1
|
Granado-González M, Price T, Gonella L, Moustakas K, Hirono T, Hemperek T, De Marzi L, Patriarca A. First test beam of the DMAPS-based proton tracker at the pMBRT facility at the Curie Institute. Phys Med Biol 2024; 69:215026. [PMID: 39378901 DOI: 10.1088/1361-6560/ad84b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Objective.Proton radiotherapy's efficacy relies on an accurate relative stopping power (RSP) map of the patient to optimise the treatment plan and minimize uncertainties. Currently, a conversion of a Hounsfield Units map obtained by a common x-ray computed tomography (CT) is used to compute the RSP. This conversion is one of the main limiting factors for proton radiotherapy. To bypass this conversion a direct RSP map could be obtained by performing a proton CT (pCT). The focal point of this article is to present a proof of concept of the potential of fast pixel technologies for proton tracking at clinical facilities.Approach.A two-layer tracker based on the TJ-Monopix1, a depleted monolithic active pixel sensor (DMAPS) chip initially designed for the ATLAS, was tested at the proton minibeam radiotherapy beamline at the Curie Institute. The chips were subjected to 100 MeV protons passing through the single slit collimator (0.4×20mm2) with fluxes up to1.3×107p s-1 cm-2. The performance of the proton tracker was evaluated with GEANT4 simulations.Main results.The beam profile and dispersion in air were characterized by an opening of 0.031 mm cm-1, and aσx=0.172mm at the position of the slit. The results of the proton tracking show how the TJ-Monopix1 chip can effectively track protons in a clinical environment, achieving a tracking purity close to 70%, and a position resolution below 0.5 mm; confirming the chip's ability to handle high proton fluxes with a competitive performance.Significance.This work suggests that DMAPS technologies can be a cost-effective alternative for proton imaging. Additionally, the study identifies areas where further optimization of chip design is required to fully leverage these technologies for clinical ion imaging applications.
Collapse
Affiliation(s)
- M Granado-González
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - T Price
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - L Gonella
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - K Moustakas
- Physikalisches Institut, Universität Bonn, Nußallee 12, 53115 Bonn, Germany
| | - T Hirono
- Physikalisches Institut, Universität Bonn, Nußallee 12, 53115 Bonn, Germany
| | - T Hemperek
- Physikalisches Institut, Universität Bonn, Nußallee 12, 53115 Bonn, Germany
| | - L De Marzi
- Orsay Proton Therapy Center, Institut Curie, Orsay, France
| | - A Patriarca
- Orsay Proton Therapy Center, Institut Curie, Orsay, France
| |
Collapse
|
2
|
Fogazzi E, Hu G, Bruzzi M, Farace P, Kröncke T, Niepel K, Ricke J, Risch F, Sabel B, Scaringella M, Schwarz F, Tommasino F, Landry G, Civinini C, Parodi K. A direct comparison of multi-energy x-ray and proton CT for imaging and relative stopping power estimation of plastic and ex-vivophantoms. Phys Med Biol 2024; 69:175021. [PMID: 39159669 DOI: 10.1088/1361-6560/ad70ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Objective.Proton therapy administers a highly conformal dose to the tumour region, necessitating accurate prediction of the patient's 3D map of proton relative stopping power (RSP) compared to water. This remains challenging due to inaccuracies inherent in single-energy computed tomography (SECT) calibration. Recent advancements in spectral x-ray CT (xCT) and proton CT (pCT) have shown improved RSP estimation compared to traditional SECT methods. This study aims to provide the first comparison of the imaging and RSP estimation performance among dual-energy CT (DECT) and photon-counting CT (PCCT) scanners, and a pCT system prototype.Approach.Two phantoms were scanned with the three systems for their performance characterisation: a plastic phantom, filled with water and containing four plastic inserts and a wood insert, and a heterogeneous biological phantom, containing a formalin-stabilised bovine specimen. RSP maps were generated by converting CT numbers to RSP using a calibration based on low- and high-energy xCT images, while pCT utilised a distance-driven filtered back projection algorithm for RSP reconstruction. Spatial resolution, noise, and RSP accuracy were compared across the resulting images.Main results.All three systems exhibited similar spatial resolution of around 0.54 lp/mm for the plastic phantom. The PCCT images were less noisy than the DECT images at the same dose level. The lowest mean absolute percentage error (MAPE) of RSP,(0.28±0.07)%, was obtained with the pCT system, compared to MAPE values of(0.51±0.08)%and(0.80±0.08)%for the DECT- and PCCT-based methods, respectively. For the biological phantom, the xCT-based methods resulted in higher RSP values in most of the voxels compared to pCT.Significance.The pCT system yielded the most accurate estimation of RSP values for the plastic materials, and was thus used to benchmark the xCT calibration performance on the biological phantom. This study underlined the potential benefits and constraints of utilising such a novelex-vivophantom for inter-centre surveys in future.
Collapse
Affiliation(s)
- Elena Fogazzi
- Physics Department, University of Trento, Trento, TN, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), Trento, TN, Italy
| | - Guyue Hu
- Department of Medical Physics, Faculty of Physics, LMU Munich, Garching, Germany
| | - Mara Bruzzi
- Italian National Institute of Nuclear Physics (INFN), Florence section, Sesto Fiorentino, FI, Italy
- Physics and Astronomy Department, University of Florence, Sesto Fiorentino, FI, Italy
| | - Paolo Farace
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), Trento, TN, Italy
- Medical Physics Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Thomas Kröncke
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Katharina Niepel
- Department of Medical Physics, Faculty of Physics, LMU Munich, Garching, Germany
| | - Jens Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Bastian Sabel
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Monica Scaringella
- Italian National Institute of Nuclear Physics (INFN), Florence section, Sesto Fiorentino, FI, Italy
| | - Florian Schwarz
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Francesco Tommasino
- Physics Department, University of Trento, Trento, TN, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), Trento, TN, Italy
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Bavarian Cancer Research Centre (BZKF), Munich, Germany
| | - Carlo Civinini
- Italian National Institute of Nuclear Physics (INFN), Florence section, Sesto Fiorentino, FI, Italy
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, LMU Munich, Garching, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
3
|
Tarp IS, Taasti VT, Jensen MF, Vestergaard A, Jensen K. Benefit of range uncertainty reduction in robust optimisation for proton therapy of brain, head-and-neck and breast cancer patients. Phys Imaging Radiat Oncol 2024; 31:100632. [PMID: 39257572 PMCID: PMC11386293 DOI: 10.1016/j.phro.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024] Open
Abstract
Background and Purpose The primary cause of range uncertainty in proton therapy is inaccuracy in estimating the stopping-power ratio from computed tomography. This study examined the impact on dose-volume metrics by reducing range uncertainty in robust optimisation for a diverse patient cohort and determined the level of range uncertainty that resulted in a relevant reduction in doses to organs-at-risk (OARs). Materials and Methods The effect of reducing range uncertainty on OAR doses was evaluated by robustly optimising six proton plans with varying range uncertainty levels (ranging from 3.5% in the original plan to 1.0%), keeping setup uncertainty fixed. All plans used the initial clinical treatment plan's beam directions and optimisation objectives and were optimised until a clinically acceptable plan was achieved across all setup and range scenarios. The effect of reduced range uncertainty on dose-volume metrics for OARs near the target was evaluated. This study included 30 brain cancer patients, as well as five head-and-neck and five breast cancer patients, investigating the relevance of reducing range uncertainty when different setup uncertainties were used. Results Lowering range uncertainty slightly reduced the nominal dose to surrounding tissue. For body volume receiving 80% of the prescribed dose, reducing range uncertainty from 3.5% to 2.0% resulted in a median decrease of 4 cm3 for the brain, 17 cm3 for head-and-neck, and 27 cm3 for breast cancer patients. Conclusions Reducing range uncertainty in robust optimisation showed a reduction in dose to OARs. The clinical relevance depends on the affected organs and the clinical dose constraints.
Collapse
Affiliation(s)
- Ivanka Sojat Tarp
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Vicki Trier Taasti
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Anne Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Kenneth Jensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Johnson RP. Meeting the detector challenges for pre-clinical proton and ion computed tomography. Phys Med Biol 2024; 69:11TR02. [PMID: 38657632 DOI: 10.1088/1361-6560/ad42fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Six decades after its conception, proton computed tomography (pCT) and proton radiography have yet to be used in medical clinics. However, good progress has been made on relevant detector technologies in the past two decades, and a few prototype pCT systems now exist that approach the performance needed for a clinical device. The tracking and energy-measurement technologies in common use are described, as are the few pCT scanners that are in routine operation at this time. Most of these devices still look like detector R&D efforts as opposed to medical devices, are difficult to use, are at least a factor of five slower than desired for clinical use, and are too small to image many parts of the human body. Recommendations are made for what to consider when engineering a pre-clinical pCT scanner that is designed to meet clinical needs in terms of performance, cost, and ease of use.
Collapse
Affiliation(s)
- Robert P Johnson
- Physics Department, University of California at Santa Cruz, Santa Cruz, CA 95064, United States of America
| |
Collapse
|
5
|
Volz L, Graeff C, Durante M, Collins-Fekete CA. Focus stacking single-event particle radiography for high spatial resolution images and 3D feature localization. Phys Med Biol 2024; 69:024001. [PMID: 38056016 PMCID: PMC10777170 DOI: 10.1088/1361-6560/ad131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Objective.We demonstrate a novel focus stacking technique to improve spatial resolution of single-event particle radiography (pRad), and exploit its potential for 3D feature detection.Approach.Focus stacking, used typically in optical photography and microscopy, is a technique to combine multiple images with different focal depths into a single super-resolution image. Each pixel in the final image is chosen from the image with the largest gradient at that pixel's position. pRad data can be reconstructed at different depths in the patient based on an estimate of each particle's trajectory (called distance-driven binning; DDB). For a given feature, there is a depth of reconstruction for which the spatial resolution of DDB is maximal. Focus stacking can hence be applied to a series of DDB images reconstructed from a single pRad acquisition for different depths, yielding both a high-resolution projection and information on the features' radiological depth at the same time. We demonstrate this technique with Geant4 simulated pRads of a water phantom (20 cm thick) with five bone cube inserts at different depths (1 × 1 × 1 cm3) and a lung cancer patient.Main results.For proton radiography of the cube phantom, focus stacking achieved a median resolution improvement of 136% compared to a state-of-the-art maximum likelihood pRad reconstruction algorithm and a median of 28% compared to DDB where the reconstruction depth was the center of each cube. For the lung patient, resolution was visually improved, without loss in accuracy. The focus stacking method also enabled to estimate the depth of the cubes within few millimeters accuracy, except for one shallow cube, where the depth was underestimated by 2.5 cm.Significance.Focus stacking utilizes the inherent 3D information encoded in pRad by the particle's scattering, overcoming current spatial resolution limits. It further opens possibilities for 3D feature localization. Therefore, focus stacking holds great potential for future pRad applications.
Collapse
Affiliation(s)
- Lennart Volz
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Christian Graeff
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Marco Durante
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Department of Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
6
|
Aehle M, Alme J, Gábor Barnaföldi G, Blühdorn J, Bodova T, Borshchov V, van den Brink A, Eikeland V, Feofilov G, Garth C, Gauger NR, Grøttvik O, Helstrup H, Igolkin S, Keidel R, Kobdaj C, Kortus T, Kusch L, Leonhardt V, Mehendale S, Ningappa Mulawade R, Harald Odland O, O'Neill G, Papp G, Peitzmann T, Pettersen HES, Piersimoni P, Pochampalli R, Protsenko M, Rauch M, Ur Rehman A, Richter M, Röhrich D, Sagebaum M, Santana J, Schilling A, Seco J, Songmoolnak A, Sudár Á, Tambave G, Tymchuk I, Ullaland K, Varga-Kofarago M, Volz L, Wagner B, Wendzel S, Wiebel A, Xiao R, Yang S, Zillien S. Exploration of differentiability in a proton computed tomography simulation framework. Phys Med Biol 2023; 68:244002. [PMID: 37949060 DOI: 10.1088/1361-6560/ad0bdd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Objective.Gradient-based optimization using algorithmic derivatives can be a useful technique to improve engineering designs with respect to a computer-implemented objective function. Likewise, uncertainty quantification through computer simulations can be carried out by means of derivatives of the computer simulation. However, the effectiveness of these techniques depends on how 'well-linearizable' the software is. In this study, we assess how promising derivative information of a typical proton computed tomography (pCT) scan computer simulation is for the aforementioned applications.Approach.This study is mainly based on numerical experiments, in which we repeatedly evaluate three representative computational steps with perturbed input values. We support our observations with a review of the algorithmic steps and arithmetic operations performed by the software, using debugging techniques.Main results.The model-based iterative reconstruction (MBIR) subprocedure (at the end of the software pipeline) and the Monte Carlo (MC) simulation (at the beginning) were piecewise differentiable. However, the observed high density and magnitude of jumps was likely to preclude most meaningful uses of the derivatives. Jumps in the MBIR function arose from the discrete computation of the set of voxels intersected by a proton path, and could be reduced in magnitude by a 'fuzzy voxels' approach. The investigated jumps in the MC function arose from local changes in the control flow that affected the amount of consumed random numbers. The tracking algorithm solves an inherently non-differentiable problem.Significance.Besides the technical challenges of merely applying AD to existing software projects, the MC and MBIR codes must be adapted to compute smoother functions. For the MBIR code, we presented one possible approach for this while for the MC code, this will be subject to further research. For the tracking subprocedure, further research on surrogate models is necessary.
Collapse
Affiliation(s)
- Max Aehle
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Johan Alme
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | | | - Johannes Blühdorn
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Tea Bodova
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | | | | | - Viljar Eikeland
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | | | - Christoph Garth
- Scientific Visualization Lab, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Nicolas R Gauger
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Ola Grøttvik
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Håvard Helstrup
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, NO-5020 Bergen, Norway
| | | | - Ralf Keidel
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Chinorat Kobdaj
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Tobias Kortus
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Lisa Kusch
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Viktor Leonhardt
- Scientific Visualization Lab, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Shruti Mehendale
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Raju Ningappa Mulawade
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Odd Harald Odland
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, NO-5021 Bergen, Norway
| | - George O'Neill
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Gábor Papp
- Institute for Physics, Eötvös Loránd University, 1/A Pázmány P. Sétány, H-1117 Budapest, Hungary
| | - Thomas Peitzmann
- Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
| | | | - Pierluigi Piersimoni
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
- FSN Department, ENEA, Frascati Research Center, I-00044, Frascati, Italy
| | - Rohit Pochampalli
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Maksym Protsenko
- Research and Production Enterprise 'LTU' (RPE LTU), Kharkiv, Ukraine
| | - Max Rauch
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Attiq Ur Rehman
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | | | - Dieter Röhrich
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Max Sagebaum
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Joshua Santana
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Alexander Schilling
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Joao Seco
- Department of Biomedical Physics in Radiation Oncology, DKFZGerman Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Arnon Songmoolnak
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ákos Sudár
- Wigner Research Centre for Physics, Budapest, Hungary
| | - Ganesh Tambave
- Center for Medical and Radiation Physics (CMRP), National Institute of Science Education and Research (NISER), Bhubaneswar, India
| | - Ihor Tymchuk
- Research and Production Enterprise 'LTU' (RPE LTU), Kharkiv, Ukraine
| | - Kjetil Ullaland
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | | | - Lennart Volz
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Boris Wagner
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Steffen Wendzel
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Alexander Wiebel
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - RenZheng Xiao
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
- College of Mechanical & Power Engineering, China Three Gorges University, Yichang, People's Republic of China
| | - Shiming Yang
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Sebastian Zillien
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| |
Collapse
|
7
|
Kneepkens E, Wolfs C, Wanders RG, Traneus E, Eekers D, Verhaegen F. Shoot-through proton FLASH irradiation lowers linear energy transfer in organs at risk for neurological tumors and is robust against density variations. Phys Med Biol 2023; 68:215020. [PMID: 37820687 DOI: 10.1088/1361-6560/ad0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Objective. The goal of the study was to test the hypothesis that shoot-through FLASH proton beams would lead to lower dose-averaged LET (LETD) values in critical organs, while providing at least equal normal tissue sparing as clinical proton therapy plans.Approach. For five neurological tumor patients, pencil beam scanning (PBS) shoot-through plans were made, using the maximum energy of 227 MeV and assuming a hypothetical FLASH protective factor (FPF) of 1.5. The effect of different FPF ranging from 1.2 to 1.8 on the clinical goals were also considered. LETDwas calculated for the clinical plan and the shoot-through plan, applying a 2 Gy total dose threshold (RayStation 8 A/9B and 9A-IonRPG). Robust evaluation was performed considering density uncertainty (±3% throughout entire volume).Main results.Clinical plans showed large LETDvariations compared to shoot-through plans and the maximum LETDin OAR is 1.2-8 times lower for the latter. Although less conformal, shoot-through plans met the same clinical goals as the clinical plans, for FLASH protection factors above 1.4. The FLASH shoot-through plans were more robust to density uncertainties with a maximum OAR D2%increase of 0.6 Gy versus 5.7 Gy in the clinical plans.Significance.Shoot-through proton FLASH beams avoid uncertainties in LETDdistributions and proton range, provide adequate target coverage, meet planning constraints and are robust to density variations.
Collapse
Affiliation(s)
- Esther Kneepkens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cecile Wolfs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Roel-Germ Wanders
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Erik Traneus
- RaySearch Laboratories AB, SE-103 65, Stockholm, Sweden
| | - Danielle Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
8
|
Kaser S, Bergauer T, Biguri A, Birkfellner W, Hatamikia S, Hirtl A, Irmler C, Kirchmayer B, Ulrich-Pur F. Extension of the open-source TIGRE toolbox for proton imaging. Z Med Phys 2023; 33:552-566. [PMID: 36195519 PMCID: PMC10751710 DOI: 10.1016/j.zemedi.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 10/07/2022]
Abstract
Proton irradiation is a well-established method to treat deep-seated tumors in radio oncology. Usually, an X-ray computed tomography (CT) scan is used for treatment planning. Since proton therapy is based on the precise knowledge of the stopping power describing the energy loss of protons in the patient tissues, the Hounsfield units of the planning CT have to be converted. This conversion introduces range errors in the treatment plan, which could be reduced, if the stopping power values were extracted directly from an image obtained using protons instead of X-rays. Since protons are affected by multiple Coulomb scattering, reconstruction of the 3D stopping power map results in limited image quality if the curved proton path is not considered. This work presents a substantial code extension of the open-source toolbox TIGRE for proton CT (pCT) image reconstruction based on proton radiographs including a curved proton path estimate. The code extension and the reconstruction algorithms are GPU-based, allowing to achieve reconstruction results within minutes. The performance of the pCT code extension was tested with Monte Carlo simulated data using three phantoms (Catphan® high resolution and sensitometry modules and a CIRS patient phantom). In the simulations, ideal and non-ideal conditions for a pCT setup were assumed. The obtained mean absolute percentage error was found to be below 1% and up to 8 lp/cm could be resolved using an idealized setup. These findings demonstrate that the presented code extension to the TIGRE toolbox offers the possibility for other research groups to use a fast and accurate open-source pCT reconstruction.
Collapse
Affiliation(s)
- Stefanie Kaser
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria.
| | - Thomas Bergauer
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
| | - Ander Biguri
- Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, United Kingdom
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Sepideh Hatamikia
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria; Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Danube Private University, Krems, Austria; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Christian Irmler
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
| | | | - Felix Ulrich-Pur
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
9
|
Marants R, Tattenberg S, Scholey J, Kaza E, Miao X, Benkert T, Magneson O, Fischer J, Vinas L, Niepel K, Bortfeld T, Landry G, Parodi K, Verburg J, Sudhyadhom A. Validation of an MR-based multimodal method for molecular composition and proton stopping power ratio determination using ex vivo animal tissues and tissue-mimicking phantoms. Phys Med Biol 2023; 68:10.1088/1361-6560/ace876. [PMID: 37463589 PMCID: PMC10645122 DOI: 10.1088/1361-6560/ace876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
Objective. Range uncertainty in proton therapy is an important factor limiting clinical effectiveness. Magnetic resonance imaging (MRI) can measure voxel-wise molecular composition and, when combined with kilovoltage CT (kVCT), accurately determine mean ionization potential (Im), electron density, and stopping power ratio (SPR). We aimed to develop a novel MR-based multimodal method to accurately determine SPR and molecular compositions. This method was evaluated in tissue-mimicking andex vivoporcine phantoms, and in a brain radiotherapy patient.Approach. Four tissue-mimicking phantoms with known compositions, two porcine tissue phantoms, and a brain cancer patient were imaged with kVCT and MRI. Three imaging-based values were determined: SPRCM(CT-based Multimodal), SPRMM(MR-based Multimodal), and SPRstoich(stoichiometric calibration). MRI was used to determine two tissue-specific quantities of the Bethe Bloch equation (Im, electron density) to compute SPRCMand SPRMM. Imaging-based SPRs were compared to measurements for phantoms in a proton beam using a multilayer ionization chamber (SPRMLIC).Main results. Root mean square errors relative to SPRMLICwere 0.0104(0.86%), 0.0046(0.45%), and 0.0142(1.31%) for SPRCM, SPRMM, and SPRstoich, respectively. The largest errors were in bony phantoms, while soft tissue and porcine tissue phantoms had <1% errors across all SPR values. Relative to known physical molecular compositions, imaging-determined compositions differed by approximately ≤10%. In the brain case, the largest differences between SPRstoichand SPRMMwere in bone and high lipids/fat tissue. The magnitudes and trends of these differences matched phantom results.Significance. Our MR-based multimodal method determined molecular compositions and SPR in various tissue-mimicking phantoms with high accuracy, as confirmed with proton beam measurements. This method also revealed significant SPR differences compared to stoichiometric kVCT-only calculation in a clinical case, with the largest differences in bone. These findings support that including MRI in proton therapy treatment planning can improve the accuracy of calculated SPR values and reduce range uncertainties.
Collapse
Affiliation(s)
- Raanan Marants
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sebastian Tattenberg
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica Scholey
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, United States of America
| | - Evangelia Kaza
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xin Miao
- Siemens Medical Solutions USA Inc., Boston, Massachusetts, United States of America
| | | | - Olivia Magneson
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jade Fischer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Physics, University of Calgary, Calgary, Alberta, Canada
| | - Luciano Vinas
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Statistics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Katharina Niepel
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Joost Verburg
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Palaniappan P, Knudsen Y, Meyer S, Gianoli C, Schnürle K, Würl M, Bortfeldt J, Parodi K, Riboldi M. Multi-stage image registration based on list-mode proton radiographies for small animal proton irradiation: A simulation study. Z Med Phys 2023:S0939-3889(23)00045-4. [PMID: 37353464 DOI: 10.1016/j.zemedi.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 06/25/2023]
Abstract
We present a multi-stage and multi-resolution deformable image registration framework for image-guidance at a small animal proton irradiation platform. The framework is based on list-mode proton radiographies acquired at different angles, which are used to deform a 3D treatment planning CT relying on normalized mutual information (NMI) or root mean square error (RMSE) in the projection domain. We utilized a mouse X-ray micro-CT expressed in relative stopping power (RSP), and obtained Monte Carlo simulations of proton images in list-mode for three different treatment sites (brain, head and neck, lung). Rigid transformations and controlled artificial deformation were applied to mimic position misalignments, weight loss and breathing changes. Results were evaluated based on the residual RMSE of RSP in the image domain including the comparison of extracted local features, i.e. between the reference micro-CT and the one transformed taking into account the calculated deformation. The residual RMSE of the RSP showed that the accuracy of the registration framework is promising for compensating rigid (>97% accuracy) and non-rigid (∼95% accuracy) transformations with respect to a conventional 3D-3D registration. Results showed that the registration accuracy is degraded when considering the realistic detector performance and NMI as a metric, whereas the RMSE in projection domain is rather insensitive. This work demonstrates the pre-clinical feasibility of the registration framework on different treatment sites and its use for small animal imaging with a realistic detector. Further computational optimization of the framework is required to enable the use of this tool for online estimation of the deformation.
Collapse
Affiliation(s)
- Prasannakumar Palaniappan
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Yana Knudsen
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Meyer
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chiara Gianoli
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Schnürle
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Würl
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonathan Bortfeldt
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Riboldi
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Lane SA, Slater JM, Yang GY. Image-Guided Proton Therapy: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15092555. [PMID: 37174022 PMCID: PMC10177085 DOI: 10.3390/cancers15092555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Image guidance for radiation therapy can improve the accuracy of the delivery of radiation, leading to an improved therapeutic ratio. Proton radiation is able to deliver a highly conformal dose to a target due to its advantageous dosimetric properties, including the Bragg peak. Proton therapy established the standard for daily image guidance as a means of minimizing uncertainties associated with proton treatment. With the increasing adoption of the use of proton therapy over time, image guidance systems for this modality have been changing. The unique properties of proton radiation present a number of differences in image guidance from photon therapy. This paper describes CT and MRI-based simulation and methods of daily image guidance. Developments in dose-guided radiation, upright treatment, and FLASH RT are discussed as well.
Collapse
Affiliation(s)
- Shelby A Lane
- James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jason M Slater
- James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gary Y Yang
- James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
12
|
Chen Z, Dominello MM, Joiner MC, Burmeister JW. Proton versus photon radiation therapy: A clinical review. Front Oncol 2023; 13:1133909. [PMID: 37064131 PMCID: PMC10091462 DOI: 10.3389/fonc.2023.1133909] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
While proton radiation therapy offers substantially better dose distribution characteristics than photon radiation therapy in certain clinical applications, data demonstrating a quantifiable clinical advantage is still needed for many treatment sites. Unfortunately, the number of patients treated with proton radiation therapy is still comparatively small, in some part due to the lack of evidence of clear benefits over lower-cost photon-based treatments. This review is designed to present the comparative clinical outcomes between proton and photon therapies, and to provide an overview of the current state of knowledge regarding the effectiveness of proton radiation therapy.
Collapse
Affiliation(s)
- Zhe Chen
- School of Medicine, Wayne State University, Detroit, MI, United States
- *Correspondence: Zhe Chen,
| | - Michael M. Dominello
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Michael C. Joiner
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jay W. Burmeister
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
13
|
Yang M, Wohlfahrt P, Shen C, Bouchard H. Dual- and multi-energy CT for particle stopping-power estimation: current state, challenges and potential. Phys Med Biol 2023; 68. [PMID: 36595276 DOI: 10.1088/1361-6560/acabfa] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Range uncertainty has been a key factor preventing particle radiotherapy from reaching its full physical potential. One of the main contributing sources is the uncertainty in estimating particle stopping power (ρs) within patients. Currently, theρsdistribution in a patient is derived from a single-energy CT (SECT) scan acquired for treatment planning by converting CT number expressed in Hounsfield units (HU) of each voxel toρsusing a Hounsfield look-up table (HLUT), also known as the CT calibration curve. HU andρsshare a linear relationship with electron density but differ in their additional dependence on elemental composition through different physical properties, i.e. effective atomic number and mean excitation energy, respectively. Because of that, the HLUT approach is particularly sensitive to differences in elemental composition between real human tissues and tissue surrogates as well as tissue variations within and among individual patients. The use of dual-energy CT (DECT) forρsprediction has been shown to be effective in reducing the uncertainty inρsestimation compared to SECT. The acquisition of CT data over different x-ray spectra yields additional information on the material elemental composition. Recently, multi-energy CT (MECT) has been explored to deduct material-specific information with higher dimensionality, which has the potential to further improve the accuracy ofρsestimation. Even though various DECT and MECT methods have been proposed and evaluated over the years, these approaches are still only scarcely implemented in routine clinical practice. In this topical review, we aim at accelerating this translation process by providing: (1) a comprehensive review of the existing DECT/MECT methods forρsestimation with their respective strengths and weaknesses; (2) a general review of uncertainties associated with DECT/MECT methods; (3) a general review of different aspects related to clinical implementation of DECT/MECT methods; (4) other potential advanced DECT/MECT applications beyondρsestimation.
Collapse
Affiliation(s)
- Ming Yang
- The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, 1515 Holcombe Blvd Houston, TX 77030, United States of America
| | - Patrick Wohlfahrt
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Boston, MA 02115, United States of America
| | - Chenyang Shen
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, 2280 Inwood Rd Dallas, TX 75235, United States of America
| | - Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| |
Collapse
|
14
|
Hu G, Niepel K, Risch F, Kurz C, Würl M, Kröncke T, Schwarz F, Parodi K, Landry G. Assessment of quantitative information for radiation therapy at a first-generation clinical photon-counting computed tomography scanner. Front Oncol 2022; 12:970299. [PMID: 36185297 PMCID: PMC9515409 DOI: 10.3389/fonc.2022.970299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022] Open
Abstract
As one of the latest developments in X-ray computed tomography (CT), photon-counting technology allows spectral detection, demonstrating considerable advantages as compared to conventional CT. In this study, we investigated the use of a first-generation clinical photon-counting computed tomography (PCCT) scanner and estimated proton relative (to water) stopping power (RSP) of tissue-equivalent materials from virtual monoenergetic reconstructions provided by the scanner. A set of calibration and evaluation tissue-equivalent inserts were scanned at 120 kVp. Maps of relative electron density (RED) and effective atomic number (EAN) were estimated from the reconstructed virtual monoenergetic images (VMI) using an approach previously applied to a spectral CT scanner with dual-layer detector technology, which allows direct calculation of RSP using the Bethe-Bloch formula. The accuracy of RED, EAN, and RSP was evaluated by root-mean-square errors (RMSE) averaged over the phantom inserts. The reference RSP values were obtained experimentally using a water column in an ion beam. For RED and EAN, the reference values were calculated based on the mass density and the chemical composition of the inserts. Different combinations of low- and high-energy VMIs were investigated in this study, ranging from 40 to 190 keV. The overall lowest error was achieved using VMIs at 60 and 180 keV, with an RSP accuracy of 1.27% and 0.71% for the calibration and the evaluation phantom, respectively.
Collapse
Affiliation(s)
- Guyue Hu
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU), Garching bei München, Germany
- *Correspondence: Guyue Hu,
| | - Katharina Niepel
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU), Garching bei München, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology, Universitätsklinikum Augsburg, Augsburg, Germany
| | | | - Matthias Würl
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU), Garching bei München, Germany
| | - Thomas Kröncke
- Department of Diagnostic and Interventional Radiology, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Florian Schwarz
- Department of Diagnostic and Interventional Radiology, Universitätsklinikum Augsburg, Augsburg, Germany
- Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU), Garching bei München, Germany
| | - Guillaume Landry
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU), Garching bei München, Germany
- Department of Radiation Oncology, LMU Klinikum, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
15
|
Volz L, Sheng Y, Durante M, Graeff C. Considerations for Upright Particle Therapy Patient Positioning and Associated Image Guidance. Front Oncol 2022; 12:930850. [PMID: 35965576 PMCID: PMC9372451 DOI: 10.3389/fonc.2022.930850] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Particle therapy is a rapidly growing field in cancer therapy. Worldwide, over 100 centers are in operation, and more are currently in construction phase. The interest in particle therapy is founded in the superior target dose conformity and healthy tissue sparing achievable through the particles’ inverse depth dose profile. This physical advantage is, however, opposed by increased complexity and cost of particle therapy facilities. Particle therapy, especially with heavier ions, requires large and costly equipment to accelerate the particles to the desired treatment energy and steer the beam to the patient. A significant portion of the cost for a treatment facility is attributed to the gantry, used to enable different beam angles around the patient for optimal healthy tissue sparing. Instead of a gantry, a rotating chair positioning system paired with a fixed horizontal beam line presents a suitable cost-efficient alternative. Chair systems have been used already at the advent of particle therapy, but were soon dismissed due to increased setup uncertainty associated with the upright position stemming from the lack of dedicated image guidance systems. Recently, treatment chairs gained renewed interest due to the improvement in beam delivery, commercial availability of vertical patient CT imaging and improved image guidance systems to mitigate the problem of anatomical motion in seated treatments. In this review, economical and clinical reasons for an upright patient positioning system are discussed. Existing designs targeted for particle therapy are reviewed, and conclusions are drawn on the design and construction of chair systems and associated image guidance. Finally, the different aspects from literature are channeled into recommendations for potential upright treatment layouts, both for retrofitting and new facilities.
Collapse
Affiliation(s)
- Lennart Volz
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yinxiangzi Sheng
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Marco Durante
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Institute of Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Christian Graeff
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Institute of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
16
|
Tattenberg S, Madden TM, Bortfeld T, Parodi K, Verburg J. Range uncertainty reductions in proton therapy may lead to the feasibility of novel beam arrangements which improve organ-at-risk sparing. Med Phys 2022; 49:4693-4704. [PMID: 35362163 DOI: 10.1002/mp.15644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE In proton therapy, dose distributions are currently often conformed to organs at risk (OARs) using the less sharp dose fall-off at the lateral beam edge to reduce the effects of uncertainties in the in vivo proton range. However, range uncertainty reductions may make greater use of the sharper dose fall-off at the distal beam edge feasible, potentially improving OAR sparing. We quantified the benefits of such novel beam arrangements. METHODS For each of 10 brain or skull base cases, five treatment plans robust to 2 mm setup and 0%-4% range uncertainty were created for the traditional clinical beam arrangement and a novel beam arrangement making greater use of the distal beam edge to conform the dose distribution to the brainstem. Metrics including the brainstem normal tissue complication probability (NTCP) with the endpoint of necrosis were determined for all plans and all setup and range uncertainty scenarios. RESULTS For the traditional beam arrangement, reducing the range uncertainty from the current level of approximately 4% to a potentially achievable level of 1% reduced the brainstem NTCP by up to 0.9 percentage points in the nominal and up to 1.5 percentage points in the worst-case scenario. Switching to the novel beam arrangement at 1% range uncertainty improved these values by a factor of 2, that is, to 1.8 percentage points and 3.2 percentage points, respectively. The novel beam arrangement achieved a lower brainstem NTCP in all cases starting at a range uncertainty of 2%. CONCLUSION The benefits of novel beam arrangements may be of the same magnitude or even exceed the direct benefits of range uncertainty reductions. Indirect effects may therefore contribute markedly to the benefits of reducing proton range uncertainties.
Collapse
Affiliation(s)
- Sebastian Tattenberg
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas M Madden
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Joost Verburg
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Longarino FK, Kowalewski A, Tessonnier T, Mein S, Ackermann B, Debus J, Mairani A, Stiller W. Potential of a Second-Generation Dual-Layer Spectral CT for Dose Calculation in Particle Therapy Treatment Planning. Front Oncol 2022; 12:853495. [PMID: 35530308 PMCID: PMC9069208 DOI: 10.3389/fonc.2022.853495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
In particle therapy treatment planning, dose calculation is conducted using patient-specific maps of tissue ion stopping power ratio (SPR) to predict beam ranges. Improving patient-specific SPR prediction is therefore essential for accurate dose calculation. In this study, we investigated the use of the Spectral CT 7500, a second-generation dual-layer spectral computed tomography (DLCT) system, as an alternative to conventional single-energy CT (SECT) for patient-specific SPR prediction. This dual-energy CT (DECT)-based method allows for the direct prediction of SPR from quantitative measurements of relative electron density and effective atomic number using the Bethe equation, whereas the conventional SECT-based method consists of indirect image data-based prediction through the conversion of calibrated CT numbers to SPR. The performance of the Spectral CT 7500 in particle therapy treatment planning was characterized by conducting a thorough analysis of its SPR prediction accuracy for both tissue-equivalent materials and common non-tissue implant materials. In both instances, DLCT was found to reduce uncertainty in SPR predictions compared to SECT. Mean deviations of 0.7% and 1.6% from measured SPR values were found for DLCT- and SECT-based predictions, respectively, in tissue-equivalent materials. Furthermore, end-to-end analyses of DLCT-based treatment planning were performed for proton, helium, and carbon ion therapies with anthropomorphic head and pelvic phantoms. 3D gamma analysis was performed with ionization chamber array measurements as the reference. DLCT-predicted dose distributions revealed higher passing rates compared to SECT-predicted dose distributions. In the DLCT-based treatment plans, measured distal-edge evaluation layers were within 1 mm of their predicted positions, demonstrating the accuracy of DLCT-based particle range prediction. This study demonstrated that the use of the Spectral CT 7500 in particle therapy treatment planning may lead to better agreement between planned and delivered dose compared to current clinical SECT systems.
Collapse
Affiliation(s)
- Friderike K Longarino
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Antonia Kowalewski
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Physics, Simon Fraser University, Burnaby, BC, Canada
| | | | - Stewart Mein
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | - Jürgen Debus
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Andrea Mairani
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Medical Physics, National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Wolfram Stiller
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
18
|
Ulrich-Pur F, Bergauer T, Burker A, Hirtl A, Irmler C, Kaser S, Pitters F, Rit S. Feasibility study of a proton CT system based on 4D-tracking and residual energy determination via time-of-flight. Phys Med Biol 2022; 67. [PMID: 35354129 DOI: 10.1088/1361-6560/ac628b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/30/2022] [Indexed: 11/12/2022]
Abstract
Objective.For dose calculations in ion beam therapy, it is vital to accurately determine the relative stopping power (RSP) distribution within the treatment volume. A suitable imaging modality to achieve the required RSP accuracy is proton computed tomography (pCT), which usually uses a tracking system and a separate residual energy (or range) detector to directly measure the RSP distribution. This work investigates the potential of a novel pCT system based on a single detector technology, namely low gain avalanche detectors (LGADs). LGADs are fast 4D-tracking detectors, which can be used to simultaneously measure the particle position and time with precise timing and spatial resolution. In contrast to standard pCT systems, the residual energy is determined via a time-of-flight (TOF) measurement between different 4D-tracking stations.Approach.To show the potential of using 4D-tracking for proton imaging, we studied and optimized the design parameters for a realistic TOF-pCT system using Monte Carlo simulations. We calculated the RSP accuracy and RSP resolution inside the inserts of the CTP404 phantom and compared the results to a simulation of an ideal pCT system.Main results.After introducing a dedicated calibration procedure for the TOF calorimeter, RSP accuracies less than 0.6% could be achieved. We also identified the design parameters with the strongest impact on the RSP resolution and proposed a strategy to further improve the image quality.Significance.This comprehensive study of the most important design aspects for a novel TOF-pCT system could help guide future hardware developments and, once implemented, improve the quality of treatment planning in ion beam therapy.
Collapse
Affiliation(s)
- Felix Ulrich-Pur
- Austrian Academy of Sciences, Institute of High Energy Physics (HEPHY), Nikolsdorfer Gasse 18, A-1050 Wien, Austria
| | - Thomas Bergauer
- Austrian Academy of Sciences, Institute of High Energy Physics (HEPHY), Nikolsdorfer Gasse 18, A-1050 Wien, Austria
| | | | - Albert Hirtl
- TU Wien, Atominstitut, Stadionallee 2, A-1020 Wien, Austria
| | - Christian Irmler
- Austrian Academy of Sciences, Institute of High Energy Physics (HEPHY), Nikolsdorfer Gasse 18, A-1050 Wien, Austria
| | - Stefanie Kaser
- Austrian Academy of Sciences, Institute of High Energy Physics (HEPHY), Nikolsdorfer Gasse 18, A-1050 Wien, Austria
| | - Florian Pitters
- Austrian Academy of Sciences, Institute of High Energy Physics (HEPHY), Nikolsdorfer Gasse 18, A-1050 Wien, Austria
| | - Simon Rit
- Lyon University, INSA-Lyon, University Lyon1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, France
| |
Collapse
|
19
|
Dedes G, Drosten H, Götz S, Dickmann J, Sarosiek C, Pankuch M, Krah N, Rit S, Bashkirov V, Schulte RW, Johnson RP, Parodi K, DeJongh E, Landry G. Comparative accuracy and resolution assessment of two prototype proton computed tomography scanners. Med Phys 2022; 49:4671-4681. [PMID: 35396739 DOI: 10.1002/mp.15657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Improving the accuracy of relative stopping power (RSP) in proton therapy may allow reducing range margins. Proton computed tomography (pCT) has been shown to provide state-of-the-art RSP accuracy estimation, and various scanner prototypes have recently been built. The different approaches used in scanner design are expected to impact spatial resolution and RSP accuracy. PURPOSE The goal of this study was to perform the first direct comparison, in terms of spatial resolution and RSP accuracy, of two pCT prototype scanners installed at the same facility and by using the same image reconstruction algorithm. METHODS A phantom containing cylindrical inserts of known RSP was scanned at the phase-II pCT prototype of the U.S. pCT collaboration and at the commercially oriented ProtonVDA scanner. Following distance-driven binning filtered backprojection reconstruction, the radial edge spread function of high-density inserts was used to estimate the spatial resolution. RSP accuracy was evaluated by the mean absolute percent error (MAPE) over the inserts. No direct imaging dose estimation was possible, which prevented a comparison of the two scanners in terms of RSP noise. RESULTS In terms of RSP accuracy, both scanners achieved the same MAPE of 0.72% when excluding the porous sinus insert from the evaluation. The ProtonVDA scanner reached a better overall MAPE when all inserts and the body of the phantom were accounted for (0.81%), compared to the phase-II scanner (1.14%). The spatial resolution with the phase-II scanner was found to be 0.61 lp/mm, while for the ProtonVDA scanner somewhat lower at 0.46 lp/mm. CONCLUSIONS The comparison between two prototype pCT scanners operated in the same clinical facility showed that they both fulfill the requirement of an RSP accuracy of about 1%. Their spatial resolution performance reflects the different design choices of either a scanner with full tracking capabilities (phase-II) or of a more compact tracker system which only provides the positions of protons but not their directions (ProtonVDA). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- G Dedes
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany
| | - H Drosten
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany
| | - S Götz
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany
| | - J Dickmann
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany
| | - C Sarosiek
- Department of Physics, Northern Illinois University, 1425 W. Lincoln Highway DeKalb, Illinois, IL, 60115, United States of America
| | - M Pankuch
- Northwestern Medicine Chicago Proton Center, 4455 Weaver Parkway, Warrenville, Illinois, IL, 60555, United States of America
| | - N Krah
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, LYON, F-69373, France
| | - S Rit
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, LYON, F-69373, France
| | - V Bashkirov
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, California, CA 92354, United States of America
| | - R W Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, California, CA 92354, United States of America
| | - R P Johnson
- Department of Physics, U.C. Santa Cruz, 1156 High Street Santa Cruz, California, CA, 95064, United States of America
| | - K Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany
| | - E DeJongh
- ProtonVDA LLC, 1700 Park Street STE 208, Naperville, Illinois, IL, 60563, United States of America
| | - G Landry
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, 81377, Germany.,German Cancer Consortium (DKTK), Munich, 81377, Germany
| |
Collapse
|
20
|
Darne CD, Robertson DG, Alsanea F, Collins-Fekete CA, Beddar S. A novel proton-integrating radiography system design using a monolithic scintillator detector: experimental studies. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2022; 1027:166077. [PMID: 35221402 PMCID: PMC8872121 DOI: 10.1016/j.nima.2021.166077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research on proton-based imaging systems aims to improve treatment planning, internal anatomy visualization, and patient alignment for proton radiotherapy. The purpose of this study was to demonstrate a new proton radiography system design consisting of a monolithic plastic scintillator volume and two optical cameras for use with scanning proton pencil beams. Unlike the thin scintillating plates currently used for proton radiography, the plastic scintillator volume (20 × 20 × 20 cm3) captures a wider distribution of proton beam energy depositions and avoids proton-beam modulation. The proton imaging system's characteristics were tested using image uniformity (2.6% over a 5 × 5 cm2 area), stability (0.37%), and linearity (R2 = 1) studies. We used the light distribution produced within the plastic scintillator to generate proton radiographs via two different approaches: (a) integrating light by using a camera placed along the beam axis, and (b) capturing changes to the proton Bragg peak positions with a camera placed perpendicularly to the beam axis. The latter method was used to plot and evaluate relative shifts in percentage depth light (PDL) profiles of proton beams with and without a phantom in the beam path. A curvelet minimization algorithm used differences in PDL profiles to reconstruct and refine the phantom water-equivalent thickness (WET) map. Gammex phantoms were used to compare the proton radiographs generated by these two methods. The relative accuracies in calculating WET of the phantoms using the calibration-based beam-integration (and the PDL) methods were -0.18 ± 0.35% (-0.29 ± 3.11%), -0.11 ± 0.51% (-0.15 ± 2.64%), -2.94 ± 1.20% (-0.75 ± 6.11%), and -1.65 ± 0.35% (0.36 ± 3.93%) for solid water, adipose, cortical bone, and PMMA, respectively. Further exploration of this unique multicamera-based imaging system is warranted and could lead to clinical applications that improve treatment planning and patient alignment for proton radiotherapy.
Collapse
Affiliation(s)
- Chinmay D Darne
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel G Robertson
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| | - Fahed Alsanea
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Götz S, Dickmann J, Rit S, Krah N, Khellaf F, Schulte RW, Parodi K, Dedes G, Landry G. Evaluation of the impact of a scanner prototype on proton CT and helium CT image quality and dose efficiency with Monte Carlo simulation. Phys Med Biol 2022; 67. [PMID: 35086073 DOI: 10.1088/1361-6560/ac4fa4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Objective.The use of ion computed tomography (CT) promises to yield improved relative stopping power (RSP) estimation as input to particle therapy treatment planning. Recently, proton CT (pCT) has been shown to yield RSP accuracy on par with state-of-the-art x-ray dual energy CT. There are however concerns that the lower spatial resolution of pCT compared to x-ray CT may limit its potential, which has spurred interest in the use of helium ion CT (HeCT). The goal of this study was to investigate image quality of pCT and HeCT in terms of noise, spatial resolution, RSP accuracy and imaging dose using a detailed Monte Carlo (MC) model of an existing ion CT prototype.Approach.Three phantoms were used in simulated pCT and HeCT scans allowing estimation of noise, spatial resolution and the scoring of dose. An additional phantom was used to evaluate RSP accuracy. The imaging dose required to achieve the same image noise in a water and a head phantom was estimated at both native spatial resolution, and in a scenario where the HeCT spatial resolution was reduced and matched to that of pCT using Hann windowing of the reconstruction filter. A variance reconstruction formalism was adapted to account for Hann windowing.Main results.We confirmed that the scanner prototype would produce higher spatial resolution for HeCT than pCT by a factor 1.8 (0.86 lp mm-1versus 0.48 lp mm-1at the center of a 20 cm water phantom). At native resolution, HeCT required a factor 2.9 more dose than pCT to achieve the same noise, while at matched resolution, HeCT required only 38% of the pCT dose. Finally, RSP mean absolute percent error (MAPE) was found to be 0.59% for pCT and 0.67% for HeCT.Significance.This work compared the imaging performance of pCT and HeCT when using an existing scanner prototype, with the spatial resolution advantage of HeCT coming at the cost of increased dose. When matching spatial resolution via Hann windowing, HeCT had a substantial dose advantage. Both modalities provided state-of-the-art RSP MAPE. HeCT might therefore help reduce the dose exposure of patients with comparable image noise to pCT, enhanced spatial resolution and acceptable RSP accuracy at the same time.
Collapse
Affiliation(s)
- S Götz
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany
| | - J Dickmann
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany
| | - S Rit
- University of Lyon, INSA-Lyon, Unversité Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, UMR 5220, U1294 F-69373, Lyon, France
| | - N Krah
- University of Lyon, INSA-Lyon, Unversité Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, UMR 5220, U1294 F-69373, Lyon, France.,IP2I, UMR 5822 F-69622, Villeurbanne, France
| | - F Khellaf
- University of Lyon, INSA-Lyon, Unversité Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, UMR 5220, U1294 F-69373, Lyon, France
| | - R W Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92354, United States of America
| | - K Parodi
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany
| | - G Dedes
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany
| | - G Landry
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany.,German Cancer Consortium (DKTK), D-81377 Munich, Germany
| |
Collapse
|
22
|
Dedes G, Dickmann J, Giacometti V, Rit S, Krah N, Meyer S, Bashkirov V, Schulte R, Johnson RP, Parodi K, Landry G. The role of Monte Carlo simulation in understanding the performance of proton computed tomography. Z Med Phys 2022; 32:23-38. [PMID: 32798033 PMCID: PMC9948882 DOI: 10.1016/j.zemedi.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/18/2020] [Accepted: 06/16/2020] [Indexed: 01/28/2023]
Abstract
Proton computed tomography (pCT) is a promising tomographic imaging modality allowing direct reconstruction of proton relative stopping power (RSP) required for proton therapy dose calculation. In this review article, we aim at highlighting the role of Monte Carlo (MC) simulation in pCT studies. After describing the requirements for performing proton computed tomography and the various pCT scanners actively used in recent research projects, we present an overview of available MC simulation platforms. The use of MC simulations in the scope of investigations of image reconstruction, and for the evaluation of optimal RSP accuracy, precision and spatial resolution omitting detector effects is then described. In the final sections of the review article, we present specific applications of realistic MC simulations of an existing pCT scanner prototype, which we describe in detail.
Collapse
Affiliation(s)
- George Dedes
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany.
| | - Jannis Dickmann
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany
| | - Valentina Giacometti
- The Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Northern Ireland Cancer Centre, Belfast, Northern Ireland, United Kingdom
| | - Simon Rit
- University of Lyon, CREATIS, CNRS UMR5220; Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Nils Krah
- University of Lyon, CREATIS, CNRS UMR5220; Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France; University of Lyon, Institute of Nuclear Physics Lyon (IPNL), CNRS UMR 5822, Villeurbanne, France
| | - Sebastian Meyer
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Vladimir Bashkirov
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States of America
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States of America
| | - Robert P Johnson
- Department of Physics, U. C. Santa Cruz, Santa Cruz, CA, United States of America
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, Department of Medical Physics, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium, (DKTK), Munich, Germany; Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany
| |
Collapse
|
23
|
Bär E, Volz L, Collins-Fekete CA, Brons S, Runz A, Schulte RW, Seco J. Experimental comparison of photon versus particle computed tomography to predict tissue relative stopping powers. Med Phys 2022; 49:474-487. [PMID: 34709667 DOI: 10.1002/mp.15283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Measurements comparing relative stopping power (RSP) accuracy of state-of-the-art systems representing single-energy and dual-energy computed tomography (SECT/DECT) with proton CT (pCT) and helium CT (HeCT) in biological tissue samples. METHODS We used 16 porcine and bovine samples of various tissue types and water, covering an RSP range from 0.90 ± 0.06 to 1.78 ± 0.05. Samples were packed and sealed into 3D-printed cylinders ( d = 2 cm, h = 5 cm) and inserted into an in-house designed cylindrical polymethyl methacrylate (PMMA) phantom ( d = 10 cm, h = 10 cm). We scanned the phantom in a commercial SECT and DECT (120 kV; 100 and 140 kV/Sn (tin-filtered)); and acquired pCT and HeCT ( E ∼ 200 MeV/u, 2 ∘ steps, ∼ 6.2 × 10 6 (p)/ ∼ 2.3 × 10 6 (He) particles/projection) with a particle imaging prototype. RSP maps were calculated from SECT/DECT using stoichiometric methods and from pCT/HeCT using the DROP-TVS algorithm. We estimated the average RSP of each tissue per modality in cylindrical volumes of interest and compared it to ground truth RSP taken from peak-detection measurements. RESULTS Throughout all samples, we observe the following root-mean-squared RSP prediction errors ± combined uncertainty from reference measurement and imaging: SECT 3.10 ± 2.88%, DECT 0.75 ± 2.80%, pCT 1.19 ± 2.81%, and HeCT 0.78 ± 2.81%. The largest mean errors ± combined uncertainty per modality are SECT 8.22 ± 2.79% in cortical bone, DECT 1.74 ± 2.00% in back fat, pCT 1.80 ± 4.27% in bone marrow, and HeCT 1.37 ± 4.25% in bone marrow. Ring artifacts were observed in both pCT and HeCT reconstructions, imposing a systematic shift to predicted RSPs. CONCLUSION Comparing state-of-the-art SECT/DECT technology and a pCT/HeCT prototype, DECT provided the most accurate RSP prediction, closely followed by particle imaging. The novel modalities pCT and HeCT have the potential to further improve on RSP accuracies with work focusing on the origin and correction of ring artifacts. Future work will study accuracy of proton treatment plans using RSP maps from investigated imaging modalities.
Collapse
Affiliation(s)
- Esther Bär
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, Radiotherapy Physics, London, UK
| | - Lennart Volz
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | | | - Stephan Brons
- Heidelberg Ion Beam Therapy Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Armin Runz
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | | | - Joao Seco
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Germany
| |
Collapse
|
24
|
DeJongh DF, DeJongh EA, Rykalin V, DeFillippo G, Pankuch M, Best AW, Coutrakon G, Duffin KL, Karonis NT, Ordoñez CE, Sarosiek C, Schulte RW, Winans JR, Block AM, Hentz CL, Welsh JS. A comparison of proton stopping power measured with proton CT and x-ray CT in fresh postmortem porcine structures. Med Phys 2021; 48:7998-8009. [PMID: 34739140 PMCID: PMC8678357 DOI: 10.1002/mp.15334] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/05/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Currently, calculations of proton range in proton therapy patients are based on a conversion of CT Hounsfield units of patient tissues into proton relative stopping power. Uncertainties in this conversion necessitate larger proximal and distal planned target volume margins. Proton CT can potentially reduce these uncertainties by directly measuring proton stopping power. We aim to demonstrate proton CT imaging with complex porcine samples, to analyze in detail three-dimensional regions of interest, and to compare proton stopping powers directly measured by proton CT to those determined from x-ray CT scans. METHODS We have used a prototype proton imaging system with single proton tracking to acquire proton radiography and proton CT images of a sample of porcine pectoral girdle and ribs, and a pig's head. We also acquired close in time x-ray CT scans of the same samples and compared proton stopping power measurements from the two modalities. In the case of the pig's head, we obtained x-ray CT scans from two different scanners and compared results from high-dose and low-dose settings. RESULTS Comparing our reconstructed proton CT images with images derived from x-ray CT scans, we find agreement within 1% to 2% for soft tissues and discrepancies of up to 6% for compact bone. We also observed large discrepancies, up to 40%, for cavitated regions with mixed content of air, soft tissue, and bone, such as sinus cavities or tympanic bullae. CONCLUSIONS Our images and findings from a clinically realistic proton CT scanner demonstrate the potential for proton CT to be used for low-dose treatment planning with reduced margins.
Collapse
Affiliation(s)
| | | | | | - Greg DeFillippo
- Northwestern Medicine Chicago Proton Center, Warrenville, Illinois, USA
| | - Mark Pankuch
- Northwestern Medicine Chicago Proton Center, Warrenville, Illinois, USA
| | - Andrew W Best
- Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
| | - George Coutrakon
- Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
| | - Kirk L Duffin
- Department of Computer Science, Northern Illinois University, DeKalb, Illinois, USA
| | - Nicholas T Karonis
- Department of Computer Science, Northern Illinois University, DeKalb, Illinois, USA
- Argonne National Laboratory, Data Science and Learning Division, Argonne, Illinois, USA
| | - Caesar E Ordoñez
- Department of Computer Science, Northern Illinois University, DeKalb, Illinois, USA
| | - Christina Sarosiek
- Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
| | | | - John R Winans
- Department of Computer Science, Northern Illinois University, DeKalb, Illinois, USA
| | - Alec M Block
- Edward Hines Jr. VA Medical Center, Radiation Oncology Service, Hines, Illinois, USA
- Department of Radiation Oncology, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Courtney L Hentz
- Edward Hines Jr. VA Medical Center, Radiation Oncology Service, Hines, Illinois, USA
- Department of Radiation Oncology, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - James S Welsh
- Edward Hines Jr. VA Medical Center, Radiation Oncology Service, Hines, Illinois, USA
- Department of Radiation Oncology, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
25
|
Volz L, Collins-Fekete CA, Bär E, Brons S, Graeff C, Johnson RP, Runz A, Sarosiek C, Schulte RW, Seco J. The accuracy of helium ion CT based particle therapy range prediction: an experimental study comparing different particle and x-ray CT modalities. Phys Med Biol 2021; 66:10.1088/1361-6560/ac33ec. [PMID: 34706355 PMCID: PMC8792995 DOI: 10.1088/1361-6560/ac33ec] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 11/12/2022]
Abstract
This work provides a quantitative assessment of helium ion CT (HeCT) for particle therapy treatment planning. For the first time, HeCT based range prediction accuracy in a heterogeneous tissue phantom is presented and compared to single-energy x-ray CT (SECT), dual-energy x-ray CT (DECT) and proton CT (pCT). HeCT and pCT scans were acquired using the US pCT collaboration prototype particle CT scanner at the Heidelberg Ion-Beam Therapy Center. SECT and DECT scans were done with a Siemens Somatom Definition Flash and converted to RSP. A Catphan CTP404 module was used to study the RSP accuracy of HeCT. A custom phantom of 20 cm diameter containing several tissue equivalent plastic cubes was used to assess the spatial resolution of HeCT and compare it to DECT. A clinically realistic heterogeneous tissue phantom was constructed using cranial slices from a pig head placed inside a cylindrical phantom (ø150 mm). A proton beam (84.67 mm range) depth-dose measurement was acquired using a stack of GafchromicTM EBT-XD films in a central dosimetry insert in the phantom. CT scans of the phantom were acquired with each modality, and proton depth-dose estimates were simulated based on the reconstructions. The RSP accuracy of HeCT for the plastic phantom was found to be 0.3 ± 0.1%. The spatial resolution for HeCT of the cube phantom was 5.9 ± 0.4 lp cm-1for central, and 7.6 ± 0.8 lp cm-1for peripheral cubes, comparable to DECT spatial resolution (7.7 ± 0.3 lp cm-1and 7.4 ± 0.2 lp cm-1, respectively). For the pig head, HeCT, SECT, DECT and pCT predicted range accuracy was 0.25%, -1.40%, -0.45% and 0.39%, respectively. In this study, HeCT acquired with a prototype system showed potential for particle therapy treatment planning, offering RSP accuracy, spatial resolution, and range prediction accuracy comparable to that achieved with a commercial DECT scanner. Still, technical improvements of HeCT are needed to enable clinical implementation.
Collapse
Affiliation(s)
- L Volz
- Department of Biomedical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - C-A Collins-Fekete
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - E Bär
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - S Brons
- Heidelberg Ion-Beam Therapy Center, Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - C Graeff
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - R P Johnson
- Department of Physics, University of California at Santa Cruz, Santa Cruz, United States of America
| | - A Runz
- Department of Medical Physics in Radiation Therapy, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - C Sarosiek
- Department of Physics, Northern Illinois University, DeKalb, United States of America
| | - R W Schulte
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, United States of America
| | - J Seco
- Department of Biomedical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Paganetti H, Botas P, Sharp GC, Winey B. Adaptive proton therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac344f. [PMID: 34710858 PMCID: PMC8628198 DOI: 10.1088/1361-6560/ac344f] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
Radiation therapy treatments are typically planned based on a single image set, assuming that the patient's anatomy and its position relative to the delivery system remains constant during the course of treatment. Similarly, the prescription dose assumes constant biological dose-response over the treatment course. However, variations can and do occur on multiple time scales. For treatment sites with significant intra-fractional motion, geometric changes happen over seconds or minutes, while biological considerations change over days or weeks. At an intermediate timescale, geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied to consider changes in patient anatomy during the course of fractionated treatment delivery. While traditionally adaptation has been done off-line with replanning based on new CT images, online treatment adaptation based on on-board imaging has gained momentum in recent years due to advanced imaging techniques combined with treatment delivery systems. Adaptation is particularly important in proton therapy where small changes in patient anatomy can lead to significant dose perturbations due to the dose conformality and finite range of proton beams. This review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies areas requiring further research.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Botas
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Foundation 29 of February, Pozuelo de Alarcón, Madrid, Spain
| | - Gregory C Sharp
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
27
|
Pettersen HES, Aehle M, Alme J, Barnaföldi GG, Borshchov V, van den Brink A, Chaar M, Eikeland V, Feofilov G, Garth C, Gauger NR, Genov G, Grøttvik O, Helstrup H, Igolkin S, Keidel R, Kobdaj C, Kortus T, Leonhardt V, Mehendale S, Mulawade RN, Odland OH, Papp G, Peitzmann T, Piersimoni P, Protsenko M, Rehman AU, Richter M, Santana J, Schilling A, Seco J, Songmoolnak A, Sølie JR, Tambave G, Tymchuk I, Ullaland K, Varga-Kofarago M, Volz L, Wagner B, Wendzel S, Wiebel A, Xiao R, Yang S, Yokoyama H, Zillien S, Röhrich D. Investigating particle track topology for range telescopes in particle radiography using convolutional neural networks. Acta Oncol 2021; 60:1413-1418. [PMID: 34259117 DOI: 10.1080/0284186x.2021.1949037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Proton computed tomography (pCT) and radiography (pRad) are proposed modalities for improved treatment plan accuracy and in situ treatment validation in proton therapy. The pCT system of the Bergen pCT collaboration is able to handle very high particle intensities by means of track reconstruction. However, incorrectly reconstructed and secondary tracks degrade the image quality. We have investigated whether a convolutional neural network (CNN)-based filter is able to improve the image quality. MATERIAL AND METHODS The CNN was trained by simulation and reconstruction of tens of millions of proton and helium tracks. The CNN filter was then compared to simple energy loss threshold methods using the Area Under the Receiver Operating Characteristics curve (AUROC), and by comparing the image quality and Water Equivalent Path Length (WEPL) error of proton and helium radiographs filtered with the same methods. RESULTS The CNN method led to a considerable improvement of the AUROC, from 74.3% to 97.5% with protons and from 94.2% to 99.5% with helium. The CNN filtering reduced the WEPL error in the helium radiograph from 1.03 mm to 0.93 mm while no improvement was seen in the CNN filtered pRads. CONCLUSION The CNN improved the filtering of proton and helium tracks. Only in the helium radiograph did this lead to improved image quality.
Collapse
Affiliation(s)
| | - Max Aehle
- Chair for Scientific Computing, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Johan Alme
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | | | | | | | - Mamdouh Chaar
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Viljar Eikeland
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Grigory Feofilov
- Department of High Energy and Elementary Particles Physics, St. Petersburg University, St. Petersburg, Russia
| | - Christoph Garth
- Scientific Visualization Lab, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Nicolas R. Gauger
- Chair for Scientific Computing, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Georgi Genov
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Ola Grøttvik
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Håvard Helstrup
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Sergey Igolkin
- Department of High Energy and Elementary Particles Physics, St. Petersburg University, St. Petersburg, Russia
| | - Ralf Keidel
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Chinorat Kobdaj
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Tobias Kortus
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Viktor Leonhardt
- Scientific Visualization Lab, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Shruti Mehendale
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Raju Ningappa Mulawade
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Odd Harald Odland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Gábor Papp
- Institute for Physics, Eötvös Loránd University, Budapest, Hungary
| | - Thomas Peitzmann
- Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
| | | | - Maksym Protsenko
- Research and Production Enterprise “LTU” (RPE LTU), Kharkiv, Ukraine
| | - Attiq Ur Rehman
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | | | - Joshua Santana
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Alexander Schilling
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Joao Seco
- Department of Biomedical Physics in Radiation Oncology, DKFZ-German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Arnon Songmoolnak
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jarle Rambo Sølie
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ganesh Tambave
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Ihor Tymchuk
- Research and Production Enterprise “LTU” (RPE LTU), Kharkiv, Ukraine
| | - Kjetil Ullaland
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | | | - Lennart Volz
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Boris Wagner
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Steffen Wendzel
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Alexander Wiebel
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - RenZheng Xiao
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- College of Mechanical & Power Engineering, China Three Gorges University, Yichang, People’s Republic of China
| | - Shiming Yang
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Hiroki Yokoyama
- Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
| | - Sebastian Zillien
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Germany
| | - Dieter Röhrich
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Tanaka S, Miyamoto N, Matsuo Y, Yoshimura T, Takao S, Matsuura T. First experimental results of gated proton imaging using x-ray fluoroscopy to detect a fiducial marker. Phys Med Biol 2021; 66. [PMID: 34433146 DOI: 10.1088/1361-6560/ac212b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Increasing numbers of proton imaging research studies are being conducted for accurate proton range determination in proton therapy treatment planning. However, there is no proton imaging system that deals with motion artifacts. In this study, a gated proton imaging system was developed and the first experimental results of proton radiography (pRG) were obtained for a moving object without motion artifacts. A motion management system using dual x-ray fluoroscopy for detecting a spherical gold fiducial marker was introduced and the proton beam was gated in accordance with the motion of the object. To demonstrate the performance of the gated proton imaging system, gated pRG images of a moving phantom were acquired experimentally, and the motion artifacts clearly were diminished. Also, the factors causing image deteriorations were evaluated focusing on the new gating system developed here, and the main factor was identified as the latency (with a maximum value of 93 ms) between the ideal gating signal according to the actual marker position and the actual gating signal. The possible deterioration due to the latency of the proton imaging system and proton beam irradiation was small owing to appropriate setting of the time structure.
Collapse
Affiliation(s)
- Sodai Tanaka
- Institute for Quantum Medical Science, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, 263-8555, Japan
| | - Naoki Miyamoto
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yuto Matsuo
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8648, Japan
| | - Takaaki Yoshimura
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Seishin Takao
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
29
|
Colombi S, Rovituso M, Scifoni E, Schuy C, Eichhorn A, Kraemer M, Durante M, La Tessa C. Interaction of therapeutic 12C ions with bone-like targets: physical characterization and dosimetric effect at material interfaces. Phys Med Biol 2021; 66. [PMID: 34438376 DOI: 10.1088/1361-6560/ac215f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Carbon therapy is a promising treatment option for cancer. The physical and biological properties of carbon ions can theoretically allow for the delivery of curative doses to the tumor, while simultaneously limiting risks of toxicity to adjacent healthy structures. The treatment effectiveness can be further improved by decreasing the uncertainties stemming from several sources, including the modeling of tissue heterogeneity. Current treatment plans employ density-based conversion methods to translate patient-specific anatomy into a water system, where dose distribution is calculated. This approach neglects differences in nuclear interactions stemming from the elemental composition of each tissue. In this work, we investigated the interaction of therapeutic carbon ions with bone-like materials. The study concentrated on nuclear interactions and included attenuation curves of 200 and 400 AMeV beams in different types of bones, as well as kinetic energy spectra of all charged fragments produced up to 29 degrees from the beam direction. The comparison between measurements and calculations of the treatment planning system TRiP98 indicated that bone tissue causes less fragmentation of carbon ions than water. Overall, hydrogen and helium particles were found to be the most abundant species, while heavier fragments were mostly detected within 5 degrees from the beam direction. We also investigated how the presence of a soft tissue-bone interface could affect the depth-dose profile. The results revealed a dose spike in the transition region, that extended from the entry channel to the target volume. The findings of this work indicated that the tissue-to-water conversion method based only on density considerations can result in dose inaccuracies. Tissue heterogeneity regions containing bones can potentially produce dose spikes, whose magnitude will depend on the patient anatomy. Dose uncertainties can be decreased by modeling nuclear interactions directly in bones, without applying the tissue-to-water conversion.
Collapse
Affiliation(s)
- S Colombi
- University of Trento, Via Sommarive 14, I-38123 Trento, Italy.,Trento Institute of Fundamental Physics and Applications (TIFPA), Via Sommarive 14, I-38123 Trento, Italy
| | - M Rovituso
- HollandPTC Proton Therapy Center, Delft, The Netherlands
| | - E Scifoni
- Trento Institute of Fundamental Physics and Applications (TIFPA), Via Sommarive 14, I-38123 Trento, Italy
| | - C Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany
| | | | - M Kraemer
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany
| | - M Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | - C La Tessa
- University of Trento, Via Sommarive 14, I-38123 Trento, Italy.,Trento Institute of Fundamental Physics and Applications (TIFPA), Via Sommarive 14, I-38123 Trento, Italy
| |
Collapse
|
30
|
Tattenberg S, Madden TM, Gorissen BL, Bortfeld T, Parodi K, Verburg J. Proton range uncertainty reduction benefits for skull base tumors in terms of normal tissue complication probability (NTCP) and healthy tissue doses. Med Phys 2021; 48:5356-5366. [PMID: 34260085 DOI: 10.1002/mp.15097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Proton therapy allows for more conformal dose distributions and lower organ at risk and healthy tissue doses than conventional photon-based radiotherapy, but uncertainties in the proton range currently prevent proton therapy from making full use of these advantages. Numerous developments therefore aim to reduce such range uncertainties. In this work, we quantify the benefits of reductions in range uncertainty for treatments of skull base tumors. METHODS The study encompassed 10 skull base patients with clival tumors. For every patient, six treatment plans robust to setup errors of 2 mm and range errors from 0% to 5% were created. The determined metrics included the brainstem and optic chiasm normal tissue complication probability (NTCP) with the endpoints of necrosis and blindness, respectively, as well as the healthy tissue volume receiving at least 70% of the prescription dose. RESULTS A range uncertainty reduction from the current level of 4% to a potentially achievable level of 1% reduced the probability of brainstem necrosis by up to 1.3 percentage points in the nominal scenario in which neither setup nor range errors occur and by up to 2.9 percentage points in the worst-case scenario. Such a range uncertainty reduction also reduced the optic chiasm NTCP with the endpoint of blindness by up to 0.9 percentage points in the nominal scenario and by up to 2.2 percentage points in the worst-case scenario. The decrease in the healthy tissue volume receiving at least 70% of the prescription dose ranged from -7.8 to 24.1 cc in the nominal scenario and from -3.4 to 38.4 cc in the worst-case scenario. CONCLUSION The benefits quantified as part of this study serve as a guideline of the OAR and healthy tissue dose benefits that range monitoring techniques may be able to achieve. Benefits were observed between all levels of range uncertainty. Even smaller range uncertainty reductions may therefore be beneficial.
Collapse
Affiliation(s)
- Sebastian Tattenberg
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas M Madden
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bram L Gorissen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Joost Verburg
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Bär E, Collins-Fekete CA, Rompokos V, Zhang Y, Gaze MN, Warry A, Poynter A, Royle G. Assessment of the impact of CT calibration procedures for proton therapy planning on pediatric treatments. Med Phys 2021; 48:5202-5218. [PMID: 34174092 DOI: 10.1002/mp.15062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Relative stopping powers (RSPs) for proton therapy are estimated using single-energy computed tomography (SECT), calibrated with standardized tissues of the adult male. It is assumed that those tissues are representative of tissues of all age and sex. Female, male, and pediatric tissues differ from one another in density and composition. In this study, we use tabulated pediatric tissues and computational phantoms to investigate the impact of this assumption on pediatric proton therapy. The potential of dual-energy CT (DECT) to improve the accuracy of these calculations is explored. METHODS We study 51 human body tissues, categorized into male/female for the age groups newborn, 1-, 5-, 10-, and 15-year-old children, and adult, with given compositions and densities. CT numbers are simulated and RSPs are estimated using SECT and DECT methods. Estimated tissue RSPs from each method are compared to theoretical RSPs. The dose and range errors of each approach are evaluated on three computational phantoms (Ewing's sarcoma, salivary sarcoma, and glioma) derived from pediatric proton therapy patients. RESULTS With SECT, soft tissues have mean estimation errors and standard deviation up to (1.96 ± 4.18)% observed in newborns, compared to (0.20 ± 1.15)% in adult males. Mean estimation errors for bones are up to (-3.35 ± 4.76)% in pediatrics as opposed to (0.10 ± 0.66)% in adult males. With DECT, mean errors reduce to (0.17 ± 0.13)% and (0.23 ± 0.22)% in newborns (soft tissues/bones). With SECT, dose errors in a Ewing's sarcoma phantom are exceeding 5 Gy (10% of prescribed dose) at the distal end of the treatment field, with volumes of dose errors >5 Gy ofV diff > 5 = 4630.7 mm3 . Similar observations are made in the head and neck phantoms, with overdoses to healthy tissue exceeding 2 Gy (4%). A systematic Bragg peak shift resulting in either over- or underdosage of healthy tissues and target volumes depending on the crossed tissues RSP prediction errors is observed. Water equivalent range errors of single beams are between -1.53 and 5.50 mm (min, max) (Ewing's sarcoma phantom), -0.78 and 3.62 mm (salivary sarcoma phantom), and -0.43 and 1.41 mm (glioma phantom). DECT can reduce dose errors to <1 Gy and range errors to <1 mm. CONCLUSION Single-energy computed tomography estimates RSPs for pediatric tissues with systematic shifts. DECT improves the accuracy of RSPs and dose distributions in pediatric tissues compared to the SECT calibration curve based on adult male tissues.
Collapse
Affiliation(s)
- Esther Bär
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | | | - Vasilis Rompokos
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ying Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Alison Warry
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - Andrew Poynter
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
32
|
Dickmann J, Sarosiek C, Götz S, Pankuch M, Coutrakon G, Johnson RP, Schulte RW, Parodi K, Landry G, Dedes G. An empirical artifact correction for proton computed tomography. Phys Med 2021; 86:57-65. [PMID: 34058718 DOI: 10.1016/j.ejmp.2021.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To reduce image artifacts of proton computed tomography (pCT) from a preclinical scanner, for imaging of the relative stopping power (RSP) needed for particle therapy treatment planning using a simple empirical artifact correction method. METHODS We adapted and employed a correction method previously used for beam-hardening correction in x-ray CT which makes use of a single scan of a custom-built homogeneous phantom with known RSP. Exploiting the linearity of the filtered backprojection operation, a function was found which corrects water-equivalent path lengths (RSP line integrals) in experimental scans using a prototype pCT scanner. The correction function was applied to projection values of subsequent scans of a homogeneous water phantom, a sensitometric phantom with various inserts and an anthropomorphic head phantom. Data were acquired at two different incident proton energies to test the robustness of the method. RESULTS Inaccuracies in the detection process caused an offset and known ring artifacts in the water phantom which were considerably reduced using the proposed method. The mean absolute percentage error (MAPE) of mean RSP values of all inserts of the sensitometric phantom and the water phantom was reduced from 0.87% to 0.44% and from 0.86% to 0.48% for the two incident energies respectively. In the head phantom a clear reduction of artifacts was observed. CONCLUSIONS Image artifacts of experimental pCT scans with a prototype scanner could substantially be reduced both in homogeneous, heterogeneous and anthropomorphic phantoms. RSP accuracy was also improved.
Collapse
Affiliation(s)
- Jannis Dickmann
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), Am Coulombwall 1, Garching bei München, Germany.
| | - Christina Sarosiek
- Department of Physics, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, Illinois, United States.
| | - Stefanie Götz
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), Am Coulombwall 1, Garching bei München, Germany.
| | - Mark Pankuch
- Northwestern Medicine Chicago Proton Center, 4455 Weaver Parkway, Warrenville, Illinois, United States.
| | - George Coutrakon
- Department of Physics, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, Illinois, United States.
| | - Robert P Johnson
- Department of Physics, U.C. Santa Cruz, 1156 High Street, Santa Cruz, California, United States.
| | - Reinhard W Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, 11175 Campus Street, Loma Linda, California, United States.
| | - Katia Parodi
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), Am Coulombwall 1, Garching bei München, Germany.
| | - Guillaume Landry
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), Am Coulombwall 1, Garching bei München, Germany; Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, Germany; German Cancer Consortium (DKTK), Marchioninistraße 15, Munich, Germany.
| | - George Dedes
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), Am Coulombwall 1, Garching bei München, Germany.
| |
Collapse
|
33
|
Meyer S, Pinto M, Parodi K, Gianoli C. The impact of path estimates in iterative ion CT reconstructions for clinical-like cases. Phys Med Biol 2021; 66. [PMID: 33765672 DOI: 10.1088/1361-6560/abf1ff] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/25/2021] [Indexed: 11/11/2022]
Abstract
Ion computed tomography (CT) promises to mitigate range uncertainties inherent in the conversion of x-ray Hounsfield units into ion relative stopping power (RSP) for ion beam therapy treatment planning. To improve accuracy and spatial resolution of ion CT by accounting for statistical multiple Coulomb scattering deflection of the ion trajectories from a straight line path (SLP), the most likely path (MLP) and the cubic spline path (CSP) have been proposed. In this work, we use FLUKA Monte Carlo simulations to investigate the impact of these path estimates in iterative tomographic reconstruction algorithms for proton, helium and carbon ions. To this end the ordered subset simultaneous algebraic reconstruction technique was used and coupled with a total variation superiorization (TVS). We evaluate the image quality and dose calculation accuracy in proton therapy treatment planning of cranial patient anatomies. CSP and MLP generally yielded nearly equal image quality with an average RSP relative error improvement over the SLP of 0.6%, 0.3% and 0.3% for proton, helium and carbon ion CT, respectively. Bone and low density materials have been identified as regions of largest enhancement in RSP accuracy. Nevertheless, only minor differences in dose calculation results were observed between the different models and relative range errors of better than 0.5% were obtained in all cases. Largest improvements were found for proton CT in complex scenarios with strong heterogeneities along the beam path. The additional TVS provided substantially reduced image noise, resulting in improved image quality in particular for soft tissue regions. Employing the CSP and MLP for iterative ion CT reconstructions enabled improved image quality over the SLP even in realistic and heterogeneous patient anatomy. However, only limited benefit in dose calculation accuracy was obtained even though an ideal detector system was simulated.
Collapse
Affiliation(s)
- Sebastian Meyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany
| | - Marco Pinto
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany.,Shared senior authorship
| | - Chiara Gianoli
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany.,Shared senior authorship
| |
Collapse
|
34
|
Niepel KB, Stanislawski M, Wuerl M, Doerringer F, Pinto M, Dietrich O, Ertl-Wagner B, Lalonde A, Bouchard H, Pappas E, Yohannes I, Hillbrand M, Landry G, Parodi K. Animal tissue-based quantitative comparison of dual-energy CT to SPR conversion methods using high-resolution gel dosimetry. Phys Med Biol 2021; 66. [DOI: 10.1088/1361-6560/abbd14] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
|
35
|
Dickmann J, Kamp F, Hillbrand M, Corradini S, Belka C, Schulte RW, Parodi K, Dedes G, Landry G. Fluence-modulated proton CT optimized with patient-specific dose and variance objectives for proton dose calculation. Phys Med Biol 2021; 66:064001. [PMID: 33545701 DOI: 10.1088/1361-6560/abe3d2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Particle therapy treatment planning requires accurate volumetric maps of the relative stopping power, which can directly be acquired using proton computed tomography (pCT). With fluence-modulated pCT (FMpCT) imaging fluence is concentrated in a region-of-interest (ROI), which can be the vicinity of the treatment beam path, and imaging dose is reduced elsewhere. In this work we present a novel optimization algorithm for FMpCT which, for the first time, calculates modulated imaging fluences for joint imaging dose and image variance objectives. Thereby, image quality is maintained in the ROI to ensure accurate calculations of the treatment dose, and imaging dose is minimized outside the ROI with stronger minimization penalties given to imaging organs-at-risk. The optimization requires an initial scan at uniform fluence or a previous x-ray CT scan. We simulated and optimized FMpCT images for three pediatric patients with tumors in the head region. We verified that the target image variance inside the ROI was achieved and demonstrated imaging dose reductions outside of the ROI of 74% on average, reducing the imaging dose from 1.2 to 0.3 mGy. Such dose savings are expected to be relevant compared to the therapeutic dose outside of the treatment field. Treatment doses were re-calculated on the FMpCT images and compared to treatment doses re-recalculated on uniform fluence pCT scans using a 1% criterion. Passing rates were above 98.3% for all patients. Passing rates comparing FMpCT treatment doses to the ground truth treatment dose were above 88.5% for all patients. Evaluation of the proton range with a 1 mm criterion resulted in passing rates above 97.5% (FMpCT/pCT) and 95.3% (FMpCT/ground truth). Jointly optimized fluence-modulated pCT images can be used for proton dose calculation maintaining the full dosimetric accuracy of pCT but reducing the required imaging dose considerably by three quarters. This may allow for daily imaging during particle therapy ensuring a safe and accurate delivery of the therapeutic dose and avoiding excess dose from imaging.
Collapse
Affiliation(s)
- J Dickmann
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Farace P, Tommasino F, Righetto R, Fracchiolla F, Scaringella M, Bruzzi M, Civinini C. Technical Note: CT calibration for proton treatment planning by cross-calibration with proton CT data. Med Phys 2021; 48:1349-1355. [PMID: 33382083 DOI: 10.1002/mp.14698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This study explores the possibility of a new method for x-ray computed tomography (CT) calibration by means of cross-calibration with proton CT (pCT) data. The proposed method aims at a more accurate conversion of CT Hounsfield Units (HU) into proton stopping power ratio (SPR) relative to water to be used in proton-therapy treatment planning. METHODS X-ray CT scan was acquired on a synthetic anthropomorphic phantom, composed of different tissue equivalent materials (TEMs). A pCT apparatus was instead adopted to obtain a reference three-dimensional distribution of the phantom's SPR values. After rigid registration, the x-ray CT was artificially blurred to the same resolution of pCT. Then a scatter plot showing voxel-by-voxel SPR values as a function of HU was employed to link the two measurements and thus obtaining a cross-calibrated x-ray CT calibration curve. The cross-calibration was tested at treatment planning system and then compared with a conventional calibration based on exactly the same TEMs constituting the anthropomorphic phantom. RESULTS Cross-calibration provided an accurate SPR mapping, better than by conventional TEMs calibration. The dose distribution of single beams optimized on the reference SPR map was recomputed on cross-calibrated CT, showing, with respect to conventional calibration, minor deviation at the dose fall-off (lower than 1%). CONCLUSIONS The presented data demonstrated that, by means of reference pCT data, a heterogeneous phantom can be used for CT calibration, paving the way to the use of biological samples, with their accurate description of patients' tissues. This overcomes the limitations of conventional CT calibration requiring homogenous samples, only available by synthetic TEMs, which fail in accurately mimicking the properties of biological tissues. Once a heterogeneous biological sample is provided with its corresponding reference SPR maps, a cross-calibration procedure could be adopted by other PT centers, even when not equipped with a pCT system.
Collapse
Affiliation(s)
- Paolo Farace
- Protontherapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy.,Istituto Nazionale di Fisica Nucleare TIFPA, via Sommarive, 14, Trento, Italy
| | - Francesco Tommasino
- Istituto Nazionale di Fisica Nucleare TIFPA, via Sommarive, 14, Trento, Italy.,Department of Physics, University of Trento, via Sommarive, 14, Trento, Italy
| | - Roberto Righetto
- Protontherapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy.,Istituto Nazionale di Fisica Nucleare TIFPA, via Sommarive, 14, Trento, Italy
| | - Francesco Fracchiolla
- Protontherapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy.,Istituto Nazionale di Fisica Nucleare TIFPA, via Sommarive, 14, Trento, Italy
| | - Monica Scaringella
- Istituto Nazionale di Fisica Nucleare sezione di Firenze, Via G. Sansone 1, Sesto Fiorentino, Italy
| | - Mara Bruzzi
- Istituto Nazionale di Fisica Nucleare sezione di Firenze, Via G. Sansone 1, Sesto Fiorentino, Italy.,Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via G. Sansone 1, Sesto Fiorentino, Italy
| | - Carlo Civinini
- Istituto Nazionale di Fisica Nucleare sezione di Firenze, Via G. Sansone 1, Sesto Fiorentino, Italy
| |
Collapse
|
37
|
Meijers A, Seller Oria C, Free J, Langendijk JA, Knopf AC, Both S. Technical Note: First report on an in vivo range probing quality control procedure for scanned proton beam therapy in head and neck cancer patients. Med Phys 2021; 48:1372-1380. [PMID: 33428795 DOI: 10.1002/mp.14713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The capability of proton therapy to provide highly conformal dose distributions is impaired by range uncertainties. The aim of this work is to apply range probing (RP), a form of a proton radiography-based quality control (QC) procedure for range accuracy assessment in head and neck cancer (HNC) patients in a clinical setting. METHODS AND MATERIALS This study included seven HNC patients. RP acquisition was performed using a multi-layer ionization chamber (MLIC). Per patient, two RP frames were acquired within the first two weeks of treatment, on days when a repeated CT scan was obtained. Per RP frame, integral depth dose (IDD) curves of 81 spots around the treatment isocenter were acquired. Range errors are determined as a discrepancy between calculated IDDs in the treatment planning system and measured residual ranges by the MLIC. Range errors are presented relative to the water equivalent path length of individual proton spots. In addition to reporting results for complete measurement frames, an analysis, excluding range error contributions due to anatomical changes, is presented. RESULTS Discrepancies between measured and calculated ranges are smaller when performing RP calculations on the day-specific patient anatomy rather than the planning CT. The patient-specific range evaluation shows an agreement between calculated and measured ranges for spots in anatomically consistent areas within 3% (1.5 standard deviation). CONCLUSIONS The results of an RP-based QC procedure implemented in the clinical practice for HNC patients have been demonstrated. The agreement of measured and simulated proton ranges confirms the 3% uncertainty margin for robust optimization. Anatomical variations show a predominant effect on range accuracy, motivating efforts towards the implementation of adaptive radiotherapy.
Collapse
Affiliation(s)
- Arturs Meijers
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Carmen Seller Oria
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jeffrey Free
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Antje C Knopf
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Division for Medical Radiation Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Pettersen HES, Volz L, Sølie JR, Alme J, Barnaföldi GG, Barthel R, van den Brink A, Borshchov V, Chaar M, Eikeland V, Genov G, Grøttvik O, Helstrup H, Keidel R, Kobdaj C, van der Kolk N, Mehendale S, Meric I, Harald Odland O, Papp G, Peitzmann T, Piersimoni P, Protsenko M, Ur Rehman A, Richter M, Tefre Samnøy A, Seco J, Shafiee H, Songmoolnak A, Tambave G, Tymchuk I, Ullaland K, Varga-Kofarago M, Wagner B, Xiao R, Yang S, Yokoyama H, Röhrich D. Helium radiography with a digital tracking calorimeter-a Monte Carlo study for secondary track rejection. Phys Med Biol 2021; 66:035004. [PMID: 33181502 DOI: 10.1088/1361-6560/abca03] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radiation therapy using protons and heavier ions is a fast-growing therapeutic option for cancer patients. A clinical system for particle imaging in particle therapy would enable online patient position verification, estimation of the dose deposition through range monitoring and a reduction of uncertainties in the calculation of the relative stopping power of the patient. Several prototype imaging modalities offer radiography and computed tomography using protons and heavy ions. A Digital Tracking Calorimeter (DTC), currently under development, has been proposed as one such detector. In the DTC 43 longitudinal layers of laterally stacked ALPIDE CMOS monolithic active pixel sensor chips are able to reconstruct a large number of simultaneously recorded proton tracks. In this study, we explored the capability of the DTC for helium imaging which offers favorable spatial resolution over proton imaging. Helium ions exhibit a larger cross section for inelastic nuclear interactions, increasing the number of produced secondaries in the imaged object and in the detector itself. To that end, a filtering process able to remove a large fraction of the secondaries was identified, and the track reconstruction process was adapted for helium ions. By filtering on the energy loss along the tracks, on the incoming angle and on the particle ranges, 97.5% of the secondaries were removed. After passing through 16 cm water, 50.0% of the primary helium ions survived; after the proposed filtering 42.4% of the primaries remained; finally after subsequent image reconstruction 31% of the primaries remained. Helium track reconstruction leads to more track matching errors compared to protons due to the increased available focus strength of the helium beam. In a head phantom radiograph, the Water Equivalent Path Length error envelope was 1.0 mm for helium and 1.1 mm for protons. This accuracy is expected to be sufficient for helium imaging for pre-treatment verification purposes.
Collapse
|
39
|
Dickmann J, Sarosiek C, Rykalin V, Pankuch M, Coutrakon G, Johnson RP, Bashkirov V, Schulte RW, Parodi K, Landry G, Dedes G. Proof of concept image artifact reduction by energy-modulated proton computed tomography (EMpCT). Phys Med 2021; 81:237-244. [DOI: 10.1016/j.ejmp.2020.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022] Open
|
40
|
Tanaka S, Noto Y, Utsunomiya S, Yoshimura T, Matsuura T, Saito M. Proton dose calculation based on converting dual-energy CT data to stopping power ratio (DEEDZ-SPR): a beam-hardening assessment. ACTA ACUST UNITED AC 2020; 65:235046. [DOI: 10.1088/1361-6560/abae09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Civinini C, Scaringella M, Brianzi M, Intravaia M, Randazzo N, Sipala V, Rovituso M, Tommasino F, Schwarz M, Bruzzi M. Relative stopping power measurements and prosthesis artifacts reduction in proton CT. ACTA ACUST UNITED AC 2020; 65:225012. [DOI: 10.1088/1361-6560/abb0c8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Dickmann J, Sarosiek C, Rykalin V, Pankuch M, Rit S, Detrich N, Coutrakon G, Johnson RP, Schulte RW, Parodi K, Landry G, Dedes G. Experimental realization of dynamic fluence field optimization for proton computed tomography. ACTA ACUST UNITED AC 2020; 65:195001. [DOI: 10.1088/1361-6560/ab9f5f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Meyer S, Bortfeldt J, Lämmer P, Englbrecht FS, Pinto M, Schnürle K, Würl M, Parodi K. Optimization and performance study of a proton CT system for pre-clinical small animal imaging. ACTA ACUST UNITED AC 2020; 65:155008. [DOI: 10.1088/1361-6560/ab8afc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Fellin F, Artoni M, Righetto R, Bellinzona VE, Widesott L, Dionisi F, Farace P. An avoidance method to minimize dose perturbation effects in proton pencil beam scanning treatment of patients with small high-Z implants. Phys Med Biol 2020; 65:14NT01. [PMID: 32464619 DOI: 10.1088/1361-6560/ab9775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To implement a multi-field-optimization (MFO) technique for treating patients with high-Z implants in pencil beam scanning proton-therapy and generate treatment plans that avoids small implants. Two main issues were addressed: (i) the assessment of the optimal CT acquisition and segmentation technique to define the dimension of the implant and (ii) the distance of pencil beams from the implant (avoidance margin) to assure that it does not affect dose distribution. Different CT reconstruction protocols (by O-MAR or standard reconstruction and by 12 bit or 16 bit dynamic range) followed by thresholding segmentation were tested on a phantom with lead spheres of different sizes. The proper avoidance margin was assessed on a dedicated phantoms of different materials (copper/tantalum and lead), shape (square slabs and spheres) and detectors (two-dimensional array chamber and radio-chromic films). The method was then demonstrated on a head-and-neck carcinoma patient, who underwent carotid artery embolization with a platinum coil close to the target. Regardless the application of O-MAR reconstruction, the CT protocol with a full 16 bit dynamic range allowed better estimation of the sphere volumes, with maximal error around -5% in the greater sphere only. Except the configuration with a shallow target (which required a pre-absorber), particularly with a retracted snout, an avoidance margin of around 0.9-1.3 cm allowed to keep the difference between planned and measured dose below 5-10%. The patient plan analysis showed adequate plan quality and confirmed effective implant avoidance. Potential target under-dosage can be produced by patient misalignment, which could be minimized by daily alignment on the implant, identifiable on orthogonal kilovolt images. By implant avoidance MFO it was possible to minimize potential dose perturbation effects produced by small high-Z implants. An advantage of such approach lies in its potential applicability for any type of implant, regardless the precise knowledge of its composition.
Collapse
|
45
|
Rambo Sølie J, Volz L, Egil Seime Pettersen H, Piersimoni P, Harald Odland O, Röhrich D, Helstrup H, Peitzmann T, Ullaland K, Varga-Kofarago M, Mehendale S, Slettevoll Grøttvik O, Nilsen Eikeland V, Meric I, Seco J. Image quality of list-mode proton imaging without front trackers. ACTA ACUST UNITED AC 2020; 65:135012. [DOI: 10.1088/1361-6560/ab8ddb] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Volz L, Collins-Fekete CA, Sølie JR, Seco J. Theoretical considerations on the spatial resolution limit of single-event particle radiography. Biomed Phys Eng Express 2020; 6:055002. [DOI: 10.1088/2057-1976/ab9c3f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Dickmann J, Rit S, Pankuch M, Johnson RP, Schulte RW, Parodi K, Dedes G, Landry G. An optimization algorithm for dose reduction with fluence‐modulated proton CT. Med Phys 2020; 47:1895-1906. [DOI: 10.1002/mp.14084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 01/12/2023] Open
Affiliation(s)
- J. Dickmann
- Department of Medical Physics Faculty of Physics Ludwig‐Maximilians‐Universität München Am Coulombwall 1 85748 Garching b. München Germany
| | - S. Rit
- Univ Lyon INSA‐Lyon Université Claude Bernard Lyon 1 UJM‐Saint Étienne CNRS, Inserm CREATIS UMR 5220 U1206 F‐69373 Lyon France
| | - M. Pankuch
- Northwestern Medicine Chicago Proton Center Warrenville IL 60555 USA
| | - R. P. Johnson
- Department of Physics University of California Santa Cruz Santa Cruz CA 95064 USA
| | - R. W. Schulte
- Division of Biomedical Engineering Sciences Loma Linda University Loma Linda CA 92354 USA
| | - K. Parodi
- Department of Medical Physics Faculty of Physics Ludwig‐Maximilians‐Universität München Am Coulombwall 1 85748 Garching b. München Germany
| | - G. Dedes
- Department of Medical Physics Faculty of Physics Ludwig‐Maximilians‐Universität München Am Coulombwall 1 85748 Garching b. München Germany
| | - G. Landry
- Department of Medical Physics Faculty of Physics Ludwig‐Maximilians‐Universität München Am Coulombwall 1 85748 Garching b. München Germany
- Department of Radiation Oncology University Hospital, LMU Munich 81377 Munich Germany
- German Cancer Consortium (DKTK) 81377 Munich Germany
| |
Collapse
|
48
|
Parodi K. Latest developments in in-vivo imaging for proton therapy. Br J Radiol 2020; 93:20190787. [PMID: 31794249 PMCID: PMC7066959 DOI: 10.1259/bjr.20190787] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Owing to the favorable physical and biological properties of swift ions in matter, their application to radiation therapy for highly selective cancer treatment is rapidly spreading worldwide. To date, over 90 ion therapy facilities are operational, predominantly with proton beams, and about the same amount is under construction or planning.Over the last decades, considerable developments have been achieved in accelerator technology, beam delivery and medical physics to enhance conformation of the dose delivery to complex shaped tumor volumes, with excellent sparing of surrounding normal tissue and critical organs. Nevertheless, full clinical exploitation of the ion beam advantages is still challenged, especially by uncertainties in the knowledge of the beam range in the actual patient anatomy during the fractionated course of treatment, thus calling for continued multidisciplinary research in this rapidly emerging field.This contribution will review latest developments aiming to image the patient with the same beam quality as for therapy prior to treatment, and to visualize in-vivo the treatment delivery by exploiting irradiation-induced physical emissions, with different level of maturity from proof-of-concept studies in phantoms and first in-silico studies up to clinical testing and initial clinical evaluation.
Collapse
Affiliation(s)
- Katia Parodi
- Department of Experimental Physics – Medical Physics, Ludwig-Maximilians-Universität München, Faculty of Physics, Munich, Germany
| |
Collapse
|
49
|
Wohlfahrt P, Richter C. Status and innovations in pre-treatment CT imaging for proton therapy. Br J Radiol 2020; 93:20190590. [PMID: 31642709 PMCID: PMC7066941 DOI: 10.1259/bjr.20190590] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Pre-treatment CT imaging is a topic of growing importance in particle therapy. Improvements in the accuracy of stopping-power prediction are demanded to allow for a dose conformality that is not inferior to state-of-the-art image-guided photon therapy. Although range uncertainty has been kept practically constant over the last decades, recent technological and methodological developments, like the clinical application of dual-energy CT, have been introduced or arise at least on the horizon to improve the accuracy and precision of range prediction. This review gives an overview of the current status, summarizes the innovations in dual-energy CT and its potential impact on the field as well as potential alternative technologies for stopping-power prediction.
Collapse
Affiliation(s)
- Patrick Wohlfahrt
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
50
|
Thorwarth D. Imaging science and development in modern high-precision radiotherapy. Phys Imaging Radiat Oncol 2019; 12:63-66. [PMID: 33458297 PMCID: PMC7807660 DOI: 10.1016/j.phro.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| |
Collapse
|