.Significance.The presented end-to-end test, which allows for 3D dose verification in the prostate and rectum, demonstrates the feasibility and accuracy of fractionated and online-adapted prostate irradiations in presence of inter-fractional anatomy changes. Such tests are of high clinical importance for the commissioning of new image-guided treatment procedures such as online adaptive MRgRT.
Collapse
Affiliation(s)
- A Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - C Rippke
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - W Johnen
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - P Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - E Hellwich
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - A Schwahofer
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - S Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - C Buchele
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - S Klüter
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - C P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
13
|
Bauer DF, Adlung A, Brumer I, Golla AK, Russ T, Oelschlegel E, Tollens F, Clausen S, Aumüller P, Schad LR, Nörenberg D, Zöllner FG. An anthropomorphic pelvis phantom for MR-guided prostate interventions. Magn Reson Med 2021; 87:1605-1612. [PMID: 34652819 DOI: 10.1002/mrm.29043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE To design and manufacture a pelvis phantom for magnetic resonance (MR)-guided prostate interventions, such as MRGB (MR-guided biopsy) or brachytherapy seed placement. METHODS The phantom was designed to mimic the human pelvis incorporating bones, bladder, prostate with four lesions, urethra, arteries, veins, and six lymph nodes embedded in ballistic gelatin. A hollow rectum enables transrectal access to the prostate. To demonstrate the feasibility of the phantom for minimal invasive MRI-guided interventions, a targeted inbore MRGB was performed. The needle probe was rectally inserted and guided using an MRI-compatible remote controlled manipulator (RCM). RESULTS The presented pelvis phantom has realistic imaging properties for MR imaging (MRI), computed tomography (CT) and ultrasound (US). In the targeted inbore MRGB, a prostate lesion was successfully hit with an accuracy of 3.5 mm. The experiment demonstrates that the limited size of the rectum represents a realistic impairment for needle placements. CONCLUSION The phantom provides a valuable platform for evaluating the performance of MRGB systems. Interventionalists can use the phantom to learn how to deal with challenging situations, without risking harm to patients.
Collapse
Affiliation(s)
- Dominik F Bauer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Anne Adlung
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Irène Brumer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Alena-Kathrin Golla
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Tom Russ
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Eva Oelschlegel
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Fabian Tollens
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Sven Clausen
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Aumüller
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Dominik Nörenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| |
Collapse
|
14
|
Nenoff L, Matter M, Charmillot M, Krier S, Uher K, Weber DC, Lomax AJ, Albertini F. Experimental validation of daily adaptive proton therapy. Phys Med Biol 2021; 66. [PMID: 34587589 DOI: 10.1088/1361-6560/ac2b84] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022]
Abstract
Anatomical changes during proton therapy require rapid treatment plan adaption to mitigate the associated dosimetric impact. This in turn requires a highly efficient workflow that minimizes the time between imaging and delivery. At the Paul Scherrer Institute, we have developed an online adaptive workflow, which is specifically designed for treatments in the skull-base/cranium, with the focus set on simplicity and minimizing changes to the conventional workflow. The dosimetric and timing performance of this daily adaptive proton therapy (DAPT) workflow has been experimentally investigated using an in-house developed DAPT software and specifically developed anthropomorphic phantom. After a standard treatment preparation, which includes the generation of a template plan, the treatment can then be adapted each day, based on daily imaging acquired on an in-room CT. The template structures are then rigidly propagated to this CT and the daily plan is fully re-optimized using the same field arrangement, DVH constraints and optimization settings of the template plan. After a dedicated plan QA, the daily plan is delivered. To minimize the time between imaging and delivery, clinically integrated software for efficient execution of all online adaption steps, as well as tools for comprehensive and automated QA checks, have been developed. Film measurements of an end-to-end validation of a multi-fraction DAPT treatment showed high agreement to the calculated doses. Gamma pass rates with a 3%/3 mm criteria were >92% when comparing the measured dose to the template plan. Additionally, a gamma pass rate >99% was found comparing measurements to the Monte Carlo dose of the daily plans reconstructed from the logfile, accumulated over the delivered fractions. With this, we experimentally demonstrate that the described adaptive workflow can be delivered accurately in a timescale similar to a standard delivery.
Collapse
Affiliation(s)
- Lena Nenoff
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | - Michael Matter
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | | | - Serge Krier
- Department of Physics, ETH Zurich, Switzerland
| | - Klara Uher
- Department of Physics, ETH Zurich, Switzerland
| | - Damien Charles Weber
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Switzerland
| | - Antony John Lomax
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | | |
Collapse
|
15
|
Lennie E, Tsoumpas C, Sourbron S. Multimodal phantoms for clinical PET/MRI. EJNMMI Phys 2021; 8:62. [PMID: 34436671 PMCID: PMC8390737 DOI: 10.1186/s40658-021-00408-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Phantoms are commonly used throughout medical imaging and medical physics for a multitude of applications, the designs of which vary between modalities and clinical or research requirements. Within positron emission tomography (PET) and nuclear medicine, phantoms have a well-established role in the validation of imaging protocols so as to reduce the administration of radioisotope to volunteers. Similarly, phantoms are used within magnetic resonance imaging (MRI) to perform quality assurance on clinical scanners, and gel-based phantoms have a longstanding use within the MRI research community as tissue equivalent phantoms. In recent years, combined PET/MRI scanners for simultaneous acquisition have entered both research and clinical use. This review explores the designs and applications of phantom work within the field of simultaneous acquisition PET/MRI as published over the period of a decade. Common themes in the design, manufacture and materials used within phantoms are identified and the solutions they provided to research in PET/MRI are summarised. Finally, the challenges remaining in creating multimodal phantoms for use with simultaneous acquisition PET/MRI are discussed. No phantoms currently exist commercially that have been designed and optimised for simultaneous PET/MRI acquisition. Subsequently, commercially available PET and nuclear medicine phantoms are often utilised, with CT-based attenuation maps substituted for MR-based attenuation maps due to the lack of MR visibility in phantom housing. Tissue equivalent and anthropomorphic phantoms are often developed by research groups in-house and provide customisable alternatives to overcome barriers such as MR-based attenuation correction, or to address specific areas of study such as motion correction. Further work to characterise materials and manufacture methods used in phantom design would facilitate the ability to reproduce phantoms across sites.
Collapse
Affiliation(s)
- Eve Lennie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Charalampos Tsoumpas
- Biomedical Imaging Science Department, University of Leeds, Leeds, UK
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Spadea MF, Maspero M, Zaffino P, Seco J. Deep learning based synthetic-CT generation in radiotherapy and PET: A review. Med Phys 2021; 48:6537-6566. [PMID: 34407209 DOI: 10.1002/mp.15150] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/06/2021] [Accepted: 07/13/2021] [Indexed: 01/22/2023] Open
Abstract
Recently,deep learning (DL)-based methods for the generation of synthetic computed tomography (sCT) have received significant research attention as an alternative to classical ones. We present here a systematic review of these methods by grouping them into three categories, according to their clinical applications: (i) to replace computed tomography in magnetic resonance (MR) based treatment planning, (ii) facilitate cone-beam computed tomography based image-guided adaptive radiotherapy, and (iii) derive attenuation maps for the correction of positron emission tomography. Appropriate database searching was performed on journal articles published between January 2014 and December 2020. The DL methods' key characteristics were extracted from each eligible study, and a comprehensive comparison among network architectures and metrics was reported. A detailed review of each category was given, highlighting essential contributions, identifying specific challenges, and summarizing the achievements. Lastly, the statistics of all the cited works from various aspects were analyzed, revealing the popularity and future trends and the potential of DL-based sCT generation. The current status of DL-based sCT generation was evaluated, assessing the clinical readiness of the presented methods.
Collapse
Affiliation(s)
- Maria Francesca Spadea
- Department Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, 88100, Italy
| | - Matteo Maspero
- Division of Imaging & Oncology, Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan, Utrecht, The Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan, Utrecht, The Netherlands
| | - Paolo Zaffino
- Department Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, 88100, Italy
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, DKFZ German Cancer Research Center, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
Somerwil PC, Nout RA, Mens JWM, Kolkman-Deurloo IKK, van Beekhuizen HJ, Dankelman J, van de Berg NJ. An anthropomorphic deformable phantom of the vaginal wall and cavity. Biomed Phys Eng Express 2021; 7. [PMID: 34298530 DOI: 10.1088/2057-1976/ac1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
Brachytherapy is a common treatment in cervical, uterine and vaginal cancer management. The technique is characterised by rapid developments in the fields of medical imaging, dosimetry planning and personalised medical device design. To reduce unnecessary burden on patients, assessments and training of these technologies should preferable be done using high-fidelity physical phantoms. In this study, anthropomorphic deformable phantoms of the vaginal wall and cavity were developed for image-guided adaptive brachytherapy, in which vaginal wall biomechanics were mimicked. Phantoms were produced from both silicone and polyvinyl alcohol materials. Material characterisations were performed with uniaxial tensile tests, via which Young's moduli and toughness were quantified. In addition, the contrast between adjacent phantom layers was quantified in magnetic resonance images. The results showed that stress-strain curves of the silicone phantoms were within the range of those found in healthy human vaginal wall tissues. Sample preconditioning had a large effect on Young's moduli, which ranged between 2.13 and 6.94 MPa in silicone. Toughness was a more robust and accurate metric for biomechanical matching, and ranged between 0.23 and 0.28 ·106J·m-3as a result of preconditioning. The polyvinyl alcohol phantoms were not stiff or tough enough, with a Young's modulus of 0.16 MPa and toughness of 0.02 ·106J·m-3. All materials used could be clearly delineated in magnetic resonance images, although the MRI sequence did affect layer contrast. In conclusion, we developed anthropomorphic deformable phantoms that mimic vaginal wall tissue and are well visible in magnetic resonance images. These phantoms will be used to evaluate the properties and to optimise the development and use of personalised brachytherapy applicators.
Collapse
Affiliation(s)
- Philip C Somerwil
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan-Willem M Mens
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Inger-Karine K Kolkman-Deurloo
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Heleen J van Beekhuizen
- Department of Gynaecological Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Nick J van de Berg
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Gynaecological Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Marot M, Elter A, Mann P, Schwahofer A, Lang C, Johnen W, Körber SA, Beuthien-Baumann B, Gillmann C. Technical Note: On the feasibility of performing dosimetry in target and organ at risk using polymer dosimetry gel and thermoluminescence detectors in an anthropomorphic, deformable, and multimodal pelvis phantom. Med Phys 2021; 48:5501-5510. [PMID: 34260079 DOI: 10.1002/mp.15096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To assess the feasibility of performing dose measurements in the target (prostate) and an adjacent organ at risk (rectum) using polymer dosimetry gel and thermoluminescence detectors (TLDs) in an anthropomorphic, deformable, and multimodal pelvis phantom (ADAM PETer). METHODS The 3D printed prostate organ surrogate of the ADAM PETer phantom was filled with polymer dosimetry gel. Nine TLD600 (LiF:Mg,Ti) were installed in 3 × 3 rows on a specifically designed 3D-printed TLD holder. The TLD holder was inserted into the rectum at the level of the prostate and fixed by a partially inflated endorectal balloon. Computed tomography (CT) images were taken and treatment planning was performed. A prescribed dose of 4.5 Gy was delivered to the planning target volume (PTV). The doses measured by the dosimetry gel in the prostate and the TLDs in the rectum ("measured dose") were compared to the doses calculated by the treatment planning system ("planned dose") on a voxel-by-voxel basis. RESULTS In the prostate organ surrogate, the 3D-γ-index was 97.7% for the 3% dose difference and 3 mm distance to agreement criterium. In the center of the prostate organ surrogate, measured and planned doses showed only minor deviations (<0.1 Gy, corresponding to a percentage error of 2.22%). On the edges of the prostate, slight differences between planned and measured doses were detected with a maximum deviation of 0.24 Gy, corresponding to 5.3% of the prescribed dose. The difference between planned and measured doses in the TLDs was on average 0.08 Gy (range: 0.02-0.21 Gy), corresponding to 1.78% of the prescribed dose (range: 0.44%-4.67%). CONCLUSIONS The present study demonstrates the feasibility of using polymer dosimetry gel and TLDs for 3D and 1D dose measurements in the prostate and the rectum organ surrogates in an anthropomorphic, deformable and multimodal phantom. The described methodology might offer new perspectives for end-to-end tests in image-guided adaptive radiotherapy workflows.
Collapse
Affiliation(s)
- Mathieu Marot
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Alina Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Philipp Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,HQ-Imaging GmbH, Heidelberg, Germany
| | - Andrea Schwahofer
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Clemens Lang
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Wibke Johnen
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Stefan A Körber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bettina Beuthien-Baumann
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Clarissa Gillmann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
19
|
Neppl S, Kurz C, Köpl D, Yohannes I, Schneider M, Bondesson D, Rabe M, Belka C, Dietrich O, Landry G, Parodi K, Kamp F. Measurement-based range evaluation for quality assurance of CBCT-based dose calculations in adaptive proton therapy. Med Phys 2021; 48:4148-4159. [PMID: 34032301 DOI: 10.1002/mp.14995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE The implementation of volumetric in-room imaging for online adaptive radiotherapy makes extensive testing of this image data for treatment planning necessary. Especially for proton beams the higher sensitivity to stopping power properties of the tissue results in more stringent requirements. Current approaches mainly focus on recalculation of the plans on the new image data, lacking experimental verification, and ignoring the impact on the plan re-optimization process. The aim of this study was to use gel and film dosimetry coupled with a three-dimensional (3D) printed head phantom (based on the planning CT of the patient) for 3D range verification of intensity-corrected cone beam computed tomography (CBCT) image data for adaptive proton therapy. METHODS Single field uniform dose pencil beam scanning proton plans were optimized for three different patients on the patients' planning CT (planCT) and the patients' intensity-corrected CBCT (scCBCT) for the same target volume using the same optimization constraints. The CBCTs were corrected on projection level using the planCT as a prior. The dose optimized on planCT and recalculated on scCBCT was compared in terms of proton range differences (80% distal fall-off, recalculation). Moreover, the dose distribution resulting from recalculation of the scCBCT-optimized plan on the planCT and the original planCT dose distribution were compared (simulation). Finally, the two plans of each patient were irradiated on the corresponding patient-specific 3D printed head phantom using gel dosimetry inserts for one patient and film dosimetry for all three patients. Range differences were extracted from the measured dose distributions. The measured and the simulated range differences were corrected for range differences originating from the initial plans and evaluated. RESULTS The simulation approach showed high agreement with the standard recalculation approach. The median values of the range differences of these two methods agreed within 0.1 mm and the interquartile ranges (IQRs) within 0.3 mm for all three patients. The range differences of the film measurement were accurately matching with the simulation approach in the film plane. The median values of these range differences deviated less than 0.1 mm and the IQRs less than 0.4 mm. For the full 3D evaluation of the gel range differences, the median value and IQR matched those of the simulation approach within 0.7 and 0.5 mm, respectively. scCBCT- and planCT-based dose distributions were found to have a range agreement better than 3 mm (median and IQR) for all considered scenarios (recalculation, simulation, and measurement). CONCLUSIONS The results of this initial study indicate that an online adaptive proton workflow based on scatter-corrected CBCT image data for head irradiations is feasible. The novel presented measurement- and simulation-based method was shown to be equivalent to the standard literature recalculation approach. Additionally, it has the capability to catch effects of image differences on the treatment plan optimization. This makes the measurement-based approach particularly interesting for quality assurance of CBCT-based online adaptive proton therapy. The observed uncertainties could be kept within those of the registration and positioning. The proposed validation could also be applied for other alternative in-room images, e.g. for MR-based pseudoCTs.
Collapse
Affiliation(s)
- Sebastian Neppl
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377, Munich, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), 85748, Garching bei München, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377, Munich, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), 85748, Garching bei München, Germany
| | - Daniel Köpl
- Rinecker Proton Therapy Center, 81371, Munich, Germany
| | | | - Moritz Schneider
- Department of Radiology, University Hospital, LMU Munich, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), 81377, Munich, Germany
| | - David Bondesson
- Department of Radiology, University Hospital, LMU Munich, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), 81377, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377, Munich, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), 85748, Garching bei München, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner site Munich, 81377, Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377, Munich, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), 85748, Garching bei München, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), 85748, Garching bei München, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
20
|
Bernchou U, Christiansen RL, Bertelsen A, Tilly D, Riis HL, Jensen HR, Mahmood F, Hansen CR, Hansen VN, Schytte T, Brink C. End-to-end validation of the geometric dose delivery performance of MR linac adaptive radiotherapy. Phys Med Biol 2021; 66:045034. [PMID: 33321475 DOI: 10.1088/1361-6560/abd3ed] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The clinical introduction of hybrid magnetic resonance (MR) guided radiotherapy (RT) delivery systems has led to the need to validate the end-to-end dose delivery performance on such machines. In the current study, an MR visible phantom was developed and used to test the spatial deviation between planned and delivered dose at two 1.5 T MR linear accelerator (MR linac) systems, including pre-treatment imaging, dose planning, online imaging, image registration, plan adaptation, and dose delivery. The phantom consisted of 3D printed plastic and MR visible silicone rubber. It was designed to minimise air gaps close to the radiochromic film used as a dosimeter. Furthermore, the phantom was designed to allow submillimetre, reproducible positioning of the film in the phantom. At both MR linac systems, 54 complete adaptive, MR guided RT workflow sessions were performed. To test the dose delivery performance of the MR linac systems in various adaptive RT (ART) scenarios, the sessions comprised a range of systematic positional shifts of the phantom and imaging or plan adaptation conditions. In each workflow session, the positional translation between the film and the adaptive planned dose was determined. The results showed that the accuracy of the MR linac systems was between 0.1 and 0.9 mm depending on direction. The highest mean deviance observed was in the posterior-anterior direction, and the direction of the error was consistent between centres. The precision of the systems was related to whether the workflow utilized the internal image registration algorithm of the MR linac. Workflows using the internal registration algorithm led to a worse precision (0.2-0.7 mm) compared to workflows where the algorithm was decoupled (0.2 mm). In summary, the spatial deviation between planned and delivered dose of MR-guided ART at the two MR linac systems was well below 1 mm and thus acceptable for clinical use.
Collapse
Affiliation(s)
- Uffe Bernchou
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark. Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wilby S, Palmer A, Polak W, Bucchi A. A review of brachytherapy physical phantoms developed over the last 20 years: clinical purpose and future requirements. J Contemp Brachytherapy 2021; 13:101-115. [PMID: 34025743 PMCID: PMC8117707 DOI: 10.5114/jcb.2021.103593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/13/2020] [Indexed: 12/04/2022] Open
Abstract
Within the brachytherapy community, many phantoms are constructed in-house, and less commercial development is observed as compared to the field of external beam. Computational or virtual phantom design has seen considerable growth; however, physical phantoms are beneficial for brachytherapy, in which quality is dependent on physical processes, such as accuracy of source placement. Focusing on the design of physical phantoms, this review paper presents a summary of brachytherapy specific phantoms in published journal articles over the last twenty years (January 1, 2000 - December 31, 2019). The papers were analyzed and tabulated by their primary clinical purpose, which was deduced from their associated publications. A substantial body of work has been published on phantom designs from the brachytherapy community, but a standardized method of reporting technical aspects of the phantoms is lacking. In-house phantom development demonstrates an increasing interest in magnetic resonance (MR) tissue mimicking materials, which is not yet reflected in commercial phantoms available for brachytherapy. The evaluation of phantom design provides insight into the way, in which brachytherapy practice has changed over time, and demonstrates the customised and broad nature of treatments offered.
Collapse
Affiliation(s)
- Sarah Wilby
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Antony Palmer
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Wojciech Polak
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Andrea Bucchi
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
22
|
Gillmann C, Homolka N, Johnen W, Runz A, Echner G, Pfaffenberger A, Mann P, Schneider V, Hoffmann AL, Troost EGC, Koerber SA, Kotzerke J, Beuthien-Baumann B. Technical Note: ADAM PETer - An anthropomorphic, deformable and multimodality pelvis phantom with positron emission tomography extension for radiotherapy. Med Phys 2020; 48:1624-1632. [PMID: 33207020 DOI: 10.1002/mp.14597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE To develop an anthropomorphic, deformable and multimodal pelvis phantom with positron emission tomography extension for radiotherapy (ADAM PETer). METHODS The design of ADAM PETer was based on our previous pelvis phantom (ADAM) and extended for compatibility with PET and use in 3T magnetic resonance imaging (MRI). The formerly manually manufactured silicon organ surrogates were replaced by three-dimensional (3D) printed organ shells. Two intraprostatic lesions, four iliac lymph node metastases and two pelvic bone metastases were added to simulate prostate cancer as multifocal and metastatic disease. Radiological properties [computed tomography (CT) and 3T MRI] of cortical bone, bone marrow and adipose tissue were simulated by heavy gypsum, a mixture of Vaseline and K2 HPO4 and peanut oil, respectively. For soft tissues, agarose gels with varying concentrations of agarose, gadolinium (Gd) and sodium fluoride (NaF) were developed. The agarose gels were doped with patient-specific activity concentrations of a Fluorine-18 labelled compound and then filled into the 3D printed organ shells of prostate lesions, lymph node and bone metastases. The phantom was imaged at a dual energy CT and a 3T PET/MRI scanner. RESULTS The compositions of the soft tissue surrogates are the following (given as mass fractions of agarose[w%]/NaF[w%]/Gd[w%]): Muscle (4/1/0.027), prostate (1.35/4.2/0.011), prostate lesions (2.25/4.2/0.0085), lymph node and bone metastases (1.4/4.2/0.025). In all imaging modalities, the phantom simulates human contrast. Intraprostatic lesions appear hypointense as compared to the surrounding normal prostate tissue in T2-weighted MRI. The PET signal of all tumors can be localized as focal spots at their respective site. Activity concentrations of 12.0 kBq/mL (prostate lesion), 12.4 kBq/mL (lymph nodes) and 39.5 kBq/mL (bone metastases) were measured. CONCLUSION The ADAM PETer pelvis phantom can be used as multimodal, anthropomorphic model for CT, 3T-MRI and PET measurements. It will be central to simulate and optimize the technical workflow for the integration of PET/MRI-based radiation treatment planning of prostate cancer patients.
Collapse
Affiliation(s)
- Clarissa Gillmann
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Noa Homolka
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Faculty for Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Wibke Johnen
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Armin Runz
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Gernot Echner
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Asja Pfaffenberger
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Philipp Mann
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Verena Schneider
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aswin L Hoffmann
- OncoRay - National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.,Department for Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.,Department for Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Stefan A Koerber
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Kotzerke
- Department for Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.,Department for Nuclear Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Bettina Beuthien-Baumann
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site, Heidelberg, Germany
| |
Collapse
|
23
|
Schwahofer A, Mann P, Spindeldreier CK, Karger CP. On the feasibility of absolute 3D dosimetry using LiF thermoluminescence detectors and polymer gels on a 0.35T MR-LINAC. ACTA ACUST UNITED AC 2020; 65:215002. [DOI: 10.1088/1361-6560/aba6d7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Glide-Hurst CK, Lee P, Yock AD, Olsen JR, Cao M, Siddiqui F, Parker W, Doemer A, Rong Y, Kishan AU, Benedict SH, Li XA, Erickson BA, Sohn JW, Xiao Y, Wuthrick E. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int J Radiat Oncol Biol Phys 2020; 109:1054-1075. [PMID: 33470210 DOI: 10.1016/j.ijrobp.2020.10.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
The integration of adaptive radiation therapy (ART), or modifying the treatment plan during the treatment course, is becoming more widely available in clinical practice. ART offers strong potential for minimizing treatment-related toxicity while escalating or de-escalating target doses based on the dose to organs at risk. Yet, ART workflows add complexity into the radiation therapy planning and delivery process that may introduce additional uncertainties. This work sought to review presently available ART workflows and technological considerations such as image quality, deformable image registration, and dose accumulation. Quality assurance considerations for ART components and minimum recommendations are described. Personnel and workflow efficiency recommendations are provided, as is a summary of currently available clinical evidence supporting the implementation of ART. Finally, to guide future clinical trial protocols, an example ART physician directive and a physics template following standard NRG Oncology protocol is provided.
Collapse
Affiliation(s)
- Carri K Glide-Hurst
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Percy Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam D Yock
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey R Olsen
- Department of Radiation Oncology, University of Colorado- Denver, Denver, Colorado
| | - Minsong Cao
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - William Parker
- Department of Radiation Oncology, McGill University, Montreal, Quebec, Canada
| | - Anthony Doemer
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - Yi Rong
- Department of Radiation Oncology, University of California-Davis, Sacramento, California
| | - Amar U Kishan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Stanley H Benedict
- Department of Radiation Oncology, University of California-Davis, Sacramento, California
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth A Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jason W Sohn
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evan Wuthrick
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
25
|
Gaubert V, Gidik H, Koncar V. Proposal of a Lab Bench for the Unobtrusive Monitoring of the Bladder Fullness with Bioimpedance Measurements. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3980. [PMID: 32709078 PMCID: PMC7412207 DOI: 10.3390/s20143980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022]
Abstract
(1) Background: millions of people, from children to the elderly, suffer from bladder dysfunctions all over the world. Monitoring bladder fullness with appropriate miniaturized textile devices can improve, significantly, their daily life quality, or even cure them. Amongst the existing bladder sensing technologies, bioimpedance spectroscopy seems to be the most appropriate one to be integrated into textiles. (2) Methods: to assess the feasibility of monitoring the bladder fullness with textile-based bioimpedance spectroscopy; an innovative lab-bench has been designed and fabricated. As a step towards obtaining a more realistic pelvic phantom, ex vivo pig's bladder and skin were used. The electrical properties of the fabricated pelvic phantom have been compared to those of two individuals with tetrapolar impedance measurements. The measurements' reproducibility on the lab bench has been evaluated and discussed. Moreover, its suitability for the continuous monitoring of the bladder filling has been investigated. (3) Results: although the pelvic phantom failed in reproducing the frequency-dependent electrical properties of human tissues, it was found to be suitable at 5 kHz to record bladder volume change. The resistance variations recorded are proportional to the conductivity of the liquid filling the bladder. A 350 mL filling with artificial urine corresponds to a decrease in resistance of 7.2%, which was found to be in the same range as in humans. (4) Conclusions: based on that resistance variation; the instantaneous bladder fullness can be extrapolated. The presented lab-bench will be used to evaluate the ability of textiles electrodes to unobtrusively monitor the bladder volume.
Collapse
Affiliation(s)
- Valentin Gaubert
- GEnie et Matériaux TEXtiles (GEMTEX) Laboratory, École Nationale Supérieure des Arts et Industries Textiles (ENSAIT), F-59100 Roubaix, France; (H.G.); (V.K.)
- Hautes Etudes Ingénieur (HEI)—YNCREA, University of Lille, F-59650 Villeneuve d’Ascq, France
| | - Hayriye Gidik
- GEnie et Matériaux TEXtiles (GEMTEX) Laboratory, École Nationale Supérieure des Arts et Industries Textiles (ENSAIT), F-59100 Roubaix, France; (H.G.); (V.K.)
- Hautes Etudes Ingénieur (HEI)—YNCREA, University of Lille, F-59650 Villeneuve d’Ascq, France
| | - Vladan Koncar
- GEnie et Matériaux TEXtiles (GEMTEX) Laboratory, École Nationale Supérieure des Arts et Industries Textiles (ENSAIT), F-59100 Roubaix, France; (H.G.); (V.K.)
| |
Collapse
|
26
|
Hoffmans D, Niebuhr N, Bohoudi O, Pfaffenberger A, Palacios M. An end-to-end test for MR-guided online adaptive radiotherapy. ACTA ACUST UNITED AC 2020; 65:125012. [DOI: 10.1088/1361-6560/ab8955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Sindi R, Wong YH, Yeong CH, Sun Z. Development of patient-specific 3D-printed breast phantom using silicone and peanut oils for magnetic resonance imaging. Quant Imaging Med Surg 2020; 10:1237-1248. [PMID: 32550133 DOI: 10.21037/qims-20-251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Despite increasing reports of 3D printing in medical applications, the use of 3D printing in breast imaging is limited, thus, personalized 3D-printed breast model could be a novel approach to overcome current limitations in utilizing breast magnetic resonance imaging (MRI) for quantitative assessment of breast density. The aim of this study is to develop a patient-specific 3D-printed breast phantom and to identify the most appropriate materials for simulating the MR imaging characteristics of fibroglandular and adipose tissues. Methods A patient-specific 3D-printed breast model was generated using 3D-printing techniques for the construction of the hollow skin and fibroglandular region shells. Then, the T1 relaxation times of the five selected materials (agarose gel, silicone rubber with/without fish oil, silicone oil, and peanut oil) were measured on a 3T MRI system to determine the appropriate ones to represent the MR imaging characteristics of fibroglandular and adipose tissues. Results were then compared to the reference values of T1 relaxation times of the corresponding tissues: 1,324.42±167.63 and 449.27±26.09 ms, respectively. Finally, the materials that matched the T1 relaxation times of the respective tissues were used to fill the 3D-printed hollow breast shells. Results The silicone and peanut oils were found to closely resemble the T1 relaxation times and imaging characteristics of these two tissues, which are 1,515.8±105.5 and 405.4±15.1 ms, respectively. The agarose gel with different concentrations, ranging from 0.5 to 2.5 wt%, was found to have the longest T1 relaxation times. Conclusions A patient-specific 3D-printed breast phantom was successfully designed and constructed using silicone and peanut oils to simulate the MR imaging characteristics of fibroglandular and adipose tissues. The phantom can be used to investigate different MR breast imaging protocols for the quantitative assessment of breast density.
Collapse
Affiliation(s)
- Rooa Sindi
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.,Radio-diagnostic and Medical Imaging Department, Medical Physics Section, King Fahd Armed Forces Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Yin How Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
28
|
Kurz C, Buizza G, Landry G, Kamp F, Rabe M, Paganelli C, Baroni G, Reiner M, Keall PJ, van den Berg CAT, Riboldi M. Medical physics challenges in clinical MR-guided radiotherapy. Radiat Oncol 2020; 15:93. [PMID: 32370788 PMCID: PMC7201982 DOI: 10.1186/s13014-020-01524-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
The integration of magnetic resonance imaging (MRI) for guidance in external beam radiotherapy has faced significant research and development efforts in recent years. The current availability of linear accelerators with an embedded MRI unit, providing volumetric imaging at excellent soft tissue contrast, is expected to provide novel possibilities in the implementation of image-guided adaptive radiotherapy (IGART) protocols. This study reviews open medical physics issues in MR-guided radiotherapy (MRgRT) implementation, with a focus on current approaches and on the potential for innovation in IGART.Daily imaging in MRgRT provides the ability to visualize the static anatomy, to capture internal tumor motion and to extract quantitative image features for treatment verification and monitoring. Those capabilities enable the use of treatment adaptation, with potential benefits in terms of personalized medicine. The use of online MRI requires dedicated efforts to perform accurate dose measurements and calculations, due to the presence of magnetic fields. Likewise, MRgRT requires dedicated quality assurance (QA) protocols for safe clinical implementation.Reaction to anatomical changes in MRgRT, as visualized on daily images, demands for treatment adaptation concepts, with stringent requirements in terms of fast and accurate validation before the treatment fraction can be delivered. This entails specific challenges in terms of treatment workflow optimization, QA, and verification of the expected delivered dose while the patient is in treatment position. Those challenges require specialized medical physics developments towards the aim of fully exploiting MRI capabilities. Conversely, the use of MRgRT allows for higher confidence in tumor targeting and organs-at-risk (OAR) sparing.The systematic use of MRgRT brings the possibility of leveraging IGART methods for the optimization of tumor targeting and quantitative treatment verification. Although several challenges exist, the intrinsic benefits of MRgRT will provide a deeper understanding of dose delivery effects on an individual basis, with the potential for further treatment personalization.
Collapse
Affiliation(s)
- Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
- German Cancer Consortium (DKTK), 81377, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
- Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Privata Campeggi 53, 27100, Pavia, Italy
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Paul J Keall
- ACRF Image X Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Centre Utrecht, PO box 85500, 3508 GA, Utrecht, The Netherlands
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany.
| |
Collapse
|
29
|
Mittauer KE, Hill PM, Bassetti MF, Bayouth JE. Validation of an MR-guided online adaptive radiotherapy (MRgoART) program: Deformation accuracy in a heterogeneous, deformable, anthropomorphic phantom. Radiother Oncol 2020; 146:97-109. [DOI: 10.1016/j.radonc.2020.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 01/11/2023]
|
30
|
Singhrao K, Fu J, Wu HH, Hu P, Kishan AU, Chin RK, Lewis JH. A novel anthropomorphic multimodality phantom for MRI‐based radiotherapy quality assurance testing. Med Phys 2020; 47:1443-1451. [DOI: 10.1002/mp.14027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kamal Singhrao
- Department of Radiation Oncology University of California Los Angeles Los Angeles CA 90095USA
| | - Jie Fu
- Department of Radiation Oncology University of California Los Angeles Los Angeles CA 90095USA
| | - Holden H. Wu
- Department of Radiology University of California Los Angeles Los Angeles CA 90095USA
| | - Peng Hu
- Department of Radiology University of California Los Angeles Los Angeles CA 90095USA
| | - Amar U. Kishan
- Department of Radiation Oncology University of California Los Angeles Los Angeles CA 90095USA
| | - Robert K. Chin
- Department of Radiation Oncology University of California Los Angeles Los Angeles CA 90095USA
| | - John H. Lewis
- Department of Radiation Oncology Cedars‐Sinai Medical Center Los Angeles CA 90048USA
| |
Collapse
|
31
|
Volz L, Kelleter L, Brons S, Burigo L, Graeff C, Niebuhr NI, Radogna R, Scheloske S, Schömers C, Jolly S, Seco J. Experimental exploration of a mixed helium/carbon beam for online treatment monitoring in carbon ion beam therapy. ACTA ACUST UNITED AC 2020; 65:055002. [DOI: 10.1088/1361-6560/ab6e52] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Steinmann A, Alvarez P, Lee H, Court L. MRIgRT head and neck anthropomorphic QA phantom: Design, development, reproducibility, and feasibility study. Med Phys 2020; 47:604-613. [PMID: 31808949 PMCID: PMC7796776 DOI: 10.1002/mp.13951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The purpose of this paper was to design, manufacture, and evaluate a tissue equivalent, dual magnetic resonance/computed tomography (MR/CT) visible anthropomorphic head and neck (H&N) phantom. This phantom was specially designed as an end-to-end quality assurance (QA) tool for MR imaging guided radiotherapy (MRIgRT) systems participating in NCI-sponsored clinical trials. METHOD The MRIgRT H&N phantom was constructed using a water-fillable acrylic shell and a custom insert that mimics an organ at risk (OAR) and target structures. The insert consists of a primary and secondary planning target volume (PTV) manufactured of a synthetic Clear Ballistic gel, an acrylic OAR and surrounding tissue fabricated using melted Superflab. Radiochromic EBT3 film and thermoluminescent detectors (TLDs) were used to measure the dose distribution and absolute dose, respectively. The phantom was evaluated by conducting an end-to-end test that included: imaging on a GE Lightspeed CT simulator, planning on Monaco treatment planning software (TPS), verifying treatment setup with MR, and irradiating on Elekta's 1.5 T Unity MR linac system. The phantom was irradiated three times using the same plan to determine reproducibility. Three institutions, equipped with either ViewRay MRIdian 60 Co or ViewRay MRIdian Linac, were used to conduct a feasibility study by performing independent end-to-end studies. Thermoluminescent detectors were evaluated in both reproducibility and feasibility studies by comparing ratios of measured TLD to reported TPS calculated values. Radiochromic film was used to compare measured planar dose distributions to expected TPS distributions. Film was evaluated by using an in-house gamma analysis software to measure the discrepancies between film and TPS. RESULTS The MRIgRT H&N phantom on the Unity system resulted in reproducible TLD doses (SD < 1.5%). The measured TLD to calculated dose ratios for the Unity system ranged from 0.94 to 0.98. The Viewray dose result comparisons had a larger range (0.95-1.03) but these depended on the TPS dose calculations from each site. Using a 7%/4 mm gamma analysis, Viewray institutions had average axial and sagittal passing rates of 97.3% and 96.2% and the Unity system had average passing rates of 97.8% and 89.7%, respectively. All of the results were within the Imaging and Radiation Oncology Core in Houston (IROC-Houston) standard credentialing criteria of 7% on TLDs, and >85% of pixels passing gamma analysis using 7%/4 mm on films. CONCLUSIONS An MRIgRT H&N phantom that is tissue equivalent and visible on both CT and MR was developed. The results from initial reproducibility and feasibility testing of the MRIgRT H&N phantom using the tested MGIgRT systems suggests the phantom's potential utility as a credentialing tool for NCI-clinical trials.
Collapse
Affiliation(s)
- A. Steinmann
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - P. Alvarez
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - H. Lee
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Court
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Wu RY, Liu AY, Yang J, Williamson TD, Wisdom PG, Bronk L, Gao S, Grosshan DR, Fuller DC, Gunn GB, Ronald Zhu X, Frank SJ. Evaluation of the accuracy of deformable image registration on MRI with a physical phantom. J Appl Clin Med Phys 2019; 21:166-173. [PMID: 31808307 PMCID: PMC6964753 DOI: 10.1002/acm2.12789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 01/13/2023] Open
Abstract
Background and purpose Magnetic resonance imaging (MRI) has gained popularity in radiation therapy simulation because it provides superior soft tissue contrast, which facilitates more accurate target delineation compared with computed tomography (CT) and does not expose the patient to ionizing radiation. However, image registration errors in commercial software have not been widely reported. Here we evaluated the accuracy of deformable image registration (DIR) by using a physical phantom for MRI. Methods and materials We used the “Wuphantom” for end‐to‐end testing of DIR accuracy for MRI. This acrylic phantom is filled with water and includes several fillable inserts to simulate various tissue shapes and properties. Deformations and changes in anatomic locations are simulated by changing the rotations of the phantom and inserts. We used Varian Velocity DIR software (v4.0) and CT (head and neck protocol) and MR (T1‐ and T2‐weighted head protocol) images to test DIR accuracy between image modalities (MRI vs CT) and within the same image modality (MRI vs MRI) in 11 rotation deformation scenarios. Large inserts filled with Mobil DTE oil were used to simulate fatty tissue, and small inserts filled with agarose gel were used to simulate tissues slightly denser than water (e.g., prostate). Contours of all inserts were generated before DIR to provide a baseline for contour size and shape. DIR was done with the MR Correctable Deformable DIR method, and all deformed contours were compared with the original contours. The Dice similarity coefficient (DSC) and mean distance to agreement (MDA) were used to quantitatively validate DIR accuracy. We also used large and small regions of interest (ROIs) during between‐modality DIR tests to simulate validation of DIR accuracy for organs at risk (OARs) and propagation of individual clinical target volume (CTV) contours. Results No significant differences in DIR accuracy were found for T1:T1 and T2:T2 comparisons (P > 0.05). DIR was less accurate for between‐modality comparisons than for same‐modality comparisons, and was less accurate for T1 vs CT than for T2 vs CT (P < 0.001). For between‐modality comparisons, use of a small ROI improved DIR accuracy for both T1 and T2 images. Conclusion The simple design of the Wuphantom allows seamless testing of DIR; here we validated the accuracy of MRI DIR in end‐to‐end testing. T2 images had superior DIR accuracy compared with T1 images. Use of small ROIs improves DIR accuracy for target contour propagation.
Collapse
Affiliation(s)
- Richard Y Wu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Y Liu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tyler D Williamson
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul G Wisdom
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence Bronk
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Song Gao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David R Grosshan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David C Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary B Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - X Ronald Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Bohoudi O, Lagerwaard FJ, Bruynzeel AM, Niebuhr NI, Johnen W, Senan S, Slotman BJ, Pfaffenberger A, Palacios MA. End-to-end empirical validation of dose accumulation in MRI-guided adaptive radiotherapy for prostate cancer using an anthropomorphic deformable pelvis phantom. Radiother Oncol 2019; 141:200-207. [DOI: 10.1016/j.radonc.2019.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 10/25/2022]
|
35
|
Elter A, Dorsch S, Mann P, Runz A, Johnen W, Spindeldreier CK, Klüter S, Karger CP. End-to-end test of an online adaptive treatment procedure in MR-guided radiotherapy using a phantom with anthropomorphic structures. ACTA ACUST UNITED AC 2019; 64:225003. [DOI: 10.1088/1361-6560/ab4d8e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|